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Large-sample properties of estimators: consistency and
the WLLN
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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Consistency of an estimator

An estimator θ̂n of θ ∈ Θ ⊂ R is called consistent if

lim
n→∞

P(|θ̂n − θ| < ε) = 1

for every ε > 0 and every θ ∈ Θ.

Means the event θ̂n ∈ (θ− ε, θ+ ε) occurs w/ prob → 1 as n→∞, for any ε > 0.

Exercise: Let X1, . . . ,Xn
ind∼ Unif(0, θ). Is X(n) a consistent estimator of θ?
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WLLN: Sample mean is consistent for pop. mean if pop. variance is finite.

Theorem (Weak law of large numbers)
Let X1, . . . ,Xn be a rs from a dist. with mean µ and variance σ2 <∞. Then

lim
n→∞

P(|X̄n − µ| < ε) = 1

for every ε > 0 and every µ ∈ R.

Exercise: Prove using Чебышёв’s inequality.
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Theorem (Sufficient conditions for consistency)

An estimator θ̂n is consistent for θ if
1 limn→∞ Var θ̂n = 0
2 limn→∞ Bias θ̂n = 0

Note that MSE θ̂n → 0 implies that θ̂n is consistent for θ.

Instead of showing limn→∞ P(|θ̂n − θ| < ε) = 1, can show MSE θ̂n → 0 (easier!!!)
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Exercise: Let X1, . . . ,Xn
ind∼ Uniform(0, θ). Check consistency of the estimators

θ̂n = X(n) and θ̃n = 2X̄n.
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Exercise: Let Y1, . . . ,Yn
ind∼ Exponential(λ) and consider λ̃n = nY(1).

1 Compute Bias λ̃n
2 Compute Var λ̃n
3 Is λ̃n a consistent estimator of λ?
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Exercise: Let X1, . . . ,Xn
ind∼ Bernoulli(p). Let Y = X1 + · · ·+ Xn and consider

p̂n =
Y

n
and p̃n =

Y + 2
n + 4

.

Check the consistency of these estimators (MSEs derived in previous lecture).
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Notation: If θ̂n is consistent for θ, we can write θ̂n
p−→ θ.

The notation
p−→ stands more generally for convergence in probability .
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Theorem (Helper results for proving consistency)

Let θ̂1,n and θ̂2,n be consistent estimators for θ1 and θ2, respectively. Then

1 θ̂1,n ± θ̂2,n
p−→ θ1 ± θ2

2 θ̂1,nθ̂2,n
p−→ θ1θ2

3 θ̂1,n/θ̂2,n
p−→ θ1/θ2, provided θ2 6= 0.

4 For any continuous function τ : R→ R, τ(θ̂1,n)
p−→ τ(θ1).

5 For any sequences {an}n≥1, {bn}n≥1 s.t. limn→∞ an = 1 and limn→∞ bn → 0,
we have

anθ̂1,n + bn
p−→ θ1,n.

Exercises:
1 Show consistency of S2

n for population variance σ2 when µ4 <∞.
2 Show consistency of p̂(1− p̂) for p(1− p) in Bernoulli(p) setting.
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