STAT 512 su 2021 Lec 02 slides

Transformations of multiple random variables

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard. They are not intended to explain or expound on any material.

We often wish to find the distribution of a function of two (or more) rvs:

Exercise: Let X_1 and X_2 be indep. Exponential(λ) rvs. Let $Y = X_1/(X_1 + X_2)$.

- Find the cdf of Y.
- Find the pdf of Y.

<ロト <回ト < 回ト < 回ト = 三日

Theorem (*Bivariate transformation method*)

Let (X_1, X_2) be a pair of cont. rvs with joint pdf f_{X_1, X_2} on $\mathcal X$ and

 $Y_1 = g_1(X_1, X_2)$ and $Y_2 = g_2(X_1, X_2)$,

where g_1 and g_2 define a 1:1 transformation of \mathcal{X} onto \mathcal{Y} (define these).

Let g_1^{-1} and g_2^{-1} be the functions satisfying

$$\begin{array}{l} y_1 = g_1(x_1, x_2) \\ y_2 = g_2(x_1, x_2) \end{array} \iff \begin{array}{l} x_1 = g_1^{-1}(y_1, y_2) \\ x_2 = g_2^{-1}(y_1, y_2) \end{array}$$

for all $(x_1, x_2) \in \mathcal{X}$ and $(y_1, y_2) \in \mathcal{Y}$.

Then the joint pdf of (Y_1, Y_2) is given by

 $f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}(g_1^{-1}(y_1,y_2),g_2^{-1}(y_1,y_2))|J(y_1,y_2)|, \text{ for } (y_1,y_2) \in \mathcal{Y},$

where $J(y_1, y_2)$ is the Jacobian (next slide), if $J(y_1, y_2)$ is not always 0 on \mathcal{Y} .

イロン 不得と イヨン イヨン

Jacobian

In the setup of the previous slide, the Jacobian of the transformation is defined as

$$J(y_1, y_2) = \begin{vmatrix} \frac{\partial}{\partial y_1} g_1^{-1}(y_1, y_2) & \frac{\partial}{\partial y_2} g_1^{-1}(y_1, y_2) \\ \frac{\partial}{\partial y_1} g_2^{-1}(y_1, y_2) & \frac{\partial}{\partial y_2} g_2^{-1}(y_1, y_2) \end{vmatrix}$$

For real numbers *a*, *b*, *c*, *d*,

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

This is called the *determinant*.

イロト イポト イヨト イヨト

Exercise: Let X_1, X_2 be independent Normal(0, 1) rvs.

- Find the joint pdf of $Y_1 = X_1/X_2$ and $Y_2 = X_2$.
- **2** Find the marginal pdf of Y_1 .

<ロト <回ト < 回ト < 回ト = 三日

Exercise: Let X_1, X_2 have joint pdf

$$f_{X_1,X_2}(x_1,x_2) = rac{1}{\lambda^2} \exp\left[-rac{x_1+x_2}{\lambda}
ight] \mathbf{1}(x_1 > 0, x_2 > 0).$$

- Find the joint pdf of $Y_1 = X_1/(X_1 + X_2)$ and $Y_2 = X_1 + X_2$.
- **3** Find the marginal pdf of Y_1 .

э

・ロト ・四ト ・ヨト ・ヨト

Exercise: Let $X_1 \sim \text{Beta}(1,1)$ and $X_2 \sim \text{Beta}(2,1)$ be independent rvs.

- Find the joint pdf of $Y_1 = X_1X_2$ and $Y_2 = X_2$.
- **2** Find the marginal pdf of Y_1 .

<ロト <回ト < 回ト < 回ト = 三日

Exercise: Let Z_1, Z_2 have the bivariate Normal distribution, with joint pdf

$$f_{Z_1,Z_2}(z_1,z_2) = \frac{1}{2\pi} \frac{1}{\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2} \frac{z_1^2 - 2\rho z_1 z_2 + z_2^2}{1-\rho^2}\right].$$

- Find the joint pdf of $U_1 = Z_1 + Z_2$ and $U_2 = Z_1 Z_2$.
- **2** Find the marginal pdfs of U_1 and U_2 .

(日) (四) (王) (王) (王)

Exercise: Let Z_1, Z_2 have the bivariate Normal distribution, with joint pdf

$$f_{Z_1,Z_2}(z_1,z_2) = \frac{1}{2\pi} \frac{1}{\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2} \frac{z_1^2 - 2\rho z_1 z_2 + z_2^2}{1-\rho^2}\right].$$

Find the joint pdf of U₁ = min{Z₁, Z₂} and U₂ = max{Z₁, Z₂}? (Not 1:1).
 Find the marginal pdf of U₂ (can skip this example; see notes if curious).

イロト イロト イヨト イヨト 三日

Theorem (mgf method for sums of independent rvs) Let X_1, \ldots, X_n be ind. rvs with mgfs M_{X_1}, \ldots, M_{X_n} , resp. Let $Y = X_1 + \cdots + X_n$.

The mgf of Y is given by

$$M_Y(t) = \prod_{i=1}^n M_{X_i}(t).$$

Moreover, if X_1, \ldots, X_n are ind. and all have mgf M_X (are iid), then

 $M_Y(t) = [M_X(t)]^n.$

Exercise: Prove the above.

イロン 不良と 不良と 一日

Exercise: Let X_1, \ldots, X_n be ind. chi-squared rvs with dfs ν_1, \ldots, ν_n , resp. Find the distribution of $Y = X_1 + \cdots + X_n$.

イロト イロト イヨト イヨト 三日

Exercise: Let X_1, \ldots, X_n be ind. Normal rvs with means μ_1, \ldots, μ_n and variances $\sigma_1^2, \ldots, \sigma_n^2$, resp.

- Find the distribution of $Y = X_1 + \cdots + X_n$.
- **②** Find the distribution of $V = a_1X_1 + \cdots + a_nX_n$, for $a_1, \ldots, a_n \in \mathbb{R}$.
- Solution of $\bar{X}_n = (X_1 + \cdots + X_n)/n$.

(日) (四) (三) (三) (三)