TRANSFORMATIONS OF MULTIPLE RANDOM VARIABLES
We are often interested in the distribution of a function involving two or more random variables.

Example: Let X_{1}, X_{2} be independent Exponential (λ) rus and lat

$$
Y=\frac{x_{1}}{x_{1}+x_{2}} .
$$

One way to find the distribution of Y is to diratly
derive its
$c d f$: Firstly, the joint density of x_{1}, x_{2} is given by

$$
f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{\lambda} e^{-\frac{x_{1}}{\lambda}} \frac{1}{\lambda} e^{-x_{2} / \lambda} \mathbb{1}\left(x_{1} x_{0}\right) \mathbb{1}\left(x_{2} z_{0}\right) .
$$

Not that the support of Y is $y=(0,1)$.
For $y \in(0,1)$, we have

$$
\begin{aligned}
& F_{y}(y)=P(y \leq y) \\
&=P\left(\frac{x_{1}}{x_{1}+x_{2}} \leq y\right) \\
&=P\left(x_{1} \leq y\left(x_{1}+x_{2}\right)\right. \\
&=P\left(x_{1}(1-y) \leq y x_{2}\right) \\
&=P\left(x_{2} \geqslant\left(\frac{1-y}{y}\right) x_{1}\right) \\
&=\int_{0}^{\infty} \int_{\left(\frac{1-y}{y}\right) x_{1}}^{\infty} \underbrace{\frac{1}{\lambda} e^{-\frac{x_{1}}{\lambda}} \frac{x_{2}}{\lambda} e^{-\frac{x_{2}}{\lambda}} d x_{2} d x_{1}}_{x_{1}}{ }^{\text {Integrate our this region }} x_{1} \\
& x_{1}+x_{1}, x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\int_{0}^{\infty} \frac{1}{\lambda} e^{-\frac{x_{1}}{\lambda}}\left[-e^{-\frac{x_{2}}{\lambda}}\right]\right|_{\left(\frac{1-y}{y}\right) x_{1}} ^{\infty} d x_{1} \\
& =\int_{0}^{\infty} \frac{1}{\lambda} e^{-\frac{x_{1} / \lambda}{\lambda}} e^{-\left(\frac{1-y)}{y}\right) x_{1} / \lambda} d x_{1} \\
& =\int_{0}^{\infty} \frac{1}{\lambda} e^{-\frac{x_{1} y-(1-y) x_{1}}{y \lambda}} d x_{1} \\
& =y \underbrace{\int_{0}^{\infty} \frac{1}{y \lambda} e^{-\frac{x_{1}}{y \lambda}} d x_{1}}_{=1, \text { integra1 ouor sopport of }} \\
& =y .
\end{aligned}
$$

so

$$
F_{y}(y)=\left\{\begin{array}{lc}
0, & y \leq 0 \\
y, & 0<y<1 \\
1, & 1 \leq y .
\end{array}\right.
$$

This is the cdf of the Uniform $(0,1)$ distribution, es

$$
y=\frac{x_{1}}{x_{1}+x_{2}} \sim U_{\text {niform }}(0,1) .
$$

The following theorem is useful in "nice" situations:

Theorem: Wet $\left(x_{1}, x_{2}\right)$ be a joint pair of continuous rus ${ }^{\text {pair }}$ pots

$$
x=\left\{\left(x_{1}, x_{2}\right): f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right)>0\right\} .
$$

Consider es the pair of continuous rus $\left(y_{1}, y_{2}\right)$
defined as

$$
Y_{1}=g_{1}\left(X_{1}, X_{2}\right), \quad Y_{2}=\delta_{2}\left(X_{1}, X_{2}\right) \text {, }
$$

where g_{1} and $g_{2} x$ are one-to-one functions
taking values in ${ }^{\text {and }}$ returning values in
the set

$$
y=\left\{\left(y_{1}, y_{2}\right): y_{1}=g_{1}\left(x_{1}, x_{2}\right), y_{2}=g_{2}\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right) \in x\right\} .
$$

