CLASSICAL TWO-SAMPLE RESULTS
We consider two random samples
$X_{1}, \ldots, X_{n_{1}} \stackrel{i i d}{\sim} F_{1}$, where F_{1} has mean μ_{1} and variance $\sigma_{1}^{2}<\infty$.
$Y_{1}, \ldots, Y_{n_{2}}$ ii F_{2}, where F_{2} has mean μ_{2} and variance $\sigma_{2}^{2}<\infty$.

COMPARING MEANS
I. Assuming Normal populations:

Let $X_{1}, \ldots, x_{n_{1}} \stackrel{\text { id }}{\sim} \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$

$$
Y_{1}, \ldots, Y_{n_{2}} \stackrel{\text { ii }}{\sim} \operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)
$$

and let $\bar{X}=\frac{1}{n_{1}}\left(X_{1}+\cdots+X_{n_{1}}\right)$ and $\bar{Y}=\frac{1}{n_{2}}\left(Y_{1}+\ldots+Y_{n_{2}}\right)$.
Construct a $(1-\alpha)^{*} 100 \%$ C.I. for $\mu_{1}-\mu_{2}$:
Case (σ : σ_{1}^{2} and σ_{2}^{2} known

Use the following result:
Result: $\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim \operatorname{Normal}(0,1)$.
Proof: We have $\bar{X} \sim \operatorname{Normal}\left(\mu_{1}, \frac{\sigma_{1}^{2}}{n_{1}}\right)$ and $\bar{y} \sim \operatorname{Normal}\left(\mu_{2}, \frac{\sigma_{2}^{2}}{n_{2}}\right)$.
Since \bar{X} and \bar{Y} are independent, we have

$$
\bar{x}-\bar{y} \sim \operatorname{Normal}\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right) \text {. (see pg. } 10 \text { of lee 02) }
$$

Therefore $\frac{\bar{x}-\bar{y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim \operatorname{Normal}(0,1)$.

So this is a pivot quantity.
Application to C.I.s
Because of the above result, we may write

$$
\begin{aligned}
& P\left(-z_{\alpha / 2}<\frac{\bar{x}-\bar{y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}<z_{\alpha / 2}\right)=1-\alpha \\
\Leftrightarrow & P\left(\bar{x}-\bar{y}-z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}<\mu_{1}-\mu_{2}<\bar{x}-\bar{y}+z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\right)=1-\alpha,
\end{aligned}
$$

so that

$$
\bar{X}-\bar{Y} \pm z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

is a $(1-\alpha)^{2} 100 \%$ cI. for $\mu_{1}-\mu_{2}$.
Case $(i): \sigma_{1}^{2}$ and σ_{2}^{2} unknown, and $\sigma_{1}^{2} \neq \sigma_{2}^{2}$:
We now consider using the estimators

$$
S_{1}^{2}=\frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}}\left(x_{i}-\bar{X}\right)^{2} \quad \text { and } \quad S_{2}^{2}=\frac{1}{n_{2}-1} \sum_{i=1}^{n_{2}}\left(Y_{i}-\bar{y}\right)^{2}
$$

in place of σ_{1}^{2} and σ_{2}^{2}.
Use the following result:
Result (S.Aterthwerite):

$$
\frac{\bar{x}-\bar{r}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \stackrel{\text { approx }}{\sim} t_{\hat{\nu}}, \quad \hat{v}=\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}\left[\frac{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}}{\left(n_{1}-1\right)}+\frac{\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\left(n_{2}-1\right)}\right]^{-1}
$$

Partial proof: Rewrite

$$
\frac{\bar{x}-\bar{y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{\bar{x}-\bar{y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}}{\sigma_{1}^{2}}\left(\frac{\sigma_{1}^{2}}{n_{1}\left(n_{1}-1\right)}\right)+\frac{\left(n_{2}-1\right) s_{2}^{2}}{\sigma_{2}^{2}}\left(\frac{\sigma_{2}^{2}}{n_{2}\left(n_{2}-1\right)}\right)} \frac{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}{}
$$

