THE RANDOM SAMPLE

Def: A collection of rvs X_{1}, \ldots, X_{n} which are mutually independent and which cl have the same distribution is called a random sample.

Remarks: - Such a collection of rus arises from a data generating process in which the same experiment is conducted n times independently.

- "Random sample" often refers to a set of individuals/items drawn from a larger population such that each individval/item is equally like to be drawn.
In troth, selecting n individvals/items without replacement from a population of finite size does NoT result in a collection of mutually independent/ NS, because every time an individual/item is drawn, the composition of the popondentation changes, making the draws dependent.
However, if the population is large, its change in composition due to sampling without replacement is without replacement that we may y treat draws without replacement as though they were independent.
- The common distribution of the rus in a random sample is often called the population distribution, and quantities which describe the population distribution are often called population parameters.
- We often introduce a random sample by saying. "Let X_{1}, \ldots, X_{n} be independent identically distributed (Bid) pos with such-and-such a distribution."

Or we say, "Let x_{1}, \ldots, X_{n} be independent copies of the rv X, where X his such-and-such a distribution."

- We generally wish to learn something from a random sample X_{1}, \ldots, X_{n} about certain population parameters.
- We learn about population parameters from sample statistics:

Deft: A sample statistics (just "a statistic" for short) is a function computed on the res of a random sample. The distribution of the statistic is called its sampling distribution.

The setup: Consider a random sample X_{1}, \ldots, X_{n} from a population with caff F_{X} and support on X.
Let T_{n} be the N defined as

$$
T_{n}=T\left(x_{1}, \ldots, x_{n}\right),
$$

for some function $T: x^{n} \rightarrow y$
Takes the n values in the random sample and returns a single number in a set y.
Here, T_{n} is a statistic, and the distribution of T_{n} is called its sampling distribution.
The statistic T_{n} may carry information about a certain population parameter.
Example: Let X_{1}, \ldots, X_{n} be a random sample of times until failure of electronic components, where the failure times are assumed to have the Exponential (λ) distribution, but λ is not known. It is of interest to learn the value of λ. parameter of interest.
The sample mean $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ is a sample statistic which carries information about $\boldsymbol{\lambda}$.

What we can learn from a sample statistic about a population parameter hes everything to do with the sampling distribution of the statistic.

In the following, we consider the sampling distributions of statistics which are sums of the rus in the random sample and of statistics based on ordering the values in the random sample.

SAMPLE MEAN AND SAMPLE VARIANCE

We focus on two statistics which are based on sums of the rus in a random sample:

1. $\bar{x}_{n}=\frac{1}{n}\left(x_{1}+\ldots+x_{n}\right)$
2. $S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{X}_{n}\right)^{2}$

Before trying ${ }_{S_{n}^{2}}$ to get the sampling distribution of \bar{X}_{n} and
and $\mathbb{E} S_{n}^{2}$.
Theorem: Let X_{1}, \ldots, X_{n} be a random sample from a population
(a) $\mathbb{E} \bar{X}_{n}=\mu \quad$ (Valves of \bar{x}_{n} are centered around μ)
(b) $\operatorname{Vor} \bar{x}_{n}=\sigma^{2} / n \quad\binom{$ Variance of $\bar{x}_{n}}{$ we increase diminishes as }
(c) $\mathbb{E} S_{n}^{2}=\sigma^{2} \quad$ (Values of S_{n}^{2} are centered around σ^{2})

Proof: (a)

$$
\mathbb{E} \bar{X}_{n}=\mathbb{E}\left[\frac{1}{n}\left(X_{1}+\ldots+X_{n}\right)\right]=\frac{1}{n}\left(\mathbb{E} X_{1}+\ldots+\mathbb{E} X_{n}\right)=\frac{1}{n} n \mu=\mu
$$

(b)

$$
\begin{aligned}
\operatorname{Vor} \bar{X}_{n} & =\operatorname{Vor}\left[\frac{1}{n}\left(x_{1}+\ldots+x_{n}\right)\right] \\
& =\frac{1}{n^{2}}\left[\sum_{i=1}^{n} V_{a r} x_{i}+\sum_{i \neq j} \operatorname{Cov}\left(x_{i}, x_{j}\right)\right] \\
& =\frac{1}{n^{2}}\left(n \sigma^{2}\right) \\
& =\frac{\sigma^{2}}{n}
\end{aligned}
$$