Then the joint pdf $f_{y_{1}, y_{2}}$ of $\left(Y_{1}, Y_{2}\right)$ is
given by

$$
f_{y_{1}, y_{2}}\left(y_{1}, y_{2}\right)=f_{\left(x_{1}, x_{2}\right.}\left(j_{1}^{-1}\left(y_{1}, y_{2}\right), \delta_{2}^{-1}\left(y_{1}, y_{2}\right)\right)\left|J\left(y_{1}, y_{2}\right)\right|, \quad\left(\hat{y_{\text {biN }}}\right)
$$

for $\left(y_{1}, v_{2}\right) \in y_{1}$, zero otherwise, where j_{1}^{-1} and j_{2}^{-1} are the inverse tramsformatroms satisfying

$$
\begin{aligned}
& y_{1}=g_{1}\left(x_{1}, x_{2}\right) \\
& y_{2}=g_{2}\left(x_{1}, x_{2}\right)
\end{aligned} \Leftrightarrow \quad \begin{aligned}
& x_{1}=g_{1}^{-1}\left(y_{1}, y_{2}\right) \\
& x_{2}=g_{2}^{-1}\left(y_{1}, y_{2}\right),
\end{aligned}
$$

and

$$
J\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
\frac{\partial}{\partial y_{1}} g_{1}^{-1}\left(y_{1}, y_{2}\right) & \frac{\partial}{\partial y_{2}} g_{1}^{-1}\left(y_{1}, y_{2}\right) \\
\frac{0}{\partial y_{1}} \delta_{2}^{-1}\left(y_{1}, y_{2}\right) & \frac{\partial}{\partial y_{2}} y_{2}^{-1}\left(y_{1}, y_{2}\right)
\end{array}\right|,
$$

provided $J\left(y_{1}, y_{2}\right)$ is not equal to zero on all of y.

Remarks - For real numbers a, b, c, d,

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

and this called the determinant of the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

- The function $J\left(y_{1}, y_{2}\right)$ is called the "Jacobian" of the transformation.
- The "nice" part about the situation to which the theorem applies is that the transformations are one-to-one. This theorem could not be used, for example, for the transformation

$$
y_{1}=\max \left\{x_{1}, x_{2}\right\}, y_{2}=\min \left\{x_{1}, x_{2}\right\},
$$

because we cannot get the value of $\left(X_{1}, X_{2}\right)$ by knowing (Y_{1}, Y_{2}).

- The theorem is readily extensible to the n-variable case, where we consider continuous rvs X_{1}, \ldots, X_{n} and n transformations $Y_{1}=g_{1}\left(x_{11} \ldots, x_{n}\right), \ldots, Y_{n}=g_{n}\left(X_{1}, \ldots, X_{n}\right)$. For this course, however, we will only n use the bivariate version.

Example: Let $\left(X_{1}, X_{2}\right)$ be independent $\operatorname{Normal}(0,1)$ rus. Find the joint pdf of $\left(Y_{1}, y_{2}\right)$, where

$$
Y_{1}=\frac{x_{1}}{x_{2}} \quad \text { and } \quad Y_{2}=x_{2} \text {. }
$$

The joint pdf of $\left(x_{1}, x_{2}\right)$ is

$$
f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x_{1}^{2}}{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x_{2}^{2}}{2}} .
$$

Note that $y=(-\infty, \infty) \times(-\infty, \infty)$.
We have

$$
\begin{aligned}
& y_{1}=\frac{x_{1}}{x_{2}}\left(=g_{1}\left(x_{1}, x_{2}\right)\right) \\
& y_{2}=x_{2}\left(=g_{2}\left(x_{1}, x_{2}\right)\right)
\end{aligned} \Leftrightarrow \begin{aligned}
& x_{1}=y_{1} y_{2}\left(=g_{1}^{-1}\left(y_{1}, y_{2}\right)\right) \\
& x_{2}=y_{2}\left(=g_{2}^{-1}\left(y_{1}, y_{2}\right)\right),
\end{aligned}
$$

s. that

$$
J\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
\frac{\partial}{\partial y_{1}} y_{1} y_{2} & \frac{\partial}{\partial y_{2}} y_{1} y_{2} \\
\frac{\partial}{\partial y_{2}} & \frac{\partial}{\partial y_{2}} y_{2}
\end{array}\right|=\left|\begin{array}{cc}
y_{2} & y_{1} \\
0 & 1
\end{array}\right|=y_{2} .
$$

