TRANSFORMATIONS OF A RANDOM VARIABLE

Let X be a $r v$ with support

$$
x=\left\{\begin{array}{ll}
\left\{x: p_{x}(x)>0\right\} & \text { if } x
\end{array} \quad \text { is discrete with pms } p_{x}, ~\left(x: f_{x}(x)>0\right\} \text { if } x \text { is continuous with pdf } f_{x}\right.
$$

Consider a function $g: x \rightarrow y$ taking values in x
and returning values in some set y, and define the and Y returning values to in some set y, y, and define the

Illustration:

Each point in x maps to an single point in y.
Different points in x may map to the same point in y.

For any set icy, define the inverse mapping g^{-1}, which takes subsets of y and returns subsets of x, as

$$
g^{-1}(A)=\{x \in \mathcal{I}: g(x) \in A\}
$$

We find we may make a probability statement about y
by making the appropriate p probability statement abs by making the appropriate probbibity statement about X :

We have

$$
P(y \in A)=P(g(x) \in A)=P(x \in\{x \in X: j(x) \in A\})=P\left(x \in g^{-1}(A)\right)
$$

This defines the probability distribution of Y.
X DISCRETE (NOT 白Ó DISCREET)
If x is discrete, x is finite or countable,

The punt of Y is obtained as

$$
p_{y}(y)=P(y=y)=P(x \in \underbrace{-1}(y))=\sum_{x \in f^{-1}(y)} P(x=x)=\sum_{x \in g^{-1}(y)} p_{x}(x),
$$

may contain a sing value
or multiple volos
so $P_{Y}(y)$ is the sum of $p_{X}(x)$ over x sud h that $g(x)=y$.

Example: Roll a die twice and let X be the first roll minus the second roll. Then the support of X is

$$
x=\{-5,-4,-3,-2,-1,0,1,2,3,4,5,6\},
$$

over which the punt of X takes the values

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
$P_{x}(x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$3 / 36$	$2 / 36$	$\frac{1}{36}$

Now let $y=g(X)$, where $g(x)=|x|$. Then

$$
y=\{0,1,2,3,4,5\},
$$

over which the port of Y takes the values

y	0	1	2	3	4	5
$g^{-1}(y)$	$\{0\}$	$\{-1,1\}$	$\{-2,2\}$	$\{-3,3\}$	$\{-4,4\}$	$\{-5,5\}$
$p_{y}(y)$	$6 / 36$	$10 / 36$	$8 / 36$	$6 / 36$	$4 / 36$	$2 / 36$
	$p_{x}^{\prime \prime}(0)$	$p_{x}(-1)+k_{x}(1)$	\cdots			

Example: Let $X \sim \operatorname{Binomial}(n, p)$ and let $\quad Y=g(X)$,

$$
p_{x}(x)= \begin{cases}\binom{n}{x} p^{x}(1-p)^{n-x} & \text { it } x \in\{0,1, \ldots, n\} \\ 0 & \text { otherwise. }\end{cases}
$$

The tranformation $g(x)=n-x$ gives $y=\{0,1, \ldots, n\}$,
and its inverse is defined by

$$
g^{-1}(y)=\{x \in X: \underbrace{n-x=y\}}_{\text {solve for } x}=n-y
$$

getting $x=n-y$

So the punt of y for $y \in y$ is given by

$$
\begin{aligned}
p_{y}(y) & =\sum_{x \in g^{-1}(y)} p_{x}(x) \\
& =p_{x}(n-y) \\
& =\binom{n}{n-y} p^{n-y}(1-p)^{n-(n-y)} \\
& =\binom{n}{y}(1-p)^{y} p^{n-y},
\end{aligned}
$$

so that $\quad Y \sim B_{\text {inomial }}(n, 1-p)$.
Indeed, if $X=\#$ successes, them $Y=n-X=\#$ failures in n independent Bernoulli: trials with success probability p.
X continuous
Let X be continuous with pdf $f_{x}(x)$. We first consider the cdt of $y=g(x)$, which is given by

$$
\begin{aligned}
F_{y}(y) & =P_{Y}(y \leq y) \\
& =P_{x}(g(x) \leq y) \\
& =P_{x}(x \in\{x \in x: g(x) \leq y\}) \\
& =\int_{\{x \in x: g(x) \leq y\}} f_{X}(x) d x .
\end{aligned}
$$

Evaluating the integral involves identifying the integration bounds corresponding to the ext $\{x \in \mathcal{I}: g(x) \leq y\}$.

