Pivot quantities And sampling from the NORMAL DISTRIBUTION

We often study the sampling distributions of so-c.lled pivot quantities.
Defy: A pivot quantity is a function of sample statistics and
Pivot quantities are useful for constreveting confidence intervals tor unknown parameters and for testing hypotheses about them.

A $(1-\alpha)^{*} 100 \%$ confidence interval (C.I.) for an unknown parameter θ is such an that interval $P(L \subset \theta)(L)$ where L and U are random variables

Example: If X_{1}, \ldots, X_{n} is a random sample from the $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \sim \operatorname{Normal}_{\text {This is fly }}(0,1) .
$$

S. $\frac{\bar{x}_{n}-\mu}{\sigma / \sqrt{n}}$ is a pivot quantity.

Introducing $z \sim \operatorname{Normil}(0,1)$ we can construct a $(1-\alpha)^{4} 100 \%$.
C.I. for μ as focus:
Lat z_{ξ} be the value which satisfies $P_{z}\left(z>z_{\xi}\right)=\xi$ foe $\xi \in(0,1)$.

$$
\begin{aligned}
& P_{\bar{x}_{n}}\left(z_{1-\alpha / 2}<\frac{\bar{x}_{n}-\mu}{\sigma / n}<z_{\alpha / 2}\right)=1-\alpha \\
\Leftrightarrow & P_{\bar{x}_{n}}\left(\bar{x}_{n}+z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}_{n}+z_{\alpha_{2}} \frac{\sigma}{\sqrt{n}}\right)=1-\alpha,
\end{aligned}
$$

Giving, since $z_{1-\alpha / 2}=-z_{\alpha / 2}$, the $(1-\alpha)^{*} 100 \%$ CI.

$$
\left(\bar{x}_{n}-z_{d / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}_{n}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
$$

NOW WE INTRODUCE FOUR RELEVANT DISTRIBUTIONS:
(These are distributions of some important pivot gunatities)

1. The standard Normal distribution: $\operatorname{Normal}(0,1)$
$\operatorname{pdf}: \quad \phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}$
mf: $\quad M_{z}(t)=e^{t^{2} / 2}$

Let z_{ξ} be the value satisfying $P_{z}\left(z>z_{\xi}\right)=\xi$ for $\xi \in(0,1)$,
where n $(0,1)$. "degrees of freon"
2. The $C_{i}-R_{\text {Rare }}$ distributions: $X_{\nu}^{2}, \quad{ }_{\nu=1,2, \ldots}$
pdf: $\quad f_{x}(x ; \nu)=\frac{1}{\Gamma(\nu / 2) 2^{1 / 2}} x^{x_{2}-1} e^{-x / 2} \mathbb{1}(x>0)$
$m g f: \quad(1-2 t)^{-\nu / 2}, \quad t<1 / 2$

Let $X_{y, \xi}^{2}$ be the value satisfying $P_{X}\left(X>\chi_{0, \xi}^{2}\right)=\xi$ for $\xi \in(0,1)_{,}$ where $X \sim X_{v}^{2}$.
3. The t distributions: $t_{\nu}, \quad{ }_{\nu=1,2, \ldots}$ degrees of from
$p \Delta f: \quad f_{T}(t ; \nu)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{y}{2}\right)} \frac{1}{\sqrt{\nu \pi}}\left(1+\frac{t^{2}}{\nu}\right)^{-\frac{v+1}{2}}$
mg: does not exist!
(moments of order v or higher do not exist)

Let $t_{\nu, \xi}$ be the value satisfying $P_{T}\left(T>t_{\nu, \xi}\right)=\xi$ for $\xi \in(0,1)$, where $T \sim t_{\nu}$.
4. The F distributions: $F_{\nu_{1}, \nu_{2}},{ }_{\nu}{ }_{\nu}{ }_{\nu}=1,2, \ldots, \quad \nu_{\nu_{2}}=1,2, \ldots$

$$
\text { pdt: } \quad f_{R}\left(r ; v_{1}, \nu_{2}\right)=\frac{\Gamma\left(\frac{v_{1}+v_{2}}{2}\right)}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{\nu_{1}}{v_{2}}\right)^{\frac{\nu_{1}}{2}} \frac{r^{\frac{\nu_{1}-2}{2}}}{\left(1+\left(\frac{v_{1}}{v_{2}}\right) r\right)^{\frac{v_{1}+v_{2}}{2}}} \mathbb{I}(r>0)
$$

mg: does not exist!