Applying ($\hat{\nu}_{\text {bis }}$) jives

$$
f_{y_{1}, y_{2}}\left(y_{1}, y_{2}\right)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{\left(y_{1} y_{2}\right)^{2}}{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y_{2}{ }^{2}}{2}}\left|y_{2}\right| .
$$

Quite often we are only interested
pdf of
one of
$y_{1}=g_{1}\left(x_{1}, x_{2}\right)^{\text {the }}$ or margin $_{y_{2}=g_{2}}\left(x_{1}, x_{2}\right)$.

$$
f_{Y_{1}}\left(y_{1}\right)=\int_{\mathbb{R}} f_{Y_{1}, y_{2}}\left(y_{1}, y_{2}\right) d y_{2} .
$$

Example: Let $\left(X_{1}, X_{2}\right)$ be independent $\operatorname{Normal}(0,1)$ rus.
Find the pdt of $Y_{1}=\frac{x_{1}}{X_{2}}$.
Having found elrecaly the joint pot $f_{Y_{1}, Y_{2}}$ of

$$
Y_{1}=\frac{x_{1}}{x_{2}} \text { and } Y_{2}=x_{2} \text {, }
$$

we need only to integrate it over y_{2} :

$$
\begin{aligned}
f_{y_{1}}\left(y_{1}\right) & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\left(y_{y_{2}}\right)^{2}}{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y_{2}^{2}}{2}}\left|y_{2}\right| d y_{2} \\
& =2 \int_{0}^{\infty} \frac{1}{2 \pi} e^{-\frac{\left(1+y_{1}^{2}\right) y_{2}^{2}}{2}} y_{2} d y_{2}\left(\int_{0}^{\infty} e^{-a y_{2}^{2}} y_{2} d y=-\left.\frac{-e^{2}}{2 a}\right|_{0} ^{\infty}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\pi}\left[-e^{-\frac{\left(1+y_{1}^{2}\right) y_{2}^{2}}{2}}\left(\frac{1}{1+y_{1}^{2}}\right)\right]_{0}^{\infty} \\
& =\frac{1}{\pi} \frac{1}{1+y_{1}^{2}} .
\end{aligned}
$$

This is the pol of a distribution called the Cauchy distribution.
Example: Let $\left(x_{1}, x_{2}\right) \sim f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{\lambda^{2}} e^{\frac{-\left(x_{1}+x_{2}\right)}{\lambda}} \mathbb{I}\left(x_{1}>0, x_{2}>0\right)$.
(i) Find the joint pdf of $Y_{1}=\frac{x_{1}}{X_{1}+x_{2}}$ and $Y_{2}=x_{1}+x_{2}$.

Note that $y=\left\{\left(y_{1}, y_{2}\right): 0<y_{1}<1, \quad 0<y_{2}\right\}$.
We have

$$
\begin{aligned}
& y_{1}=\frac{x_{1}}{x_{1}+x_{2}}\left(=g_{1}\left(x_{1}, x_{2}\right)\right) \\
& y_{2}=x_{1}+x_{2}\left(=g_{2}\left(x_{1}, x_{2}\right)\right)
\end{aligned} \Leftrightarrow \begin{aligned}
& x_{1}=y_{1} y_{2}\left(=g_{1}^{-1}\left(y_{1}, y_{2}\right)\right) \\
& x_{2}=\left(1-y_{1}\right) y_{2}\left(=g_{2}^{-1}\left(y_{1}, y_{2}\right)\right) .
\end{aligned}
$$

The Jacobian is

$$
J\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
\frac{\partial}{\partial y_{1}} y_{1} y_{2} & \frac{\partial}{\partial y_{2}} y_{1} y_{2} \\
\frac{\partial}{\partial y_{1}}\left(1-y_{1}\right) y_{2} & \frac{\partial}{\partial y_{2}}\left(1-y_{1}\right) y_{2}
\end{array}\right|=\left|\begin{array}{cc}
y_{2} & y_{1} \\
-y_{2} & 1-y_{1}
\end{array}\right|=y_{2}\left(1-y_{1}\right)-\left(-y_{2}\right) y_{1}=y_{2}
$$