Then, if $\frac{d y}{d y} F_{y}(y)$ is continuous over $y \in y$, the pdf f_{y} of

$$
f_{y}(y)=\frac{d}{d y} F_{y}(y) \quad \text { for } \quad y \in y .
$$

Obtaining the distribution of Y by carrying out the above integration to get the cf of $Y^{"}$ is sometimes called the "METHOD OF DISTRIBUTION FUNCTIONS."

Example: Let $X \sim f_{X}(x)=\frac{3}{2} x^{2} 1(-1 \leq x \leq 1)$ and let $Y=|X|$.
Find the pdf f_{y} of y.
We have $Y=|x|$, so $g(x)=|x|$, giving $y=[0,1]$.
First find the cdf $F_{y}(y)$ for $y \in[0,1]$:

$$
\begin{aligned}
F_{y}(y) & =P_{y}(y \leq y) \\
& =P_{x}(|x| \leq y) \\
& =\int_{\{x \in[-1,1):} \underbrace{|x| \leq y\}}_{-y<x<y} x^{3 / 2} x^{2} d x \\
& =\int_{-y}^{y} \frac{3}{2} x^{2} d y \\
& =\left.\frac{1}{2} x^{3}\right|_{-y} ^{y} \\
& =\frac{y^{3}-(-y)^{3}}{2} \\
& =y_{y}^{3}
\end{aligned}
$$

so that

$$
F_{y}(y)=\left\{\begin{array}{lll}
1, & y>1 & (y \text { is always } \leq 1) \\
y^{3}, & 0 \leq y \leq 1 & (y \text { is never }<0) \\
0, & y<0 & (y)
\end{array}\right.
$$

Then, taking $\frac{d}{d y} F_{y}(y)$ on $y \in[0,0]$, we get

$$
f_{y}(y)=3 y^{2} \mathbb{1}(0 \leq y \leq 1) .
$$

Example: Let $X \sim U_{n}$ form $(0,1)$ and let $Y=-\log X$.
Find the pdf f_{y} of Y.
We have $y=-\log x$, so $g(x)=-\log x$, giving $y=(0, \infty)$.
First find the ad $F_{y}(y)$ for $y \in(0, \infty)$:
so

$$
F_{y}(y)=\left\{\begin{array}{cc}
1-e^{-y}, & y>0 \\
0, & y \leq 0
\end{array}\right.
$$

Taking $\frac{\partial}{\partial y} F_{y}(y)$ over $y>0$, we get

$$
f_{y}(y)=e^{-y} \mathbb{1}(y>0) .
$$

In some "nice" situations, we have an explicit formula for f_{y}.
"Nice" meaning: (i) the function γ is monotone
(ii) g^{-1} has a continuous derivative
(iii) the pdf of X is continuous.

The next theorem gives us the formula.

Theorem: Let X be a continuous $r v$ with support x and pdf $f_{x_{y}}$ which is continuous on x. Then let $x_{y}=g(x)$, such that $g: x \rightarrow y_{-1}$ is monotone and the derivative of is $^{\text {is }}$ continuous on $g^{-1} f_{y}$ of y is given on by

$$
f_{y}(y)=\left\{\begin{array}{cl}
f_{x}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right|, & y \in y \\
0, & \text { otherwise. }
\end{array}\right.
$$

Applying this theorem to get the density of Y is sometimes
called the "METHOD OF TRANSFORMATIONS:

Proof: Since $g: x \rightarrow y$ is monotone over x, for any $x, v \in x$ $n>v \Leftrightarrow g(n)>g(v)$ or $n>v \Leftrightarrow g(n)<g(v)$.
In this case the tranctormetion is one-to-one, so that

$$
j^{-1}(y)=x \quad \Leftrightarrow \quad y=g(x) .
$$

We consider the cdt of y in the cases
(i) g is monotone increasing:

$$
F_{y}(y)=P_{y}(y \leq y)=P_{x}(g(x) \leq y)=P_{x}\left(x \leq g^{-1}(y)\right)=F_{x}\left(g^{-1}(y)\right)
$$

(ii) g is monotone decreasing:

$$
F_{y}(y)=P_{y}(y \leqslant y)=P_{x}(g(x) \leqslant y)=P_{x}\left(x \geqslant g^{-1}(y)\right)=1-F_{x}\left(g^{-1}(y)\right)
$$

We have used here the continuity of X :

$$
P_{x}\left(x z_{g}^{-1}(y)\right)=1-P_{x}\left(x<g^{-1}(y)\right)=1-P_{x}\left(x \leq g^{-1}(x)\right)=1-F_{x}\left(g^{-1}(x)\right)
$$

