
 

PARAMETRIC ESTIMATION AND PROPERTIES OF ESTIMATORS

atlthe Sttistics.to learn from random outcomes data
about the process which generates them

We often choose to learn about the data generating process
by using the data to estimate unknown parameters in
a parametric framework as in the following Setup

PARAMETRIC FRAMEWORK

Let X X be random variables with a jointdistribution which depends on the parameters 0 Od
the values of which are unknown but which lie in
the spaces 0 Och respectively where 0 CIR for k 1 cl

To know the joint distribution of X X it is sufficient
to know the rohes of O 0dg so we choose estimators
Ö Öd of 9 _Od based on X X

randomsample

Ey Let X X be a r.s.tn the Bernoulli f distribution
where f is unknown

Fits parametric framework with 1 2

6 p 0 Lo

Might choose the estimator Ö p In

Ey Let X X ÖdNormally f with µ 8 unknown

Fits parametric framework with d 2

0 0 Go D

02 62 02 0 0

Might choose estimators Ö µ In
Öv ö si In



E.ge Let X X be independent r.us with the Exponential 7 distribution

Fits parametric framework with d 2

0 7 0 o.o

Might choose estimator Ö I In

E.ge hat Y Yu be independent r.us such that for some fixed
constants Xu

Yi Normal ftp.xi F El sn

with ßo ß and oh unknown so 4 Y are not iid

Fits parametric framework with d 3

0 ßo 0 L 0 a

02 1 02 L 8 a

03 52 03 o d

We might choose the estimators

1 f TINY
where X and I are the matrices

In

Y
2 X

and Ö E I Yi ftp.x
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NONPARAMETRIC FRAMEWORK

Let X X have a joint distribution which depends
on an infinite number of parameters

For example suppose X _Xu is a random sample from a
distribution with edf Fx for which we do notspecify anyform
We estimate the function Fyla directly from X X
for all values of

If we regard the value EKD at each as a

parameter we see that we must estimate an infinite
number of parameters instead of a finite number of
parameters as in the parametric framework

One might choose FIL KÄTHE for all xc.IR

In this course we remain in the parametric framework

EVALUATING THE QUALITY OF ESTIMATORS

Even within very simple parametern frameworks it may
not be obvious how to estimate the unknown parameters
Moreover some estimators which seem reasonable may
prove to be naive

The following properties of estimators give us ways to
compare estimators

Det The bias of an estimator Ö of a parameter 06EUR
is defined as

BiasÖ EÖ O

If BiasÖ 0 i e FÖ 0 then Ö is called an

unbiased of O

Petz The standards of an estimator Ö of a parameter
OE 0 CIR is defined as

SE Ö

so the standard error of an estimator is merely its
standard deviation
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What do we want in an estimator

Small or Zero bias

Small variance

The following property of an estimator considers bias and
variance together

Defy The weirder of an estimator Ö of
a parameter 0 is defined as

MSEÖ Etc 05
so it is the expected squared distance between Ö and O

Reelle USE Ö Vor Ö Bias Ö

Proof MSE Ö E Ö 0J

F Ö Flöt Eto o

E Flößt 2 Ö E EG o t E EG 0J
so BiasÖ

Var Ö Bias Ö

We usually want estimators with a small MSE we may
even prefer a biased estimator with small variance
to an unbiased estimator with large variance

The USE thus offers a criterion for choosing between estimators

F ht X X be independent r.us with the same distribution as
X Uniform 0,0

Consider two possible estimators of O

Ö Xens

Ö 2in 4



i Find Bias Ö and Bias Ö

Bias To find EtÖ EXen we need the part of Xens

f f n Ek x from what we knowof
order statistics

n 1 Ilona
o

dt of Uniform 0,0 for 0 740

So
0

Ex n 2 to dx
o

o
ntl

1 0
htt

This gives ho Ö is not unbiased
t

Bias Ö E o_O ok E o

Biased We have EÖ E 2 In

2 EX
0

2 1 dx
oOo

2 E o

0

Ö is unbiased
So Bias Ö 0 0 0
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ii Find WarÖ and Var Ö

Ward We have VorÖ Elo LEI where
EÖ EX

n i

fünf t dx
oO

ntz 0
L
0 utz o

E 02

so vor ö E ö G o

öl
ölüüüü

ozfa III.IS
02 f D

VI We have

Vor Ö Vor 25 4 Var In Vor X

where

Vor X Ex E

it dx E 6



3 2
EFoto 4

2
0
12 largerthan VorÖ

for all n

so rar Ö In
iii Find USE Ö and USE Ö

USE Ö Vor Ö Bias
2

02k

öffnet
öffentl

USE Ö Vor ö t Bias Ö

2 z0
In Co

2

03N

Conclusion Consider MSE Ö and USE Ö as function of n

µoY6 046

j _jzjjo.ir ä
Ö has smatter
USE for n 3

Alz With Ö Xc we never overshoot 0 since PIX 0 1
g



C We can also modify Ö X to correct the bias

Define Ö biased f ö

Then F ö f E ö E E 0 0

and Vor Ö g V ö

f Fa.li
netz

Thus also MSEÖ biased gz
Futz

E.ge Let X X be independent Bernoulli f r.us with p unknown

Set Y X TX and consider two estimators of p
Is In

4 2 add two successes and
tut two failures to the

Li Find Bias Is and Bias Ts

Biß We have EF EYK p so Bias o

Bj we have EF ELIF III so

F is biased
Bias Is p 24
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ii Find Vor I and Vor I

Is We have Warp

V.fi

nJ nt2npci p P

YVorjWehcmVarF VcrfIIf

v.rfEI
ffy

npll

p

JPY1

liii Find MSEF and USE F
2

NISEI Vorß t BiasF

Ep
n

2

MSEF VorTo t Bias F
2

f rütli
Conclusion It turns out that neither estimator
has an USE which is lower than that of the
other for all µ Elo For some values of p
NISEI is less than MSE while for other
values of the opposite is true

Which estimator has a smaller MSE depends on
the true value of p see R supplement for some
exploration of this
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Liv Find values of p such that MSETs E USER

MSE I E MSEI

4 YI E
4 44 PING

7 4 16pctp E plt p 442 T Cnty

y 16plop plus Lüthje
2 4 plrp E plrp zuttl

2 pl tuten o

F

E

2 213 p t 213 p o

Equality occurs at

23 t.SI z

3

tz 5
ho MSE I MSEF for

peftz IFED.tt EFZE
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A WORD OF CAUTION ABOUT ESTIMATING FUNCTIONS OF PARAMETERS

pose we want to estimate a function ILO of O 2 p IR
If Ö is an unbiased estimator of 0 it is not generally
true that tho is unbiased for 0

E.gg ht X X Ü Exponential
Then Ä thx X is an unbiased estimator of a

However HÄ is a biased estimator of Ya

We have EIN En X t ttnJ nE4 where

Y X t.c.tl Gamma n

since Mylt ITMy D i at

h

E4 t

typt
jyn ie
kdy.inYi4yMn

i

r
L integral over pdf of

g
Gamma n a

Therefore EIN E
However we see that F 4 I so that7

E G 1 x t.i.tk

is an unbiased estimator of Ya
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