Applying (*) $\rangle_{\text {birr }}$) gives

$$
\begin{aligned}
f_{y_{1}, y_{2}}\left(y_{1}, y_{2}\right) & =\frac{1}{\lambda^{2}} e^{-\frac{\left(y_{1} y_{2}+\left(1-y_{1}\right) y_{2}\right)}{\lambda}}\left|y_{2}\right| \mathbb{1}\left(0<y_{1}<1,0<y_{2}\right) \\
& =\frac{y_{2}}{\lambda^{2}} e^{-\frac{y_{2}}{\lambda}} \mathbb{1}\left(0<y_{1}<1,0<y_{2}\right) .
\end{aligned}
$$

(ii) Find the marginal pdf $f_{Y_{1}}$ of $Y_{\text {.. }}$

Integrate $f_{y_{1}, y_{2}}\left(y_{1}, y_{2}\right)$ over $y_{2} \in(0, \infty)$ to get $f_{y_{1}}\left(y_{1}\right)$.

$$
\begin{aligned}
f_{y_{1}}\left(y_{1}\right) & =\int_{0}^{\infty} \frac{y_{2}}{\lambda^{2}} e^{-\frac{y_{2}}{\lambda}} d y_{2} \mathbb{1}\left(0<y_{1}<1\right) \\
& =\frac{1}{\lambda} \underbrace{\int_{0}^{\infty} \frac{y_{2}}{\lambda} e^{-\frac{y_{2}}{\lambda}} d y_{2}}_{=\lambda} \mathbb{1}\left(0<y_{1}<1\right) \\
& =\mathbb{1}\left(0<y_{1}<1\right)
\end{aligned}
$$

Example: Let $\left(z_{1}, z_{2}\right) \sim f_{z_{1}, z_{2}}\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left(z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}\right)\right]$.
Find the joint pdf of $\left(U_{1}, U_{2}\right)$, where

$$
v_{1}=z_{1}+z_{2} \text { and } v_{2}=z_{1}-z_{2} \text {. }
$$

Firstly $\left(v_{1}, v_{2}\right)$ hes support on $\left\{\left(n_{1}, n_{2}\right): n_{1} \in \mathbb{R}, n_{2} \in \mathbb{R}\right\}=\mathbb{R}^{2}$.
We have a one-to-one transformation:

$$
\begin{aligned}
& u_{1}=z_{1}+z_{2}\left(=g_{1}\left(z_{1}, z_{2}\right)\right) \\
& u_{2}=z_{1}-z_{2}\left(=g_{2}\left(z_{1}, z_{2}\right)\right) \Leftrightarrow
\end{aligned} \begin{aligned}
& z_{1}=\frac{u_{1}+u_{2}}{2}\left(=j_{1}^{-1}\left(n_{1}, u_{2}\right)\right) \\
& z_{2}=\frac{u_{1}-u_{2}}{2}\left(=j^{-1}\left(n_{1}, u_{2}\right)\right)
\end{aligned}
$$

The Jacobian is

$$
J\left(u_{1}, u_{2}\right)=\left|\begin{array}{ll}
\frac{\partial}{\partial u_{1}} \frac{u_{1}+u_{2}}{2} & \frac{\partial}{\partial u_{2}} \frac{u_{1}+u_{2}}{2} \\
\frac{0}{\partial x_{1}} \frac{u_{1}-x_{2}}{2} & \frac{\partial}{\partial u_{2}}
\end{array}\right|=\left|\begin{array}{cc}
\frac{u_{1}-u_{2}}{2} & \frac{1}{2} \\
\frac{1}{2} & -y_{2}
\end{array}\right|=\left(\frac{1}{2}\right)(-1 / 2)-(1 / 2)(1 / 2)=-1 / 2 .
$$