Then

$$
f_{y}(y)=\frac{d}{d y} F_{y}(y)= \begin{cases}\frac{d}{d y} F_{x}\left(g^{-1}(y)\right), & g \text { increasing } \\ \frac{d}{d y}\left[1-F_{x}\left(g^{-1}(y)\right)\right], & g \text { decreasing },\end{cases}
$$

where by the chain rule we have

$$
\begin{aligned}
& \frac{d}{d y} F_{x}\left(g^{-1}(y)\right)=f_{x}\left(g^{-1}(y)\right) \underbrace{\frac{d}{d y} g^{-1}(y)}_{\substack{\geqslant 0, \text { because } g^{2} \text { increasing } \\
\Rightarrow j^{-1} \text { increasing }}}=f_{x}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right| \\
& \frac{d}{d y}\left[1-F_{x}\left(g^{-1}(y)\right)\right]=-f_{x}\left(g^{-1}(y)\right) \frac{d}{d y} g^{-1}(y)=f_{x}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right| . \\
& \begin{array}{l}
\leq 0, \text { because } g \text { decreasing } \\
\Rightarrow g^{-1} \text { decreasing }
\end{array}
\end{aligned}
$$

Combining the two cases gives the result.

Example: Lat $x \sim f_{x}(x)=\frac{1}{\lambda} e^{-x / \lambda} \mathbb{P}(x>0)$. Find the pot of $y=\sqrt{x}$. We have $g(x)=\sqrt{x}$, which is monotone and gives $y=(0, \infty)$.
Also $j^{-1}(y)=y^{2} \quad$ solve $y=\sqrt{x}$ for x), for which

$$
\frac{d}{d y} g^{-1}(y)=\frac{d}{d y} y^{2}=2 y,
$$

which is continuous over $y=(0, \infty)$.
So applying (

$$
\begin{aligned}
f_{y}(y) & =\left\{\begin{array}{cc}
\frac{1}{\lambda} e^{-\frac{y^{2}}{\lambda}}|2 y|, & y>0 \\
0, & y \leqslant 0
\end{array}\right. \\
& =(2 / \lambda) y e^{-y^{2} / \lambda} \mathbb{1}(y>0) .
\end{aligned}
$$

Exande: Let $X \sim f_{x}(x)=\frac{1}{\Gamma(\alpha) \beta \alpha^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\beta}} \mathbb{1}(x>0)$. Find the pot of $y=x^{-1}$.
We have $f(x)=1 / x$ is monotone on $x=(0, \infty)$ and gives $y=(0, \infty)$.
Also $j^{-1}(y)=1 / y \quad($ solve $y=1 / x$ for $x)$, for which

$$
\frac{d}{d y} g^{-1}(y)=-\frac{1}{y^{2}}=\frac{1}{y^{2}},
$$

which is continuous over $y=(0, \infty)$.
So applying (人) gives

$$
\begin{aligned}
f_{y}(y) & =\left\{\begin{array}{cl}
\frac{1}{\Gamma^{\prime}(\alpha) \beta^{\alpha}}\left(\frac{1}{y}\right)^{\alpha-1} e^{-\frac{1}{v \beta}}\left|\frac{1}{y^{2}}\right|, & y>0 \\
0 & y \leq 0
\end{array}\right. \\
& =\frac{1}{\Gamma(\alpha) \beta^{\alpha}}\left(\frac{1}{y}\right)^{\alpha+1} e^{-\frac{1}{y \beta}} \mathbb{H}\left(y>_{0}\right) .
\end{aligned}
$$

Example: Lat $X \sim f_{X}(x)=e^{-x} \mathbb{I}(x>0)$ and let $Y=-\log X$. Find the pdf and cdf of Y.

We have $y=g(x)=-\log x$ monotone on $x=(0, \infty)$ and gives $y=(-\infty, \infty)$.
Also $x=y^{-1}(y)=e^{-y}$, for which

$$
\frac{d}{d y} g^{-1}(y)=-e^{-y} \text {. }
$$

which is continuous over $y=(-\infty, \infty)$.
So applying (*) gives

$$
f_{y}(y)=e^{-e^{-y}}\left|-e^{-y}\right|=e^{-\left(y+e^{-y}\right)}
$$

for all $y \in \mathbb{R}$.