(G)

$$
\begin{aligned}
\mathbb{E} S_{n}^{2} & =\mathbb{E} \frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2} \\
& =\mathbb{E} \frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i} \bar{x}_{n}+\bar{x}_{n}^{2}\right) \\
& =\mathbb{E} \frac{1}{n-1}[\sum_{i=1}^{n} x_{i}^{2}-2 \underbrace{n}_{i=n \bar{x}_{n}} x_{i} \bar{x}_{n}+n \bar{x}_{n}^{2}] \\
& =\mathbb{E} \frac{1}{n-1}\left[\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}_{n}^{2}\right] \\
& =\frac{1}{n-1}\left[n \mathbb{E} x_{1}^{2}-n \mathbb{E} \bar{x}_{n}^{2}\right] \quad 2 \quad V_{c o} x_{1}=\mathbb{E} x_{1}^{2}-\left(\mathbb{E} x_{i}\right)^{2} \\
& =\frac{1}{n-1}\left[n\left(\sigma^{2}+\mu^{2}\right)-n\left(\frac{\sigma^{2}}{n}+r^{2}\right)\right] \quad \mathbb{E} x_{1}^{2}=V_{a r} x_{1}+\left(\mathbb{E} x_{1}\right)^{2} \\
& =\frac{(n-1) \sigma^{2}}{(n-1)} \\
& =\sigma^{2} .
\end{aligned}
$$

Gotting the scmpling distribution of \bar{x}_{n} :
We can g^{t} the the mgf of $\bar{x}_{\text {poplation }}$ distribotion. "We hevers of the mgt

$$
M_{\bar{x}_{n}}(t)=M_{\frac{1}{n}\left(x_{1}+\ldots+x_{n}\right)}(t)=M_{x_{1}+\ldots+x_{n}}(t / n)=\prod_{i=1}^{n} M_{x_{i}}(t / n)=\left[\mu_{x_{1}}\left(t_{n}\right)\right]^{n}
$$

Exacolle: Let X_{1}, \ldots, X_{n} be Gumal (α, β) distribotion. Thandom semple from the

$$
M_{x_{1}}(t)=(1-\beta t)^{-\alpha},
$$

giving

$$
M_{\bar{X}_{n}}(t)=\left(1-\beta\left(t_{n}\right)\right)^{-n \alpha},
$$

so that $\quad \bar{X}_{n} \sim \operatorname{Gumman}(n \alpha, \beta / n)$.

Example: We hour already used this method to show that it X_{1}, \ldots, x_{n} already used this mammal $\left(\mu, \sigma^{2}\right)$, then $\bar{X}_{n} \sim \operatorname{Normal}\left(\mu, \sigma^{2} / n\right)$.

It is difficult to get the distribution of S_{n}^{2}, unless the random sample comes from a Normal population. We will come back to this liter.

ORDER STATISTICS
Many interesting statistics are functions of the ordered values of a random sample X_{1}, \ldots, X_{n}.

Define the following notation:

$$
\begin{aligned}
x_{(1)} & =\text { the least of } x_{1,}, \ldots, x_{n} \\
x_{(2)} & =\text { the next-to-least of } x_{11}, \ldots, x_{n} \\
& \vdots \\
x_{(n)} & =\text { the greatest of } x_{1}, \ldots, x_{n} \text {, }
\end{aligned}
$$

assuming there are no ties among $X_{1,}, \ldots, X_{n}$. Then

$$
x_{(1)}<x_{(2)}<\cdots<x_{(1)}
$$

are called the order statistics of the random sample.
Equipped with the notation of order statistics, we can use them to express familiar sample statistics:

The range: $\quad R_{n}=X_{(n)}-X_{a)}$
The midrange: $\quad \mu_{n}=\left(X_{(n)}+X_{(1)}\right) / 2$
The median: $\hat{\mathcal{f}}_{0.5}= \begin{cases}\left(X(n / 2)+X_{\left(\frac{n+2}{2}\right)}\right) / 2, & \text { if } n \text { even } \\ X\left(\frac{n+1}{2}\right), & \text { if } n \text { odd }\end{cases}$

Once we have studied order statistics, we can derive the distributions of sample statistres based on ordering the values in the random sample.
First we derive the marginal pdf of the $k^{\text {th }}$ order statistic $X_{(k)}$, for cay $k=1, \ldots, n$.