We now present four important pivot-quantity sampling distribution
results in a theorem.
Theorem: Let $X_{11}, . ., X_{n}$ be a random sample from the $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
& \bar{x}_{n}=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right) \\
& S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2} .
\end{aligned}
$$

Then
I. $\quad \frac{\bar{x}_{n}-\mu}{\sigma / \sqrt{n}} \sim \operatorname{Normal}(0,1)$

Application to C.I.s:

$$
\begin{aligned}
& P_{\bar{x}_{n}}\left(-z_{\alpha / 2}<\frac{\bar{x}_{n}-\mu}{\sigma / \sqrt{n}}<z_{\alpha / 2}\right)=1-\alpha \\
\Leftrightarrow & P_{\bar{x}_{n}}\left(\bar{x}_{n}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}_{n}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)=1-\alpha, \\
\Leftrightarrow & A(1-\alpha)^{*} 100 \% \text { C.I. for } \mu \text { is } \bar{x}_{n} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} .
\end{aligned}
$$

II. \bar{x}_{n} and S_{n}^{2} are independent and $\frac{(n-1) S_{n}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$
$A_{\text {plication }}$ of C.I.: :

$$
\begin{aligned}
& P_{S_{n}^{2}}\left(x_{n-1,1-\alpha / 2}^{2}<\frac{(n-1) s_{n}^{2}}{\sigma^{2}}<x_{n-1, \alpha / 2}^{2}\right)=1-\alpha \\
\Leftrightarrow & P_{s_{n}^{2}}\left(\frac{(n-1) s_{n}^{2}}{x_{n-1}^{2}, \alpha / 2}<\sigma^{2}<\frac{(n-1) s_{n}^{2}}{x_{n-1,1-\alpha / 2}^{2}}\right)=1-\alpha \\
\Leftrightarrow & A(1-\alpha)^{1 / 100 \%} \text { c. } \tau \text {. for } \sigma^{2} \text { is }\left(\frac{(n-1) s_{n}^{2}}{x_{n-1, \alpha / 2}^{2}}, \frac{(n-1) s_{n}^{2}}{x_{n-1,1-\alpha / 2}^{2}}\right)
\end{aligned}
$$

III. $\quad \frac{\bar{x}_{n}-\mu}{s_{n} / \sqrt{n}} \sim t_{n-1}$

Application 6 C.I.6:

$$
\begin{aligned}
& P_{\bar{x}_{2}, s_{n}}\left(-t_{n-1, \alpha / 2}<\frac{\bar{x}_{n}-\mu}{s_{n} / s_{n}}<t_{n-1, \alpha / 2}\right)=1-\alpha \\
\Leftrightarrow & P_{\bar{x}_{n}, s_{n}}\left(\bar{x}_{n}-t_{n-1, \alpha / 2} \frac{s_{n}}{\sqrt{n}}<\mu<\bar{x}_{n}+t_{n-1, \alpha / 2} \frac{s_{n}}{\sqrt{n}}\right)=1-\alpha \\
\Leftrightarrow & A(1-\alpha)^{2} 100 \% \text { cI. for } \mu \text { is } \bar{x}_{n} \pm t_{n-1, \alpha / 2} \frac{s_{n}}{\sqrt{n}} .
\end{aligned}
$$

II. Suppose we have two independent random samples

$$
\begin{aligned}
& X_{1}, \ldots, X_{n_{1}} \stackrel{i n d}{\sim} \operatorname{Norm.l}\left(\mu_{1}, \sigma_{1}^{2}\right) \\
& Y_{1}, \ldots, Y_{n_{2}} \approx \operatorname{Narm.l}^{\sim}\left(\mu_{2}, \sigma_{2}^{2}\right) .
\end{aligned}
$$

and lat

$$
s_{1}^{2}=\frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}}\left(x_{i}-\bar{x}_{n_{1}}\right)^{2} \text { and } s_{2}^{2}=\frac{1}{n_{2}-1} \sum_{i=1}^{n_{2}}\left(y_{i}-\bar{m}_{n_{2}}\right)^{2} .
$$

Then $\quad \frac{s_{1}^{2} / \sigma_{1}^{2}}{s_{2}^{2} / \sigma_{2}^{2}} \sim F_{n_{1}-1, n_{2}-1}$.