Applying ($\left\rangle_{\text {bin }}\right.$) jives

$$
\begin{aligned}
f_{u_{1}, v_{2}}\left(n_{1}, n_{2}\right) & =\frac{1}{2 \pi} \frac{1}{\sqrt{1-p^{2}}} \exp \left[-\frac{1}{2\left(1-p^{2}\right)}\left(\left(\frac{n_{1}+n_{2}}{2}\right)^{2}-2 p\left(\frac{n_{1}+n_{2}}{2}\right)\left(\frac{n_{1}-n_{2}}{2}\right)+\left(\frac{n_{1}-n_{2}}{2}\right)^{2}\right)\right]\left|-y_{2}\right| \\
& =\frac{1}{2 \pi} \frac{1}{\sqrt{4\left(1-\rho^{2}\right)}} \exp \left[-\frac{n_{1}^{2}+2 n_{1} n_{2}+n_{2}^{2}-2 p\left(n_{1}^{2}-n_{2}^{2}\right)+n_{1}^{2}-2 n_{1} n_{2}+n_{2}^{2}}{2 \cdot 4\left(1-p^{2}\right)}\right]
\end{aligned}
$$

$$
\begin{aligned}
4-4 p^{2}=(2-2 p)(2+2 p) & =\frac{1}{2 \pi} \frac{1}{\sqrt{(2-2 \rho)(2+2 \rho)}} \exp \left[-\frac{u_{1}^{2}(2-2 \rho)}{2(2-2 \rho)(2+2 \rho)}\right] \exp \left[-\frac{u_{2}^{2}(2+2 \rho)}{2(2-2 \rho)(2+2 p)}\right] \\
& =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{2+2 \rho}} \exp \left[-\frac{u_{1}^{2}}{2(2+2 p)}\right] \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{2-2 p}} \exp \left[-\frac{u_{2}^{2}}{2(2-2 p)}\right] .
\end{aligned}
$$

Note that U_{1} and U_{2} are independent; the joint pdf $f_{v_{1}, v_{2}}\left(u_{1}, u_{2}\right)$ can be factored into the product of a function of only u_{1} and a function of only u_{2}.
Moreover, we see that the marginal distributions are

$$
\begin{aligned}
& U_{1} \sim \operatorname{Normal}(0,2+2 p) \\
& U_{2} \sim \operatorname{Narmal}(0,2-2 p) .
\end{aligned}
$$

Also, from what we knew before we could have found

$$
\begin{aligned}
& \operatorname{Var} V_{1}=\operatorname{Var}\left(z_{1}+z_{2}\right)=\operatorname{Var} z_{1}+\operatorname{Var} z_{2}+2 \operatorname{Cov}\left(z_{1}, z_{2}\right)=2+2 p \\
& \operatorname{Var} V_{2}=\operatorname{Var}\left(z_{1}-z_{2}\right)=\operatorname{Var} z_{1}+\operatorname{Var} z_{2}-2 \operatorname{Cov}\left(z_{1}, z_{2}\right)=2-2 p
\end{aligned}
$$

which confirms our work.

Example: Let $x_{1} \sim \operatorname{Bet}(1,1)$ and $x_{2} \sim \operatorname{seta}(2,1)$ be independent rus.
(i) Find the joint pdf of $Y_{1}=X_{1} X_{2}$ and $Y_{2}=X_{2}$.

Firstly, the joint pal f of x_{1}, x_{2} is

$$
f_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right)=\mathbb{P}\left(0<x_{1}<1\right) \cdot 2 x_{2} \cdot \mathbb{1}\left(0<x_{2}<1\right) .
$$

We have $x=(0,1) \times(0,1)$ and $y=\left\{\left(y_{1}, y_{2}\right): 0<y_{1} \leq y_{2}<1\right\}$, and

$$
\left.\begin{array}{l}
y_{1}=x_{1} x_{2}\left(=g_{1}\left(x_{1}, x_{2}\right)\right) \\
y_{2}=x_{2}\left(=g_{2}\left(x_{1}, x_{2}\right)\right)
\end{array} \Leftrightarrow \begin{array}{l}
x_{1}=y_{1} / y_{2}
\end{array} \quad=j_{1}^{-1}\left(y_{1}, y_{2}\right)\right) .
$$

So the Jacobian is

$$
J\left(y_{1}, y_{2}\right)=\left|\begin{array}{ccc}
\frac{d}{d y_{1}} \frac{y_{1}}{y_{2}} & \frac{d}{d y_{2}} \frac{y_{1}}{y_{2}} \\
\frac{d}{d y_{1}} & y_{2} & \frac{d}{d y_{2}} y_{2}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{y_{2}} & -\frac{y_{1}}{y_{2}^{2}} \\
0 & 1
\end{array}\right|=\frac{1}{y_{2}} .
$$