Theorem: Let $X_{(1)}, \ldots, X_{(0)}$ be the order statistics of a roundon sample from ad popplltion with af $E_{(k)}$ is given and pdf f_{x}.

$$
f_{x_{(k)}}(x)=\frac{n!}{(k-1)!(n-k)!}\left[F_{x}(x)\right]^{k-1}\left[1-F_{x}(x)\right]^{n-k} f_{x}(x)
$$

for $k=1, \ldots, n$.
Proof: We begin by finding the af $F_{x_{(k)}}$ of $x_{(k)}$ and For any x, we hove

$$
\begin{aligned}
& F_{X_{(k)}}(x)=P_{X_{(k)}}\left(X_{(k)} \leqslant x\right) \\
& =P_{\left(x_{1}, \ldots, x_{n}\right)}\left(A+\text { least } k \text { of } x_{1}, \ldots, x_{n} \text { are less than o. equal to } x\right) \\
& Y=\#\left\{X_{1}, \ldots, X_{n} \text { less then or ero.1 to } x\right\} \\
& =\sum_{j=k}^{n}\binom{n}{j}\left[F_{x}(x)\right]^{j}\left[1-F_{x}(x)\right]^{n-j} \\
& \sim \text { Binomial }\left(n, F_{x}(x)\right) \text {. } \\
& \Rightarrow \text { find } P_{y}(y \geqslant k)
\end{aligned}
$$

We now toke the derivative with respect to x :

$$
\begin{aligned}
& \frac{\partial}{\partial x} F_{X_{k}}(x)=\frac{\partial}{\partial x} \sum_{j=k}^{n}\left(\begin{array}{l}
n \\
j \\
j
\end{array}\right)\left[F_{x}(x)\right]^{j}\left[1-F_{x}(x)\right]^{n-j} \\
& =\sum_{j=k}^{n}\binom{n}{j}\left(j\left[F_{x}(x)\right]^{j-1}\left[1-F_{x}(x)\right]^{n-j} f_{x}(x)\right. \\
& \left.-\left[F_{x}(x)\right]^{j}(n-j)\left[1-F_{x}(x)\right]^{n-j-1} f_{x}(x)\right) \\
& \quad=\binom{n}{k} k\left[F_{x}(x)\right]^{k-1}\left[1-F_{x}(x)\right]^{n-k} f_{x}(x) \quad \underbrace{\text { Split. pe final }} \\
& +\sum_{j=k+1}^{n}\binom{n}{j} j\left[F_{x}(x)\right]^{j-1}\left[1-F_{x}(x)\right]^{n-j} f_{x}(x)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n!}{(k-1)!(n-k)!}\left[F_{x}(x)\right]^{k-1}\left[1-F_{x}(x)\right]^{n-k} f_{x}(x) \\
& =0\left\{\begin{array}{l}
+\sum_{j=k}^{n-1}\binom{n}{j+1}(j+1)\left[F_{x}(x)\right]^{j}\left[1-F_{x}(x)\right]^{n-j-1} f_{x}(x) \\
-\sum_{j=k}^{n-1}\binom{n}{j}(n-j)\left[F_{x}(x)\right]^{j}\left[1-F_{x}(x)\right]^{n-j-1} f_{x}(x)
\end{array}\right.
\end{aligned}
$$

Noting that

$$
\binom{n}{j+1}(j+1)=\frac{n!}{j!(n-j-1)!}=\binom{n}{j}(n-j),
$$

we see that the lest two terms cancel out, giving the result. For the minimum and maximum of a random sample, we have the followings coming directly from the theorem.

Corollary: Let $X_{1, \ldots}, X_{n}$ be a random sample from a population 1. $\min \left\{x_{1}, \ldots, x_{n}\right\}=X_{(1)}$ has coff and pdf given by

$$
\begin{aligned}
& F_{x_{(1)}}(x)=1-\left[1-F_{x}(x)\right]^{n} \\
& f_{x_{(1)}}(x)=n\left[1-F_{x}(x)\right]^{n-1} f_{x}(x)
\end{aligned}
$$

2. $\max \left\{x_{1}, \ldots, x_{n}\right\}=X_{(n)}$ has cdt and pdf given by

$$
\begin{aligned}
& F_{X_{(n)}}(x)=\left[F_{X}(x)\right]^{n} \\
& f_{X_{(n)}}(x)=n\left[F_{X}(x)\right]^{n-1} f_{X}(x)
\end{aligned}
$$

Example: Let X_{1}, \ldots, X_{n} be aid Uniform $(0,1)$ rus. Find the density of the $k^{\text {th }}$ order statistic $X_{(k)}$.