Application to C.I.s:

$$
\begin{aligned}
& P_{s_{1}^{2}, s_{2}^{2}}\left(F_{n_{1}-1, n_{2}-1,1-\alpha / 2}<\frac{s_{1}^{2} / \sigma_{1}^{2}}{s_{2}^{2} / \sigma_{2}^{2}}<F_{n_{1}-1, n_{2}-1, \alpha / 2}\right)=1-\alpha \\
\Leftrightarrow & P_{s_{1}^{2}, s_{2}^{2}}\left(\frac{s_{2}^{2}}{s_{1}^{2}} F_{n_{1}-1, n_{2}-1,1-\alpha / 2}<\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}<\frac{s_{2}^{2}}{s_{1}^{2}} F_{n_{1}-1, n_{2}-1, \alpha / 2}\right)=1-\alpha \\
\Leftrightarrow & \text { A }(1-\alpha)^{*} 100 \% \text { C.I. for } \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} \text { is } \\
& \left(\frac{s_{2}^{2}}{s_{1}^{2}} F_{n_{1}-1, n_{2}-1,1-\alpha / 2}, \frac{s_{2}^{2}}{s_{1}^{2}} F_{n_{1}-1, n_{2}-1, \alpha / 2}\right) .
\end{aligned}
$$

Proofs of I and II of theorem:
I. Proof of $\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \sim \operatorname{Normal}(0,1)$:

First find the mgr of \bar{x}_{n} :

$$
\begin{aligned}
M_{\bar{x}_{n}}(t) & =M_{\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)}(t) \\
& =M_{x_{1}+\cdots+x_{n}}(t / n) \\
& =\left[e^{\mu(t / n)+\sigma^{2}(t / n)^{2} / 2}\right]^{n} \\
& =e^{\mu t+\frac{\sigma^{2}}{n} t^{2} / 2}
\end{aligned}
$$

Now

$$
\begin{aligned}
M_{\bar{x}_{n}-\mu}^{\sigma / \sqrt{n}}
\end{aligned}(t)=M_{\frac{\sqrt{n}}{\sigma} \bar{x}-\frac{\sqrt{n}}{\sigma} \mu}(t) \quad e^{-\frac{\sqrt{n}}{\sigma} \mu t} M_{\bar{x}_{n}}\left(\frac{\sqrt{n}}{\sigma} t\right) \quad e^{-\frac{\sqrt{n}}{\sigma} t+\frac{\sigma^{2}}{n}\left(\frac{\sqrt{n}}{\sigma} t\right)^{2} / 2}
$$

$$
=e^{t^{2} / 2},
$$

which is the mat of the Normal $(0,1)$ distribution. D
II. Proof of $\frac{(n-1) S_{n}^{2}}{\sigma^{2}} \sim X_{n-1}^{2}$.

Begin by re-expressing $\frac{(n-1) S_{n}^{2}}{\sigma^{2}}$:

