STAT 512 su 2021 Lec 03 slides

Random samples, statistics, esp. order statistics

Karl B. Gregory
University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

Random sample

A collection of independent rvs with the same distribution is a random sample.

- Often denote by X_{1}, \ldots, X_{n}, where n is the sample size.
- In random sample, X_{1}, \ldots, X_{n} are iid: independent and identically distributed.
- Common distribution of X_{1}, \ldots, X_{n} called the population distribution.

Goal is to learn from X_{1}, \ldots, X_{n} about the population distribution.

Sample statistic

A statistic is any function of the rvs in the random sample.

Setup: Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} F_{X}$, where F_{X} has support on \mathcal{X}, and let T_{n} be the $r v$

$$
T_{n}:=T\left(X_{1}, \ldots, X_{n}\right),
$$

where $T: \mathcal{X}^{n} \rightarrow \mathcal{Y}$, for some set \mathcal{Y}.

Examples. . .

Sampling distribution

The distribution of a statistic is called the sampling distribution of the statistic.

- We want to learn about population parameters from sample statistics.
- What we can learn from a statistic depends on its sampling distribution.

Our favorite statistics

Given a rs X_{1}, \ldots, X_{n}, the sample mean and sample variance are the statistics

$$
\bar{X}_{n}=\left(X_{1}+\cdots+X_{n}\right) / n \quad \text { and } \quad S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} .
$$

Theorem (Moment results for favorite statistics)
Let X_{1}, \ldots, X_{n} be a rs from a dist. with mean μ and variance $\sigma^{2}<\infty$. Then

- $\mathbb{E} \bar{X}_{n}=\mu$
- $\operatorname{Var} \bar{X}_{n}=\sigma^{2} / n$
- $\mathbb{E} S_{n}^{2}=\sigma^{2}$

Exercise: Prove the above.

Exercises:

(1) Let X_{1}, \ldots, X_{n} be ind. $\operatorname{Gamma}(\alpha, \beta)$ rvs. Find the sampling dist. of \bar{X}_{n}.
(2) Let X_{1}, \ldots, X_{n} be ind. $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ rvs. Find the sampling dist. of \bar{X}_{n}.

Order statistics

Given a random sample X_{1}, \ldots, X_{n}, define

$$
\begin{aligned}
X_{(1)} & =\text { the least of } X_{1}, \ldots, X_{n} \\
X_{(2)} & =\text { the next-to-least of } X_{1}, \ldots, X_{n} \\
& \vdots \\
X_{(n)} & =\text { the greatest of } X_{1}, \ldots, X_{n} .
\end{aligned}
$$

Then $X_{(1)}<X_{(2)}<\cdots<X_{(n)}$ are called the order statistics of the rs.

Exercise: Define range, midrange, and median with order statistics.

Theorem (pdf of k th order statistic)

Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of a $r s$ with $c d f F_{X}$ and $p d f f_{X}$.
Then the pdf of $X_{(k)}$ is given by

$$
f_{X_{(k)}}(x)=\frac{n!}{(k-1)!(n-k)!}\left[F_{X}(x)\right]^{k-1}\left[1-F_{X}(x)\right]^{n-k} f_{X}(x),
$$

for $k=1, \ldots, n$.

Exercises:

(1) Derive the above.
(2) Let $U_{1}, \ldots, U_{n} \stackrel{\text { ind }}{\sim}$ Uniform $(0,1)$. Find pdf of $U_{(k)}$, find $\mathbb{E} U_{(k)}$ and $\operatorname{Var} U_{(k)}$.
(3) Draw samples $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Uniform}(0,1)$ and record k th order statistic. Make histograms. Use $n=10$ and consider $k=1,5,9$.

Exercise: Let X_{1}, \ldots, X_{n} be independent rvs with $\operatorname{cdf} F_{X}(x)=\left(1+e^{-x}\right)^{-1}$.
(1) Find the pdf of the k th order statistic.
(c) Draw samples X_{1}, \ldots, X_{n} from F_{X} and record k th order statistic. Make histograms. Use $n=10$ and consider $k=1,5,9$.

Corollary (pdf of minimum and maximum)

Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of a rs with $c d f F_{X}$ and $p d f f_{X}$. Then

- $X_{(1)}$ has cdf and pdf given by

$$
\begin{aligned}
F_{X_{(1)}}(x) & =1-\left[1-F_{X}(x)\right]^{n} \\
f_{X_{(1)}}(x) & =n\left[1-F_{X}(x)\right]^{n-1} f_{X}(x)
\end{aligned}
$$

- $X_{(n)}$ has cdf and pdf given by

$$
\begin{aligned}
F_{X_{(n)}}(x) & =\left[F_{X}(x)\right]^{n} \\
f_{X_{(n)}}(x) & =n\left[F_{X}(x)\right]^{n-1} f_{X}(x)
\end{aligned}
$$

Exercise: Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Exponential (λ).
(1) Find the pdf of $X_{(n)}$.
(2) Find the pdf of $X_{(1)}$ and identify the distribution.

Theorem (Joint pdf of two order statistics)
Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of a rs with $c d f F_{X}$ and $p d f f_{X}$.
Then the joint pdf of $X_{(j)}$ and $X_{(k)}, 1 \leq j<k \leq n$, is given by

$$
\begin{aligned}
f_{X_{(j)}, X_{(k)}}(u, v)= & \frac{n!}{(j-1)!(k-j-1)!(n-k)!} f_{X}(u) f_{X}(v) \\
& \times\left[F_{X}(u)\right]^{j-1}\left[F_{X}(v)-F_{X}(u)\right]^{k-j-1}\left[1-F_{X}(v)\right]^{n-k}
\end{aligned}
$$

$$
\text { for }-\infty<u<v<\infty .
$$

Exercise: Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Uniform}(0,1)$.
(1) Find the joint pdf of the order statistics $U=X_{(k)}$ and $V=X_{(k+1)}$.
(2) Draw samples $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Uniform}(0,1)$ and record $\left(X_{(k)}, X_{(k+1)}\right)$. Make a scatterplot of the values. Use $n=10, k=2$.

Order stat 2 of 10

Corollary (Joint pdf of min and max)

Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of a rs with $c d f F_{X}$ and $p d f f_{X}$.
The joint pdf of $X_{(1)}$ and $X_{(n)}$ is given by

$$
f_{X_{(1)}, X_{(n)}}(u, v)=n(n-1) f_{X}(u) f_{X}(v)\left[F_{X}(v)-F_{X}(u)\right]^{n-2}
$$

for $-\infty<u<v<\infty$.

Exercise: Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Uniform}(0, \theta)$.
(1) Find the joint pdf of $X_{(1)}$ and $X_{(n)}$.
(2) Find the joint pdf of $R=X_{(n)}-X_{(1)}$ and $M=X_{(n)}$.
(0) Find the marginal pdf of R.
(- Draw realizations of the range of Uniform $(0,1)$ samples with $n=4,8,16$.
Make histograms and overlay densities.