Then we have, by $\left(\left\rangle_{\text {bis }}\right)\right.$, that the joint density of Y_{1}, Y_{2} is

$$
\begin{aligned}
f_{r_{1}, y_{2}}\left(y_{1}, y_{2}\right) & =2 \cdot y_{2}\left|\frac{1}{y_{2}}\right| \cdot \mathbb{R}\left(0<y_{1} \leq y_{2}<2\right) \\
& =2 \mathbb{R}\left(0<y_{1} \leq y_{2}<1\right) .
\end{aligned}
$$

(ii) Find the marginal density of Y_{1}.

$$
f_{Y_{1}}\left(y_{1}\right)=\int_{\mathbb{R}} f_{y_{1} y_{2}}\left(y_{1} y_{2}\right) d y_{2}=\int_{\mathbb{R}} 2 \mathbb{\mathbb { R }}\left(0<y_{1} \leqslant y_{2}<1\right) d y_{2}=2\left(1-y_{1}\right) \mathbb{B}\left(0<y_{1}<1\right) .
$$

If a transformation is not one-to-one, we cannot use expression $\left.(\hat{\%}\rangle_{\text {bin }}\right)$. The following is an example of such a situation:

Example: Let $\left(z_{1}, z_{2}\right) \sim f_{z_{1}, z_{2}}\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left(z_{1}^{2}-2 p z_{1} z_{2}+z_{2}^{2}\right)\right]$
Consider the transformation

$$
U_{1}=\min \left\{z_{1}, z_{2}\right\} \text { and } U_{2}=\max \left\{z_{1}, z_{2}\right\} .
$$

Firstly, $\left(U_{1}, U_{2}\right)$ has support on \mathbb{R}^{2}.
We find that $\left(u_{1}, u_{2}\right)=\left(\min \left\{z_{1}, z_{2}\right\}, \max \left\{z_{1}, z_{2}\right\}\right)\left(=g\left(z_{1}, z_{2}\right)\right)$
has the inverse mapping

$$
j^{-1}\left(n_{1}, n_{2}\right)=\left\{\left(z_{1}, z_{2}\right):\left(z_{1}, z_{2}\right) \in\left\{\left(n_{1}, n_{2}\right),\left(n_{2}, u_{1}\right)\right\}\right\}
$$

which is not single -valued, so the transformation is
not one-to-one, and we cannot use $\left(\left\rangle_{\text {bis }}\right)\right.$.

UW Finding the joint pdf of $\left(U_{1}, U_{2}\right)$ is quite complicated, but we may find the margin puff of beginning by writing down its coif:

$$
\begin{aligned}
& F_{v_{2}}\left(n_{2}\right)=P_{u_{2}}\left(u_{2} \leqslant n_{2}\right) \\
& =P_{\left(z_{1}, z_{2}\right)}\left(\max \left\{z_{1}, z_{2}\right\} \leq n_{2}\right) \\
& =P_{\left(z_{1} z_{2}\right)}\left(z_{1} \leq n_{2}, z_{2} \leq n_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(z_{1}-\rho z_{2}\right)^{2}+z_{2}^{2}\left(1-\rho^{2}\right) \\
& =\int_{-\infty}^{u_{2}} \int_{-\infty}^{u_{2}} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{\left(z_{1}-\rho z_{2}\right)^{2}}{2\left(1-\rho^{2}\right)}\right] d z_{1} \frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{z_{2}^{2}}{2}\right] d z_{2} \\
& \text { (Let } \phi(v)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{v^{2}}{2}} \text { and } \Phi(v)=\int_{-\infty}^{v} \phi(v) d v \text {) } \\
& \int_{-\infty}^{n_{2}} \Phi\left(\frac{u_{2}-\rho z_{2}}{\sqrt{1-\rho^{2}}}\right) \phi\left(z_{2}\right) d z .
\end{aligned}
$$