$$
\begin{aligned}
& \frac{(n-1) S_{n}^{2}}{\sigma^{2}}=\frac{(n-1)}{\sigma^{2}} \frac{1}{n=1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2} \\
& =\sum_{i=1}^{n}\left(\frac{x_{i}-\overline{x_{n}}}{\sigma}\right)^{2} \\
& =\sum_{i=1}^{n}\left(\frac{x_{i}-\mu+\mu-\bar{x}_{n}}{\sigma}\right)^{2} \\
& =\sum_{i=1}^{n}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}+2 \sum_{i=1}^{n}\left(\frac{x_{i-\mu}}{\sigma}\right)\left(\frac{\mu-\bar{x}_{n}}{\sigma}\right)+\sum_{i=1}^{n}\left(\frac{\mu-\bar{x}_{n}}{\sigma}\right)^{2} \\
& =\sum_{i=1}^{n}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}-\left(\frac{\bar{x}_{x}-\mu}{\sigma / \sqrt{n}}\right)^{2}=-2\left(\frac{x_{0}-\mu}{\sigma / \sqrt{n}}\right)^{2} \underbrace{}_{=\left(\frac{\mu-\bar{x}_{n}}{\sigma / \sqrt{n}}\right)^{2}}
\end{aligned}
$$

s. that

Recall that $z^{2} \sim x_{1}^{2}$ if $z \sim N$ Normal $(0,1)$ (see Le 01)

Since \bar{X}_{n} and S_{n}^{2} are independent, the rus $\left(\frac{\bar{x}_{n}-\mu}{\sigma / \sqrt{n}}\right)^{2}$ and $\frac{(n-1) S_{n}^{2}}{\sigma^{2}}$ are independent, so the educt of the mats of the hand side is Therefore

$$
\begin{aligned}
& (1-2 t)^{-1 / 2} M_{\frac{(n-1) S_{2}^{2}}{\sigma^{2}}}(t)=(1-2 t)^{-\frac{n / 2}{}} \\
& \Leftrightarrow \quad M_{\frac{(n-1) S_{n}^{2}}{\sigma^{2}}}(t)=(1-2 t)^{-\frac{(n-1)}{2}},
\end{aligned}
$$

which is the mit of the X_{n-1}^{2} distribution.
Before proving parts III and IV of the theorem, we will
study the study the "anatomy" of random variables having a t or an F distribution.

Result: Let $Z \sim \operatorname{Normal}(0,1)$ and $W \sim X_{\nu}^{2}, \quad Z, W$ independent.

$$
\text { Then } T=z / \sqrt{w / \nu} \sim t_{\nu} \text {. }
$$

Remark: So a t distribution arises when a Normal $(0,1)$ $r v$ is divided by the square root of an independent chiospuare rv square divided by its degrees
of freedom.

Proof: We first get the joint pdf of $\left(T_{\nu} \nu\right)$, where

$$
T=z / \sqrt{W / \nu} \text { and } U=W \text {. }
$$

The joint pdt of z and W is

$$
f(z, w)(z, w)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} \frac{1}{\Gamma(v / 2) 2^{-v / 2}} w^{w / 2-1} e^{-w / 2} \mathbb{1}(w>0) .
$$

The support of (T, U) is $\{(t, u):-\infty<t<\infty$, cues $\}$, and

$$
\begin{array}{lll}
T=z / \sqrt{w / v}\left(=g_{1}(z, w)\right) \\
v=w & \left(=g_{2}(z, w)\right)
\end{array} \Leftrightarrow \begin{array}{ll}
z=T \sqrt{v / v} & \left(=g_{1}^{-1}(t, n)\right) \\
w=v & \left(=j_{2}^{-1}(t, n)\right),
\end{array}
$$

jarring the Jacobian

$$
J(t, u)=\left|\begin{array}{ccc}
\frac{\partial}{\partial t} t \sqrt{u / v} & \frac{\partial}{\partial u} t \sqrt{u n} \\
\frac{\partial}{\partial t} u & \frac{\partial}{\partial u} n
\end{array}\right|=\left|\begin{array}{cc}
\sqrt{u / v} & t\left(\frac{1}{2}\right) \frac{1}{\sqrt{n}} \\
0 & 1
\end{array}\right|=\sqrt{y / \nu} .
$$

Now we get

$$
f_{(\tau v)}(t, n)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \frac{t^{2} u}{v}} \frac{1}{\Gamma(v) 2^{v / 2}} n^{\nu / 2-1} e^{-\frac{y}{2}} \sqrt{n / \nu} \mathbb{1}(n \geqslant 0) .
$$