This can be represented as

$$
\frac{z}{\frac{w_{1}\left(\frac{\sigma_{1}^{2}}{n_{1}\left(n_{1}-1\right)}\right)+W_{2}\left(\frac{\sigma_{2}^{2}}{n_{2}\left(n_{2}-1\right)}\right)}{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}
$$

where $z \sim N \operatorname{Normal}(0,1), w_{1} \sim x_{n_{1}-1}^{2}, w_{2} \sim x_{n_{2}-1}^{2}, z, w_{1}, w_{2}$ indef.
This can be rewritten as

$$
\begin{aligned}
& \text { z }
\end{aligned}
$$

(Welch-S.tterthwaite)
which has the form

$$
z / \sqrt{\frac{w^{*}}{\nu^{*}}}
$$

where $\quad z \sim \operatorname{Normal}(0,1), \quad w^{*} \sim^{\text {approx }} X_{\nu^{*}}^{2}, \quad \nu^{*}$ as above.

Since z and w^{*} are independent, $z / \sqrt{\frac{W^{*}}{\nu^{*}}} \stackrel{\text { arperax}}{ }^{t_{\nu^{*}}}$.
Plugging in $\hat{\nu}$ for v^{*}, ie. replacing σ_{1}^{2} and σ_{2}^{2} with s_{1}^{2} and s_{2}^{2} in the expression for $\nu *$, we get the result.

Application to C.I.s
Because of the above result, we may write

$$
\left.\begin{array}{rl}
& P\left(-t_{\hat{v}}, \alpha / 2\right.
\end{array} \frac{\bar{x}-\bar{y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}<t_{\hat{v}, \alpha / 2}\right) \approx 1-\alpha, \quad \begin{aligned}
& \Leftrightarrow \\
& \Leftrightarrow \\
& P\left(\bar{x}-\bar{y}-t_{\hat{v}}, \alpha / 2 \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}<\mu_{1}-\mu_{2}<\bar{x}-\bar{y}+t_{\hat{v}}, \alpha / 2 \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}\right) \approx 1-\alpha,
\end{aligned}
$$

so that

$$
\bar{x}-\bar{y} \pm t_{\hat{\nu}}, \alpha / 2 \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

is an approximate $(1-\alpha)^{*} 100 \%$ C.I. for $\mu_{1}-\mu_{2}$.
Case (ii): σ_{1}^{2} and σ_{2}^{2} unknown, but $\sigma_{1}^{2}=\sigma_{2}^{2}$:

If we believe $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{\text {common, for some }}^{2} \sigma_{c o m m o n}^{2}<\infty$, we we combine the two samples to estimate the common variance. Define

$$
S_{\text {pooled }}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2} .
$$

Then we have the following result:

Result:

$$
\frac{\bar{x}-\bar{y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{\text {polled }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \sim t_{n_{1}+n_{2}-2} .
$$

Proof: Rewrite

$$
\begin{aligned}
& \frac{\bar{x}-\overline{-}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{\text {posed }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{\bar{x}-\bar{y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma_{\text {common }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} / \sqrt{\frac{S_{\text {poled }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}{\sigma_{\text {Common }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \\
& =\underbrace{\frac{\bar{x}-\bar{y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma_{\text {common }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}}_{\sim N_{\text {normal }}(0,1)} / \sqrt{\sim X_{n_{1}+n_{2}-2}^{2}} \underbrace{\frac{\left(n_{1}+n_{2}-2\right) S_{\text {pooled }}^{2}}{\sigma_{\text {common }}^{2}}} /\left(n_{1}+n_{2}-2\right), \\
& \text { which has the form }
\end{aligned}
$$

where $Z \sim \operatorname{Normal}(0,1), W \sim X_{n_{1}+n_{2}-2}^{2}, Z, W$ independent.

