STAT 512 su 2021 Lec 02 slides

Transformations of multiple random variables

Karl B. Gregory
University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

We often wish to find the distribution of a function of two (or more) rvs:
Exercise: Let X_{1} and X_{2} be indep. Exponential (λ) rvs. Let $Y=X_{1} /\left(X_{1}+X_{2}\right)$.
(1) Find the cdf of Y.
(2) Find the pdf of Y.

Theorem (Bivariate transformation method)

Let $\left(X_{1}, X_{2}\right)$ be a pair of cont. rvs with joint pdf $f_{X_{1}, X_{2}}$ on \mathcal{X} and

$$
Y_{1}=g_{1}\left(X_{1}, X_{2}\right) \quad \text { and } \quad Y_{2}=g_{2}\left(X_{1}, X_{2}\right),
$$

where g_{1} and g_{2} define a $1: 1$ transformation of \mathcal{X} onto \mathcal{Y} (define these).
Let g_{1}^{-1} and g_{2}^{-1} be the functions satisfying

$$
\begin{aligned}
& y_{1}=g_{1}\left(x_{1}, x_{2}\right) \\
& y_{2}=g_{2}\left(x_{1}, x_{2}\right)
\end{aligned} \Longleftrightarrow \begin{aligned}
& x_{1}=g_{1}^{-1}\left(y_{1}, y_{2}\right) \\
& x_{2}=g_{2}^{-1}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

for all $\left(x_{1}, x_{2}\right) \in \mathcal{X}$ and $\left(y_{1}, y_{2}\right) \in \mathcal{Y}$.
Then the joint pdf of $\left(Y_{1}, Y_{2}\right)$ is given by

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{X_{1}, x_{2}}\left(g_{1}^{-1}\left(y_{1}, y_{2}\right), g_{2}^{-1}\left(y_{1}, y_{2}\right)\right)\left|J\left(y_{1}, y_{2}\right)\right|, \quad \text { for }\left(y_{1}, y_{2}\right) \in \mathcal{Y} \text {, }
$$

where $J\left(y_{1}, y_{2}\right)$ is the Jacobian (next slide), if $J\left(y_{1}, y_{2}\right)$ is not always 0 on \mathcal{Y}.

Jacobian

In the setup of the previous slide, the Jacobian of the transformation is defined as

$$
J\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
\frac{\partial}{\partial y_{1}} g_{1}^{-1}\left(y_{1}, y_{2}\right) & \frac{\partial}{\partial y_{2}} g_{1}^{-1}\left(y_{1}, y_{2}\right) \\
\frac{\partial}{\partial y_{1}} g_{2}^{-1}\left(y_{1}, y_{2}\right) & \frac{\partial}{\partial y_{2}} g_{2}^{-1}\left(y_{1}, y_{2}\right)
\end{array}\right| .
$$

For real numbers a, b, c, d,

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c .
$$

This is called the determinant.

Exercise: Let X_{1}, X_{2} be independent $\operatorname{Normal}(0,1)$ rvs.
(1) Find the joint pdf of $Y_{1}=X_{1} / X_{2}$ and $Y_{2}=X_{2}$.
(2) Find the marginal pdf of Y_{1}.

Exercise: Let X_{1}, X_{2} have joint pdf

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{\lambda^{2}} \exp \left[-\frac{x_{1}+x_{2}}{\lambda}\right] \mathbf{1}\left(x_{1}>0, x_{2}>0\right) .
$$

(1) Find the joint pdf of $Y_{1}=X_{1} /\left(X_{1}+X_{2}\right)$ and $Y_{2}=X_{1}+X_{2}$.
(2) Find the marginal pdf of Y_{1}.

Exercise: Let $X_{1} \sim \operatorname{Beta}(1,1)$ and $X_{2} \sim \operatorname{Beta}(2,1)$ be independent rvs.
(1) Find the joint pdf of $Y_{1}=X_{1} X_{2}$ and $Y_{2}=X_{2}$.
(2) Find the marginal pdf of Y_{1}.

Exercise: Let Z_{1}, Z_{2} have the bivariate Normal distribution, with joint pdf

$$
f_{z_{1}, Z_{2}}\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}}{1-\rho^{2}}\right] .
$$

(1) Find the joint pdf of $U_{1}=Z_{1}+Z_{2}$ and $U_{2}=Z_{1}-Z_{2}$.
(2) Find the marginal pdfs of U_{1} and U_{2}.

Exercise: Let Z_{1}, Z_{2} have the bivariate Normal distribution, with joint pdf

$$
f_{z_{1}, z_{2}}\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}}{1-\rho^{2}}\right] .
$$

(1) Find the joint pdf of $U_{1}=\min \left\{Z_{1}, Z_{2}\right\}$ and $U_{2}=\max \left\{Z_{1}, Z_{2}\right\}$? (Not 1:1).
(2) Find the marginal pdf of U_{2} (can skip this example; see notes if curious).

Theorem (mgf method for sums of independent rvs)
Let X_{1}, \ldots, X_{n} be ind. rvs with mgfs $M_{X_{1}}, \ldots, M_{X_{n}}$, resp. Let $Y=X_{1}+\cdots+X_{n}$.
The mgf of Y is given by

$$
M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)
$$

Moreover, if X_{1}, \ldots, X_{n} are ind. and all have $m g f M_{X}$ (are iid), then

$$
M_{Y}(t)=\left[M_{X}(t)\right]^{n} .
$$

Exercise: Prove the above.

Exercise: Let X_{1}, \ldots, X_{n} be ind. chi-squared rvs with dfs ν_{1}, \ldots, ν_{n}, resp. Find the distribution of $Y=X_{1}+\cdots+X_{n}$.

Exercise: Let X_{1}, \ldots, X_{n} be ind. Normal rvs with means μ_{1}, \ldots, μ_{n} and variances $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$, resp.
(1) Find the distribution of $Y=X_{1}+\cdots+X_{n}$.
(2) Find the distribution of $V=a_{1} X_{1}+\cdots+a_{n} X_{n}$, for $a_{1}, \ldots, a_{n} \in \mathbb{R}$.
(0) Find the distribution of $\bar{X}_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$.