Now we int ingate $f_{(T, y)}$ over an to $\mathrm{g}^{t} f_{T}$:

$$
\begin{aligned}
& f_{T}(t)=\int_{0}^{\infty} \frac{1}{\Gamma(y / 2)} \frac{1}{\sqrt{\nu \pi}} \frac{1}{2^{\nu+1}}{ }^{\frac{\nu+1}{2}-1} e^{-\frac{n}{2}\left(1+\frac{t^{2}}{v}\right)} d n
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma(\% / 2)} \frac{1}{\sqrt{\nu \pi}} \frac{1}{\left(1+\frac{t^{2} / \nu}{2}\right)^{\nu+1}} \int_{0}^{\infty} \frac{n^{\frac{\nu+1}{2}-1} e^{-u /\left[\frac{1}{2}\left(1+t^{2} / 2\right)\right]^{-1}}}{\Gamma\left(\frac{\nu+1}{2}\right)\left[\frac{1}{2}\left(1+\frac{\mu_{2}}{\nu}\right)\right]^{-\left(\frac{\mu}{2}\right)}} d u
\end{aligned}
$$

which is the pf of the t_{v} distribution. \square

Result: Let $w_{1} \sim x_{v_{1}}^{2}$ and $w_{2} \sim \chi_{v_{2}}^{2}, w_{1}, w_{2}$ independent.
Then $R=\frac{w_{1} / v_{1}}{w_{2} / v_{2}} \sim F_{\nu_{1}, v_{2}}$.
Remark: An F distribution arises, when the ratio is taken of two independent chis con ere rus, each
divided by its degrees of freedom?

Prof: We first get the joint pot of (R, V), where

$$
R=\frac{w_{1} / \nu_{1}}{w_{2} / v_{2}} \text { and } \quad U=w_{2} \text {. }
$$

The joint pat of $\left(w_{1}, w_{2}\right)$ is

The support of (R, U) is $\{(r, u): r>0, n>0\}$, and

$$
\begin{aligned}
& R=\frac{w_{1} / v_{1}}{w_{2} / v_{2}}\left(=j_{1}\left(w_{1}, w_{2}\right)\right) \Leftrightarrow w_{1}=R U \frac{\nu_{1}}{v_{2}}\left(=j_{1}^{-1}(r, m)\right) \\
& u=w_{2}\left(=j_{2}\left(w_{1}, w_{2}\right)\right) \quad w_{2}=u \quad\left(=j_{2}^{-1}(r, n)\right),
\end{aligned}
$$

giving the Jacobian

$$
J(r, n)=\left|\begin{array}{cc}
\frac{\partial}{\partial r} r \frac{\nu_{1}}{v_{2}} & \frac{\partial}{\partial n} r n \frac{v_{1}}{v_{2}} \\
\frac{\partial}{\partial r} n & \frac{\partial}{\partial n} n
\end{array}\right|=\left|\begin{array}{cc}
n \frac{\nu_{1}}{v_{2}} & r \frac{\nu_{1}}{v_{2}} \\
0 & 1
\end{array}\right|=n \frac{\nu_{1}}{v_{2}} .
$$

Now we g+

Now we integrate $f_{(R, v)}$ over in to get f_{R} :

$$
\begin{aligned}
& =\int_{0}^{\infty} \frac{\left(\frac{\nu_{1}}{v_{2}}\right)^{\frac{\nu_{2}}{2}}}{\Gamma\left(\frac{v_{2}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)} 2^{\frac{\nu_{2}}{\frac{\nu_{1}}{2}-1}}{ }^{\frac{v_{1}}{2}} n^{\frac{v_{1}+v_{2}}{2}-1} e^{-\frac{n}{2}\left(1+\Gamma \frac{v_{1}}{v_{2}}\right)} d x \quad \mathbb{Z}(r>0)
\end{aligned}
$$

$$
\begin{aligned}
& =1 \text {, integral over pot of } \\
& G_{\text {mama }}\left(\frac{v_{1}, \frac{v_{2}}{2}}{2},\left[\frac{1}{2}\left(1+r \frac{v_{1}}{v_{2}}\right)\right]\right) \\
& =\frac{\Gamma\left(\frac{v_{1}+v_{2}}{2}\right)}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}} \frac{r^{\frac{v_{1}-2}{2}}}{\left(1+r \frac{\nu_{2}}{v_{2}}\right)^{\frac{v_{1}+v_{2}}{2}}} \mathbb{1}\left(r \nu_{0}\right) \text {, }
\end{aligned}
$$

which is the pdf of the $F_{v_{1}, v_{2}}$ distribution.
Proofs of III and IV of the theorem:
III. Proof of $\frac{\bar{x}_{n}-\mu}{s_{n} / \sqrt{n}} \sim t_{n-1}$:

We may write

$$
\frac{\bar{x}_{n}-\mu}{s_{n} / \sqrt{n}}=\underbrace{\sqrt{\frac{(n-1) s_{n}^{2}}{\sigma^{2}} /(n-1)}}_{\sim \text { Normal }(0,1), \text { by } I . \quad \underbrace{\frac{\bar{x}_{n}-\mu}{\sigma / \sqrt{n}}}_{A \quad x_{n-1}^{2}}}
$$

Since \bar{x}_{n} and S_{n}^{2} are independents we have exactly She anatomy of a ${ }^{\text {Sn }} t_{n-1}$-distributed $r v$. \square_{10}
IV. Proof of $\frac{s_{1}^{2} / \sigma_{1}^{2}}{s_{2}^{2} / \sigma_{2}^{2}} \sim F_{n_{1}-1, n_{2}-1}$:

We may write

$$
\frac{s_{1}^{2} / \sigma_{1}^{2}}{s_{2}^{2} / \sigma_{2}^{2}}=\frac{\left(n_{1}-1\right) s_{1}^{2} /\left(n_{1}-1\right)}{\frac{\sigma_{i}}{\left(n_{2}-1\right) s_{2}^{2}} \sigma_{2}^{2}} /\left(n_{2}-1\right),
$$

which is the ratio of two independent chi-equave rus, each divided by its degrees of freedom - the anatomy of an $F_{n,-1,1,2-1}$-distributed cv .

EXAMPLES OF USING THESE PIVOT QUANTITIES
I. Let X_{11}, \ldots, X_{16} be a random sample from the $\operatorname{Normal}(\mu, 5)$ distribution, where μ is unknown.
Then

$$
\frac{\bar{x}_{16}-\mu}{\sqrt{5} / 4} \sim \operatorname{N.rmal}(0,1),
$$

so that the interval with random endpoints

$$
\bar{x}_{16} \pm z_{\alpha / 2} \frac{\sqrt{5}}{4}
$$

will contain μ with porbebility $1-\alpha$.
Having observed a realization of the random sample X_{10}, \ldots, X_{16} with $\bar{x}_{16}=2.3$, say, we construct a 95% c.I.
t_{0},

$$
\begin{aligned}
2.3 & \pm \underbrace{1.96} \frac{\sqrt{5}}{4} . \\
& =z_{0 \frac{05}{2}}=z^{\mathrm{nomm}}\left(1-\frac{005}{2}\right)
\end{aligned}
$$

II. Let $X_{11} \ldots, X_{16}$ be a random sample from the $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution, where μ and σ^{2} are unknown.

Then $(16-1) S_{16}^{2} / \sigma^{2} \sim X_{16-1)}^{2}$ so that the interval with random endpoints

$$
\left(\frac{(16-1) s_{16}^{2}}{x_{16-1, \alpha / 2}^{2}}, \frac{(16-1) s_{16}^{2}}{x_{16-1,1-\alpha / 2}^{2}}\right)
$$

will contain σ^{2} with probability $1-\alpha$.
Having observed a realization of the random sample $\begin{array}{ll}X_{11}, \cdots, & X_{16} \\ f_{00} & \text { with } s_{16}^{2}=4.5 \text { say, we construct a } 99 \% \text { CI. }\end{array}$

$$
\begin{gathered}
(\frac{(16-1) 4.5}{32.801}, \underbrace{x^{4.601}}_{\left.x_{15, \frac{01}{2}}^{(16-1) 4.5}\right)}) \\
x_{15,1-\frac{001}{2}}^{2}(.995,15) q^{c h i s g}(.005,15)
\end{gathered}
$$