We have

$$
f_{x}(x)=\mathbb{Z}(0<x<1) \quad \text { and } \quad F_{x}(x)=\left\{\begin{array}{cc}
1 & x \geqslant 1 \\
x & 0<x<1 \\
0 & x<0,
\end{array}\right.
$$

s. that

$$
\begin{aligned}
f_{X_{(k)}}(x) & =\frac{n!}{(k-1)!(n-k)!} x^{k-1}(1-x)^{n-k} \mathbb{B}(0<x<1) \\
& =\frac{\Gamma(k+(n-k+1))}{\Gamma(k) \Gamma(n-k+1)} x^{k-1}(1-x)^{(n-k+1)-1} \mathbb{P}(0<x<1),
\end{aligned}
$$

which we recognize as the Beta $(k, n-k+1)$ distribution. Moreover, we have (from what we know of the Beta dist)

$$
\begin{aligned}
& \mathbb{E} X_{(k)}=\frac{k}{k+(n-k+1)}=\frac{k}{n+1} \\
& \operatorname{Var} X_{(k)}=\frac{k(n-k+1)}{[k+(n-k+1)]^{2}[k+(n-k+1)+1]}=\frac{k(n-k+1)}{(n+1)^{2}(n+2)} .
\end{aligned}
$$

Example: Lat X_{1}, \ldots, X_{n} be independent rus with the same distribution as X, where X has the Exponential (λ) distribution.
Find the pdf of $X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}$.
We have

$$
f_{x}(x)=\frac{1}{\lambda} e^{-\frac{x}{\lambda}} \mathbb{1}(x>0) \quad \text { and } \quad F_{x}(x)= \begin{cases}1-e^{-x / \lambda}, & x>0 \\ 0, & x \leq 0,\end{cases}
$$

so that the cdt and pdf of $X_{(n)}$ are given by

$$
\begin{aligned}
& F_{X_{(n)}}(x)=\left\{\begin{array}{cc}
\left(1-e^{-x / \lambda}\right)^{n}, & x>0 \\
0, & x \leq 0
\end{array}\right. \\
& f_{X_{(n)}}(x)=n\left(1-e^{-x / 2}\right)^{n-1} \frac{1}{\lambda} e^{-x / \lambda} \mathbb{P}(x>0) .
\end{aligned}
$$

We also have an expression for the joint density of two order statistics, which is needed to get, for example, the density of the range of a random sample.

We present the expression in the following theorems but we omit its proof, as it is considerably moon complicated than that of the previous theorem.

Theorem: Let $X_{(1)}, \ldots, X_{(s)}$ be the order statistics ot a random sample from a population with cd F_{X} and pdf f_{x}. Then for $1 \leqslant j<k \leqslant n$, the joint pdf of $X_{(j)}$ and $X_{(k)}$ is given by

$$
\begin{aligned}
& f_{\left(x_{(j)}, x_{(k)}\right)}(n, v)=\frac{n!}{(j-1)!(k-1-j)!(n-k)!} f_{x}(n) f_{x}(v)
\end{aligned}
$$

for $-\infty<n<v<\infty$.

We can simplify the expression above it we are and maximum, i.e. in $X_{(1)}$ and $X_{(n)}$.

Corollary: Let $X(s), \ldots, X_{(n)}$ be the order statistics ot a random sample from a population with cd f $F_{(}$and $X_{(n)}^{p d f} f_{X}$. given by then joint pdf of

$$
f_{\left(x_{(10}, x_{(n)}\right)}(n, v)=n(n-1) f_{x}(n) f_{x}(n)\left[F_{x}(v)-F_{x}(n)\right]^{n-2},
$$

for $-\infty<u<v<\infty$.

Example: Let X_{1}, \ldots, X_{n} be a random sample from
a population with the $U_{n i}$ form $(0, \theta)$ distribution.
(i) Find the joint pdf of $\left.X_{(}\right)$and $X_{(n)}$.