ω
Now we may find the pdf $f_{U_{2}}\left(u_{2}\right)$ of U_{2} by taking the H derivative of $F_{V_{2}}\left(n_{2}\right)$, but we need to vie Leibniz's
ill $\frac{\text { It }}{}$ rule, as x_{2} appears in the integrand as well as in the integration bounds.
Leibniz's rule:
${\underset{\infty}{\infty}}_{\infty}^{d x}\left(\int_{a(x)}^{b(x)} f(x, t) d t\right)=f(x, b(x)) \frac{d}{d x} b(x)-f(x, a(x)) \frac{d}{d x} a(x)+\int_{a(x)}^{b(x)} \frac{d}{d x} f(x, t) d t$
$\stackrel{2}{2}$ This gives

$$
\begin{aligned}
& \frac{d}{d u_{2}}\left(\int_{-\infty}^{u_{2}} \Phi\left(\frac{u_{2}-\rho z_{2}}{\sqrt{1-\rho^{2}}}\right) \phi\left(z_{2}\right) d z_{2}\right)=\Phi\left(\frac{u_{2}-\rho u_{2}}{\sqrt{1-\rho^{2}}}\right) \phi\left(u_{2}\right) \cdot 1-[0] \\
& \left.+\int_{-\infty}^{n_{2}} \frac{1}{\sqrt{1-\rho^{2}}} \phi\left(\frac{u_{2}-\rho^{z_{2}}}{\sqrt{1-\rho^{2}}}\right) \psi\left(z_{2}\right) d z_{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \frac{山_{\infty}}{\frac{\alpha}{2}} \int_{-\infty}^{u_{2}} \frac{1}{\sqrt{1-\rho^{2}}} d\left(\frac{u_{2}-c^{z_{2}}}{\sqrt{1-\rho^{2}}}\right) d\left(z_{1}\right) d z_{2}=\int_{-\infty}^{u_{2}} \frac{1}{\sqrt{1-p^{2}}} \frac{1}{2 \pi} \exp \left[-\frac{1}{2} \frac{\left(u_{2}-\rho z_{2}\right)^{2}+z_{2}^{2}\left(1-\rho^{2}\right)}{1-\rho^{2}}\right] d z_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{u_{2}} \frac{1}{\sqrt{1-\rho^{2}}} \frac{1}{2 \pi} \operatorname{erp}\left[-\frac{1}{2} \frac{u_{2}^{2}-2 \rho u_{2} z_{2}+z_{2}^{2}}{1-\rho^{2}}\right] d z_{2} \\
& =\int_{-\rho}^{u_{2}} \frac{1}{\sqrt{1-\rho^{2}}} \frac{1}{2 \pi} \operatorname{cop}\left[-\frac{1}{2} \frac{\left(z_{2}-\rho u_{2}\right)^{2}+n_{2}^{2}\left(1-p^{2}\right)}{1-\rho^{2}}\right] d z_{2} \\
& =\int_{-\infty}^{u_{2}} \frac{1}{\sqrt{1-\rho^{2}}} \phi\left(\frac{z_{2}-p u_{2}}{\sqrt{1-\rho^{2}}}\right) \phi\left(u_{2}\right) d z_{2} \\
& =\phi\left(u_{2}\right) \Phi\left(u_{2} \frac{1-\rho}{\sqrt{1-\rho^{2}}}\right) \text {. }
\end{aligned}
$$

vs in the end, the ptalf of the maximum of z_{1} and z_{2}, when $\left(z_{1}, z_{2}\right)$ is a standard bivariste Normal pair with correlation ρ, is given by

$$
f_{v_{2}}\left(u_{2}\right)=2 \Phi\left(u_{2} \sqrt{\frac{1-\rho}{1+\rho}}\right) \phi\left(u_{2}\right),
$$

noting that $(1-\rho) / \sqrt{1-\rho^{2}}=\sqrt{(1-\rho) /(1+\rho)}$.
SUMS OF INDEPENDENT RANDOM VARIABLES
We are very often interested in the distribution of the sum of several independent random variables.

 sub $x_{1, \ldots}, \ldots, x_{n}$ be mutually independent rvs

$$
M_{Y_{n}}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)
$$

$I_{M_{X}(t)}$, particular, if X_{1}, \ldots, X_{n}.ll have the same mg

$$
M_{Y_{n}}(t)=\left[M_{x}(t)\right]^{n} .
$$

Proof: We have

$$
\begin{aligned}
M_{Y_{n}}(t) & =\mathbb{E} e^{t Y_{n}} \\
& =\mathbb{E} e^{t\left(x_{1}+\ldots+x_{n}\right)} \\
& =\mathbb{E}\left[e^{t x_{1}} \cdot \ldots \cdot e^{t x_{n}}\right] \\
& =\mathbb{E} e^{t x_{1}} \cdot \ldots \cdot \mathbb{E} e^{t x_{n}} \\
& =M_{x_{1}}(t) \cdot \ldots \cdot M_{x_{n}}(t) .
\end{aligned}
$$