III. Let X_{11}, \ldots, X_{16} be a random sample from the $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution, where μ and σ^{2} are unknown.
Then $\left(\bar{x}_{16}-\mu\right) /\left(s_{16} / 4\right) \sim t_{16-1}$, so that the interval with random endpoints

$$
\bar{x}_{16} \pm t_{16-1,0,2} \frac{s_{n}}{4}
$$

will contain μ with probability $1-\alpha$.
Having observed a realization of the random sample $X_{10}, \ldots X_{16}$ with $\bar{X}_{16}=2.3$ and $s_{16}^{2}=4.5$, say, we construct

$$
\begin{aligned}
\text { a } 90 \% \text { C.I. for } \mu & \text { as } \\
2.3 & \pm \underbrace{q}_{t_{15, \frac{1}{2}}^{1.753}=\frac{\sqrt{4.5}}{4}} .
\end{aligned}
$$

III. Consider two independent random samples

$$
\begin{aligned}
& X_{1}, \ldots, X_{17} \sim \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right) \\
& Y_{1}, \ldots, Y_{26} \sim \operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)
\end{aligned}
$$

with $\mu_{1}, \mu_{2}, \sigma_{1}^{2}$, and σ_{2}^{2} unknown. We have

$$
\frac{s_{1}^{2} / \sigma_{1}^{2}}{s_{2}^{2} / \sigma_{2}^{2}} \sim F_{17-1,26-1},
$$

so that the interval with random endpoints

$$
\left(\frac{s_{2}^{2}}{s_{1}^{2}} F_{17-1,26-1,1-\alpha / 2}, \frac{s_{2}^{2}}{s_{1}^{2}} F_{17-1,26-1, \alpha / 2}\right)
$$

will contain $\sigma_{2}^{2} / \sigma_{1}^{2}$ with probability $1-\alpha$.
Having observed realizations of the random samples X_{1}, \ldots, X_{17} and Y_{11}, \ldots, Y_{26} with $S_{1}^{2}=3.7$ and $S_{2}^{2}=4.9$, say, we may construct a 95% C.I. for $\sigma_{2}^{2} / \sigma_{1}^{2}$

$$
\begin{gathered}
(\frac{4.9}{3.7}(.383), \frac{4.9}{3.7} \underbrace{F_{17-1,26-1, \frac{05}{2}}={ }_{q} f(.975,16,25)}_{F_{17-1,26-1,1-1-\frac{005}{2}}=\underbrace{(2.384)}_{f(.025,16,25)}) \cdot} .
\end{gathered}
$$

A MISCELLANEOUS RESULT:

Result: Let $T \sim t_{\nu}$. Then $T^{2} \sim F_{1, \nu}$.
Proof: If $T \sim t_{v}$, then we may characterize it as

$$
T=z / \sqrt{w / \nu},
$$

where $z \sim \operatorname{Normal}(0,1)$ and $W \sim X_{v,}^{2} z, w$ independent.
Then $T^{2}=\frac{z^{2} / 1}{w / \nu} \sim F_{1,0}$, because $z^{2} \sim x_{1}^{2}$. Ratio of independent X_{1} and

A NoTE ON ONE-SIDED CIS

A $(1-\alpha)^{*} 100 \%$ upper confidence limit (UCL) for a parameter θ is

$$
P(\theta<v)=1-\alpha .
$$

A $(1-\alpha)^{*} 100 \% \frac{\text { lover confidence limit (LCL) for a parameter } \theta \text { is }}{}$ a riv. L such that

$$
P(L<\theta)=1-\alpha .
$$

For $\mu\left(\sigma k_{n o w n}\right)$; Suppose $X_{1}, \ldots, X_{n}{ }^{i d}{ }^{d} \operatorname{Normal}\left(\mu, \sigma^{2}\right), \sigma$ known.
Then