We have

$$
f_{x}(x)=\frac{1}{\theta} \mathbb{1}(0<x<\theta) \text { and } F_{x}(x)= \begin{cases}1, & x \geq 0 \\ x / \theta, & 0<x<\theta \\ 0, & x \leq 0,\end{cases}
$$

80 that

$$
f_{\left(X_{n, 1}, X_{(n)}\right)}(n, v)=n(n-1) \frac{1}{\theta^{2}}\left(\frac{v}{\theta}-\frac{n}{\theta}\right)^{n-2} \mathbb{1}(0<n<v<\theta)
$$

(ii) Find the joint pol of the rv pair (R, M) where

$$
\begin{aligned}
& R=X_{(n)}-X_{(1)} \quad \text { (The range) } \\
& M=X_{(n)} .
\end{aligned}
$$

We ham $(R, M) \in\{(r, m): 0<r<\theta, r<m<\theta\}$.
We get the inverse transformation

$$
\begin{aligned}
& r=v-n\left(=j_{1}(n, v)\right) \Leftrightarrow n=m-r\left(=g_{1}^{-1}(r, m)\right) \\
& m=v \quad\left(=g_{2}(x, v)\right)^{\Leftrightarrow} \quad v=m \quad\left(=j_{2}^{-1}(r, m)\right),
\end{aligned}
$$

giving the Jacobian

$$
J(r, t)=\left|\begin{array}{ll}
\frac{\partial}{\partial r} m-r & \frac{\partial}{\partial m} m-r \\
\frac{\partial}{\partial r} m & \frac{\partial}{\partial m} m
\end{array}\right|=\left|\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right|=-1 .
$$

So we hov

$$
\begin{aligned}
& \text { So we hove } \\
& f_{(R, M)}(r, m)=n(n-1) \frac{1}{\theta^{2}}\left(\frac{m}{\theta}-\frac{m-r}{\theta}\right)^{n-2}|-1| \mathbb{1}(0<r<\theta, r<m<\theta)
\end{aligned}
$$

$$
=\frac{n(n-1)}{\theta^{2}}\left(\frac{r}{\theta}\right)^{n-2} 1(0<r<\theta, r<m<\theta) \text {. }
$$

(iii) Find the pdf of $R=X_{(n)}-X_{0)}$. Integrate joint pdf

$$
\begin{aligned}
f_{R}(r) & =\int_{-\infty}^{\infty} \frac{n(n-1)}{\theta^{2}}\left(\frac{r}{\theta}\right)^{n-2} \mathbb{1}(0<r<\theta, r<m<\theta) d m \\
& =\int_{r}^{\theta} \frac{n(n-1)}{\theta^{2}}\left(\frac{r}{\theta}\right)^{n-2} d m \mathbb{1}(0<r<\theta) \\
& =\frac{n(n-1)}{\theta^{2}}\left(\frac{r}{\theta}\right)^{n-2}(\theta-r) \mathbb{1}(0<r<\theta) \\
& =\frac{n(n-1)}{\theta}\left(\frac{r}{\theta}\right)^{n-2}\left(1-\frac{r}{\theta}\right) \mathbb{1}(0<r<\theta) .
\end{aligned}
$$

* Check to see whether $\int_{-\infty}^{\infty} f_{R}(r) d r=1$:

$$
\begin{aligned}
\int_{-8}^{\infty} f_{R}(r) d r & =\int_{-\infty}^{\infty} \frac{n(n-1)}{\theta}\left(\frac{r}{\theta}\right)^{n-2}\left(1-\frac{r}{\theta}\right) \mathbb{1}(0<r<\theta) d r \\
& =\int_{0}^{\theta} \frac{n(n-1)}{\theta}\left(\frac{r}{\theta}\right)^{n-2}\left(1-\frac{r}{\theta}\right) d r \\
n(n-1)=\frac{n!}{(n-2)!1!}=\frac{\Gamma(n-1+2)}{\Gamma(n-1) \Gamma(2)} & =\int_{0}^{1} \frac{n(n-1)}{\theta} s^{n-2}(1-s) \theta d s \\
& =\underbrace{\int_{0}^{1} \frac{\Gamma(n-1+2)}{\Gamma(n-1) \Gamma(2)}{ }^{(n-1)-1}(1-s)^{2-1}}_{\text {Integral over } \operatorname{Beta}(n-1,2) \text { pdf }} d s s \in(0,1)
\end{aligned}
$$