Thus $\quad z / \sqrt{w /\left(n_{1}+n_{2}-2\right)} \sim t_{n_{1}+n_{2}-2}$.
Application to C.I.S:
Because of the above result, we may write

$$
\begin{aligned}
& P\left(-t_{n_{1}+n_{2}-2, \alpha / 2}<\frac{\bar{x}-\bar{y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{p o l l e d}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}<t_{n_{1}+n_{2}-2, \alpha / 2}\right)=1-\alpha \\
\Rightarrow & \left.P\left(\bar{x}-\bar{y}-t_{n_{1}+n_{2}-2, \alpha / 2} \sqrt{S_{\text {pooled }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}<\mu_{1}-\mu_{2}<\bar{x}-\bar{y}+t_{n_{1}+n_{2}-2, \alpha / 2} \sqrt{S_{\text {pooled }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right.}\right)\right)=1-\alpha,
\end{aligned}
$$

so that

$$
\bar{x}-\bar{y} \pm t_{n_{1}+n_{2}-2, \alpha / 2} \sqrt{S_{\text {pooled }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

is a $(1-\alpha)^{*} 100 \%$ cI. for $\mu_{1}-\mu_{2}$.
II. Assuming non-Normal populations:

Let
$X_{1}, \ldots, X_{n_{1}} \stackrel{i i d}{\sim} F_{1}$, where F_{1} has mean μ_{1} and variance $\sigma_{1}^{2}<\infty$. $Y_{1}, \ldots, Y_{n_{2}} \stackrel{i d}{\sim} F_{2}$, where F_{2} has mean μ_{2} and variance $\sigma_{2}^{2}<\infty$.
and let $\bar{X}=\frac{1}{n_{1}}\left(X_{1}+\cdots+X_{n_{1}}\right)$ and $\bar{Y}=\frac{1}{n_{2}}\left(Y_{1}+\ldots+Y_{n_{2}}\right)$.
We wish to construct a $(1-\alpha)^{2} 100 \%$ C.I. for $\mu_{1}-\mu_{2}$:

Case (ф): σ_{1}^{2} and σ_{2}^{2} known

Use the following result:
This is how we ensure that both samples grout to ∞ together
Result: If $n_{1} / n_{2} \rightarrow c, 0<c<\infty$, as $n_{1}, n_{2} \rightarrow \infty$, then

$$
\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \rightarrow D, \quad Z \sim \operatorname{Normal}(0,1)
$$

as $\quad n_{1}, n_{2} \rightarrow \infty$.

Proof: Rewrite

$$
\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}=\frac{\sqrt{\frac{\sigma_{2}^{2}}{n_{1}}}\left(\frac{\bar{x}-\mu_{1}}{\sigma_{1} / \sqrt{n_{1}}}\right)-\sqrt{\frac{\sigma_{2}^{2}}{n_{2}}}\left(\frac{\bar{Y}-\mu_{2}}{\sigma_{2} / \sqrt{n_{2}}}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}
$$

$$
\begin{aligned}
& =\sqrt{\frac{\frac{\sigma_{1}^{2}}{n_{1}}}{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\left(\frac{\bar{x}-\mu_{1}}{\sigma_{1} / \sqrt{n_{1}}}\right)-\sqrt{\frac{\frac{\sigma_{2}^{2}}{n_{2}}}{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\left(\frac{\bar{Y}-\mu_{2}}{\sigma_{2} / \sqrt{n_{2}}}\right) \\
& =\underbrace{\left(\frac{\bar{x}-\mu_{1}}{\sigma_{1} / \sqrt{n_{1}}}\right)}_{\rightarrow \sqrt{\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+c \sigma_{2}^{2}}} \underbrace{\sigma_{1}^{2}+\left(\frac{\sigma_{1}}{n_{2}}\right) \sigma_{2}^{2}}_{\rightarrow D}}-\underbrace{\left.\sigma_{\sigma_{1}^{2}+c \sigma_{2}^{2}}^{\frac{\bar{Y}-\mu_{2}}{\sigma_{2} / \sqrt{n_{2}}}}\right)}_{\rightarrow \sqrt{\frac{n_{1}}{\frac{c \sigma_{2}^{2}}{n_{2}} \sigma_{2}^{2}}} \underbrace{\sigma_{1}^{2}+\frac{n_{1}}{n_{2}} \sigma_{2}^{2}}} \underbrace{\rightarrow z_{2}}_{\rightarrow 0} \\
& \rightarrow D \sqrt{\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+c \sigma_{2}^{2}}} z_{1}-\sqrt{\frac{c \sigma_{2}^{2}}{\sigma_{1}^{2}+c \sigma_{2}^{2}}} z_{2},
\end{aligned}
$$