$$
\frac{\bar{x}_{n}-\mu}{\sigma / \sqrt{n}} \sim \operatorname{Normal}(0,1)
$$

so that we may write

$$
\begin{aligned}
& P\left(-z_{\alpha}<\frac{\bar{x}_{n}-\mu}{\sigma / \sqrt{n}}\right)=1-\alpha \\
\Rightarrow & P\left(\mu<\bar{x}_{n}+z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)=1-\alpha,
\end{aligned}
$$

jiving that $\bar{x}_{n}+z_{\alpha} \frac{\sigma}{\sqrt{n}}$ is a $(1-\alpha)^{*} 100 \%$ UCL for μ. Likewise $\bar{x}_{n}-z_{\alpha} \frac{\sigma}{\sqrt{n}}$ is a $(1-\alpha)^{*} 100 \%$ LCL for μ. The intervals

$$
\left(-\infty, \bar{x}_{n}+z_{\alpha} \frac{\sigma}{\sqrt{n}}\right) \text { and }\left(\bar{x}_{n}-z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right) \text {, }
$$

each of which contain
are
called
one-sided C.I. 5 probability $1-\alpha$,

For $\mu(\sigma$ unknown $)$: Suppose $X_{1}, \ldots, X_{n} \quad{ }^{\text {id }} \operatorname{Normal}\left(\mu, \sigma^{2}\right), \sigma$ unknown.
Then

$$
\frac{\bar{x}_{n}-\mu}{S_{n} / \sqrt{n}} \sim t_{n-1}
$$

so that we may write

$$
\begin{aligned}
& P\left(-t_{n-1, \alpha}<\frac{\bar{x}_{n}-\mu}{\delta_{n} \delta_{n}}\right)=1-\alpha \\
\Rightarrow & P\left(\mu<\bar{x}_{n}+t_{n-1, \alpha} \frac{\delta_{n}}{\sqrt{n}}\right)=1-\alpha,
\end{aligned}
$$

jiving that $\bar{x}_{n}+t_{n-1, \alpha} \frac{S_{n}}{\sqrt{n}}$ is a $(1-\alpha)^{*} 100 \%$ UCL for μ. Likewise $\quad \bar{x}_{n}-t_{n-1, \alpha} \frac{s_{n}}{\sqrt{n}}$ is a $(1-\alpha)^{4} 100 \%$ LCL for μ. The one-sided C.I.s

$$
\left(-\infty, \bar{x}_{n}+t_{n-1, \alpha} \frac{s_{n}}{\sqrt{n}}\right) \text { and }\left(\bar{x}_{n}-t_{n-1,2} \frac{s_{n}}{\sqrt{n}}, \infty\right)
$$

each contain μ with probability $1-\alpha$.
For σ^{2} : Suppose X_{1}, \ldots, X_{n} id $N o r m a 1\left(\mu, \sigma^{2}\right), \sigma$ unknown.
Then $\quad \frac{(n-1) S_{n}^{2}}{\sigma^{2}} \sim X_{n-1}^{2}$,
so that we may write

$$
\begin{aligned}
& P\left(x_{n-1,1-\alpha}^{2}<\frac{(n-1) s_{n}^{2}}{\sigma^{2}}\right)=1-\alpha \\
\Rightarrow & P\left(\sigma^{2}<\frac{(n-1) s_{n}^{2}}{x_{n-1,1-\alpha}^{2}}\right)=1-\alpha,
\end{aligned}
$$

giving that $\frac{(n-1) S_{n}^{2}}{X_{n-1,1-\alpha}^{2}}$ is a $(1-\alpha)^{*} 100 \%$ UCL for σ^{2}.
Likewise $\frac{(n-1) S_{n}^{2}}{x_{n-1, \alpha}^{2}}$ is a $(1-\alpha)^{2} 100 \%$ LCL for $\sigma_{\text {. }}^{2}$
The one-sided C.I.s

$$
\left(-\infty, \frac{(n-1) s_{n}^{2}}{x_{n-1,1-\alpha}^{2}}\right) \text { and }\left(\frac{(n-1) S_{n}^{2}}{x_{n-1, \alpha}^{2}}, \infty\right)
$$

each contain μ with probability $1-\alpha$.