The cdf of Y is given by

$$
F_{y}(y)=\int_{-\infty}^{y} e^{-\left(t+e^{-t}\right)} d t=\left.e^{-e^{-t}}\right|_{-\infty} ^{y}=e^{-e^{-y}} \text { for all } y \in \mathbb{R}
$$

The distribution with this calf is called the Gumbel distribution.
The Gumbel pal look like this:

SQuare transformation of continuous x
Let x be continuous with pdf $f_{x} f_{\text {with }}$ with support over position
and
negative numbers. Find the
We have $g(x)=x^{2}$, which is not monotone over x.
For $y>0$, we have

$$
\begin{aligned}
F_{y}(y) & =P_{y}(y \leq y) \\
& =P_{x}\left(x^{2} \leq y\right) \\
& =P_{x}(-\sqrt{y} \leq x \leq \sqrt{y}) \\
& =P_{x}(x \leq \sqrt{y})-P_{x}(x \leq-\sqrt{y}) \\
& =F_{x}(\sqrt{y})-F_{x}(-\sqrt{y}) .
\end{aligned}
$$

so that, by the chain rule,

$$
\begin{aligned}
f_{y}(y) & =\frac{d}{d y}\left[F_{x}(\sqrt{y})-F_{x}(-\sqrt{y})\right] \\
& =f_{x}(\sqrt{y})\left(\frac{1}{2}\right) \frac{1}{\sqrt{y}}-f_{x}(-\sqrt{y})\left(-\frac{1}{2}\right) \frac{1}{\sqrt{y}} .
\end{aligned}
$$

Simplify to ge^{t}

$$
f_{y}(y)=\frac{1}{2} \frac{1}{\sqrt{y}}\left[f_{x}(\sqrt{y})+f_{x}(-\sqrt{y})\right] .
$$

This formula can be used to get the following
very

Application: Square of $N_{\text {ormal }}(0,1)$ is $\mathcal{Q}_{i-8 \text { pure }}(1)$:
Let $x \sim \operatorname{Normal}(0,1)$. Find the pot of $y=x^{2}$.
We have $f_{x}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$, so for $y>0$, by ((<) ,

$$
\begin{aligned}
f_{y}(y) & =\frac{1}{2} \frac{1}{\sqrt{y}}\left[\frac{1}{\sqrt{2 \pi}} e^{-\frac{(\sqrt{y})^{2}}{2}}+\frac{1}{\sqrt{2 \pi}} e^{-\frac{(-\sqrt{y})^{2}}{2}}\right] \\
& =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{y}} e^{-\frac{y}{2}} .
\end{aligned}
$$

We find we may write $\quad\binom{\Gamma\left(\frac{1}{2}\right)=\sqrt{n}$, see lee 8}{ from STAT sill }

$$
f_{y}(y)=\frac{1}{P\left(\frac{1}{2}\right) 2^{1 / 2}} y^{\left(\frac{y}{2}-1\right)} e^{-\frac{y}{2}} 1(y>0),
$$

THE PROBABILITY INTEGRAL TRANSFORM
The probability integral transform turns any continuous ir into. "oof Uniform(0,1,) coff r is by the passing it it throbility integral."
We present it in the following theorem:

Theorem: Let X be a ${ }^{r} v$ with F_{X} a continuous coff $F_{X} F_{X}$ and define $Y=F_{X}(x)$. Then

Proof: * Suppose ${ }_{\text {assumption, }} F_{x}$ is mot it simplotine (we dint need the proof).
Then $y=F_{x}(x) \Leftrightarrow F^{-1}(y)=x$.
Also, $y=(0,1)$, since $F_{x}(x) \in(0,1)$ for $x \in X$.
Illustration:

(i) observe a realization of X

The cot of Y for $y \in(0,1)$ is

$$
F_{y}(y)=P_{y}(y \leq y)=P_{x}\left(F_{x}(x) \leq y\right)=P_{x}(x \leq \underbrace{F^{-1}(y)}_{\substack{y^{\text {me }} \text {, quartile } \\ F_{x}(y)}})=y,
$$

s.

$$
F_{y}(y)=\left\{\begin{array}{lc}
1, & 1 \leqslant y \\
y, & 0<y<1 \\
0, & y \leqslant 0
\end{array}\right.
$$

which is the Uniform $(0,1)$ coff.

RANDOM NUMBER GENERATION

We can apply the probability integral transform, in reverse, to generate random numbers.
To generate $X \sim F_{X}$, do the following:
(i) Generate $U \sim U_{n}:$ form $(0,1)$
(ii) Set $X=F_{x}^{-1}(u)$, where $F_{x}^{-1}(n)=\inf \left\{x: F_{x}(x) \geqslant n\right\}$

This is the probability integral transform in reverse.
We see that the cat of $X=F_{X}^{-1}(v)$ is F_{X} :

$$
P_{u}\left(F^{-1}(U) \leqslant x\right)=P_{u}\left(U \leqslant F_{x}(x)\right)=F_{x}(x) .
$$

So: We need only to figure out how to generate numbers from the Uniform $(0,1)$ distribution.