Example: Lat $\quad X_{1}, \ldots, X_{n}$ be independent rios such that
Find the distribution of $Y_{n}=x_{1}+\ldots+x_{n}$.
 Gamma($\frac{(1 i j}{i}, 2$, distribution, so X_{i} has mg f

$$
M_{x_{i}}(t)=(1-2 t)^{-2 y_{2}}, \quad i=1, \ldots, n
$$

Therefore

$$
\begin{aligned}
M_{Y_{n}}(t) & =\prod_{i=1}(1-2 t)^{-\nu_{i} / 2} \\
& =(1-2 t)^{-\sum_{i=1}^{n} \nu_{i} / 2}
\end{aligned}
$$

which is the mot of the distribution, i ie. the chimu $\left(\sum_{i=1}^{n} v_{i} / 2,2\right)$ distribution, ie. the chiresquare ($\left(\sum_{i=1} v_{i}\right)$ distribution. We may remember from chins example that the sum of of independent the chi-spuare variables is is an chi-square
cumulative.

Example: Let $X_{1, \ldots}, X_{n}$, be independent rvs such that $X_{i} \sim N_{\text {ormal }}\left(\mu_{i}, \sigma_{i}^{2}\right)$ for $i=1, \ldots, n$.
(i) Find the distribution of $Y_{n}=X_{1}+\ldots+X_{n}$.

We have

$$
\begin{aligned}
M_{Y_{n}}(t) & =\prod_{i=1}^{n} e^{\mu_{i} t+\sigma_{i}^{2} t^{2} / 2} \\
& =e^{\left(\sum_{i=1}^{n} \mu_{i}\right) t+\left(\sum_{i=1}^{n} \sigma_{i}^{2}\right) t^{2} / 2},
\end{aligned}
$$

which is the $m g f$ of the Normal $\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$
distribution.
We cen remember from this example that the sum of independent Normals "is Normal, where means and variances have "accumulated".
(ii) Find the distribution of $Y_{n}^{\prime}=a_{1} X_{1}+\ldots+a_{n} X_{n}$, where a_{1}, \ldots, a_{n} are real numbers.

$$
\begin{aligned}
M_{Y_{n}^{\prime}}(t) & =\prod_{i=1}^{n} M_{a_{i} X_{i}}(t) \\
& =\prod_{i=1}^{n} M_{x_{i}}\left(t a_{i}\right) \\
& =\prod_{i=1}^{n} e^{\mu_{i}\left(t a_{i}\right)+\sigma_{i}^{2}\left(t a_{i}\right)^{2} / 2} \\
& =e^{\left(\sum_{i=1}^{n} a_{i} \mu_{i}\right) t+\left(\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right) t / 2},
\end{aligned}
$$

which is the mot of the Normal $\left(\sum_{i=1}^{n} a_{i j} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right)$
distribution.
 Find the distribution of $\bar{x}_{n}=\frac{1}{n}\left(x_{1}+\ldots+x_{n}\right)$.

$$
\begin{aligned}
M_{\bar{X}_{n}}(t) & =\prod_{i=1}^{n} M_{\frac{1}{n}} x_{i}(t) \\
& =\prod_{i=1}^{n} M_{X_{i}}(t / 2) \\
& =\prod_{i=1}^{n} e^{\mu(t / n)+\sigma^{2}\left(\frac{t}{n}\right)^{2} / 2} \\
& =e^{\left(\sum_{i=1}^{n} \mu\right) t+\left(\sum_{i=1}^{n} \frac{\sigma^{2}}{n^{2}}\right) \frac{t^{2}}{2}} \\
& =e^{\mu t+\left(\frac{\sigma}{n}\right) t^{2} / 2}
\end{aligned}
$$

which is the $m g t$ of the $\operatorname{Normal}\left(\mu, \frac{\sigma^{2}}{n}\right)$
distribution.