It is not easy to make a computer generate random numbers; it is in fact impossible, so we must content ourselves with psevdocandom numbers.
The best, as ot now, generator of psevdorandom numbers is the "Mersenne Twister," introduced by Makoto Matsumoto and Takuji Nishimura in 1997. It generates pseudorandom Uniform $(0,1)$ values:

Throughout this paper, bold letters, such as \mathbf{x} and \mathbf{a}, denote word vectors, which are w-dimensional row vectors over the two-element field $\mathbb{F}_{2}=\{0,1\}$, identified with
machine words of size w (with the least significant bit at the right).
The MT algorithm generates a sequence of word vectors, which are considered
to be uniform pseudorandom integers between 0 and $2^{w}-1$. Dividing by $2^{w}-1$,
we regard each word vector as a real number in $[0,1]$. w is some large number
The algorithm is based on the following linear recurrence
$\mathbf{x}_{k+n}:=\mathbf{x}_{k+m} \oplus\left(\mathbf{x}_{k}^{u} \mid \mathbf{x}_{k+1}^{l}\right) A, \quad(k=0,1, \cdots)$.
Maketo Madsumoto and Takuji Nishimura (1998). Messene Twister: a 623-dimensionally equidistributed uniform psevedo-random number generator. ACA Trans. Model. Compact. Simul. 8, 1,3-30.

Example: Generate a realization of $X \sim E_{x p o n e n t i a l ~}(\lambda)$.
We have

$$
F_{x}(x)=\left\{\begin{array}{cc}
1-e^{-x / \lambda}, & x>0 \\
0, & x \leq 0,
\end{array}\right.
$$

which has inverse (quartile function)

$$
F_{X}^{-1}(n)=-\lambda \log (1-n) \quad \text { (solve } n=1-e^{-x / \lambda} \text { for } x \text {) }
$$

for $\quad n \in(0,1)$.
So generate $U \sim U_{\text {Biform }}(0,1)$ and set $X=-\lambda \log _{\gamma}(1-v)$.

TRANSFORMATIONS WITH MOMENT GENERATING FUNCTIONS

If the moment generating function $M_{Y}(t)$ of a IV $_{Y}$ exists, it tells us what distribution y has.

In some situations, the easiest way to find the distribution of $y=g(x)$ is to compute

$$
\mu_{y}(t)=\mathbb{E} e^{t_{y}}=\mathbb{E} e^{t g(x)},
$$

provided the expectation exists for all t in a neighborhood of zero. This "shift-ande-scele" most advantageous when $g_{\text {when }}$ is $f(x)=a x+b$ shift-and-scele" transformation, that is, $\gamma_{\text {when }} \quad \gamma(x)=a x+b$ for some $a, b \in \mathbb{R}$.
This is due to the following result (In STAT SII).
Theorem: For any constants a and b, the $m g f$ of $a X+b$ is

$$
M_{a X+b}(t)=e^{t b} M_{X}(a t)
$$

Proof: $M_{a X+b}(t)=\mathbb{E} \exp [t(a X+b)]=\mathbb{E} \exp [(t a) X] \exp [t b]=e^{t b} M_{X}(a t)$
Finding the distribution of $Y=g(x)$ by finding the mg f of Y is sometimes called the METHOD OF MOMENT GENERATING FUNCTIONS.

Example: Lat $X \sim G$ ama. (α, β) and lat $Y=X / \beta$.
We know that $M_{x}(t)=(1-\beta t)^{-\alpha}$, so

$$
M_{y}(t)=M_{x / \beta}(t)=M_{x}(t / \beta)=(1-\beta(t / \beta))^{-\alpha}=(1-t)^{-\alpha} .
$$

And $(1-t)^{-\alpha}$ is the mot of the $\operatorname{Gamma}(\alpha, 1)$ dist.
Lat $\quad X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right) \underset{\mu t+\sigma^{2} t^{2} / 2}{\text { and }}$ lat $z=\frac{x-\mu}{\sigma}$.
We have $\mu_{x}(t)=e^{\mu t+\sigma^{2} t^{2} / 2}$, so

$$
\begin{aligned}
M_{z}(t) & =\mu_{\frac{x-\mu}{\sigma}}(t) \\
& =e^{-\frac{\mu}{\sigma} t} \mu_{x}(t / \sigma) \\
& =e^{-\frac{\mu}{\sigma} t} e^{\mu\left(\frac{t}{\sigma}\right)+\sigma^{2}\left(\frac{(t}{\sigma}\right)^{2} / 2} \\
& =e^{t^{2} / 2}
\end{aligned}
$$

which we reigunize as the mot of the
Normal (o,