as $n_{1}, n_{2} \rightarrow \infty$, where $z_{1}, z_{2} \sim \operatorname{Normal}(0,1), z_{1}, z_{2}$ independent.
Finely, we have that

$$
\sqrt{\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+c \sigma_{2}^{2}}} z_{1}-\sqrt{\frac{c \sigma_{2}^{2}}{\sigma_{1}^{2}+c \sigma_{2}^{2}}} z_{2} \sim \operatorname{Normal}(0,1) \text {, }
$$

since $\mathbb{E} z_{1}=\mathbb{E} z_{2}=0$ and

$$
\begin{aligned}
\operatorname{Var}\left[\sqrt{\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+c \sigma_{2}^{2}}} z_{1}-\sqrt{\frac{c \sigma_{2}^{2}}{\sigma_{1}^{2}+c \sigma_{2}^{2}}} z_{2}\right] & =\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+c \sigma_{2}^{2}} \operatorname{Var} z_{1}+\frac{c \sigma_{2}^{2}}{\sigma_{1}^{2}+c \sigma_{2}^{2}} \operatorname{Var} z_{2} \\
& =\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+c \sigma_{2}^{2}}+\frac{c \sigma_{2}^{2}}{\sigma_{1}^{2}+c \sigma_{2}^{2}} \\
& =1
\end{aligned}
$$

since z_{1} and z_{2} are independent.

Application to C.I.s:

Because of the above result, we may write

$$
\begin{aligned}
& \lim _{n_{1} n_{2} \rightarrow \infty} P\left(-z_{\alpha / 2}<\frac{\bar{x}-\bar{y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}<z_{\alpha / 2}\right)=1-\alpha \\
& \Leftrightarrow \\
& \lim _{n_{1}, n_{2} \rightarrow \infty} P\left(\bar{x}-\bar{y}-z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}<\mu_{1}-\mu_{2}<\bar{x}-\bar{y}+z_{\alpha_{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\right)=1-\alpha,
\end{aligned}
$$

A role of thumb is $\min \left\{n_{1}, n_{2}\right\} \geqslant 30$
so that for large n_{1}, n_{2}

$$
\bar{X}-\bar{Y} \pm z_{d / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

is an approximate $(1-\alpha)^{*} 100 \%$ C.I. for $\mu_{1}-\mu_{2}$.
case $(i): \sigma_{1}^{2}$ and σ_{2}^{2} unknown, and $\sigma_{1}^{2} \neq \sigma_{2}^{2}$:

Use the following result:
(by) Result: If $n_{1} / n_{2} \rightarrow c, 0<c<\infty$, as $n_{1}, n_{2} \rightarrow \infty$, then

$$
\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}} \rightarrow D, \quad Z \sim \operatorname{Normal}(0,1)
$$

as $\quad n_{1}, n_{2} \rightarrow \infty$.

Proof: Rewrite

$$
\begin{aligned}
& \frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}{ }^{2}}{n_{2}}}}=\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \frac{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}{}}
\end{aligned}
$$

8. the result follows by applying slutzkys theorem.

Application to C.I.s:

Because of the above result, we may write

$$
\begin{aligned}
& \lim _{n_{1}, n_{2} \rightarrow \infty} P\left(-z_{\alpha / 2}<\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}<z_{\alpha / 2}\right)=1-\alpha \\
& \Leftrightarrow \\
& \lim _{n_{1}, n_{2} \rightarrow \infty} P\left(\bar{X}-\bar{Y}-z_{\alpha / 2} \sqrt{\left.\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}<\mu_{1}-\mu_{2}<\bar{x}-\bar{y}+z_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}\right)=1-\alpha}\right.
\end{aligned}
$$

A rule of thumb is $\min \left\{n_{1}, n_{2}\right\} \geqslant 30$
so that for large n_{1}, n_{2}

$$
\bar{X}-\bar{Y} \pm z_{d / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

is an approximate $(1-\alpha)^{*} 100 \%$ c.I. for $\mu_{1}-\mu_{2}$.

Case (ii): σ_{1}^{2} and σ_{2}^{2} unknown, but $\sigma_{1}^{2}=\sigma_{2}^{2}$:

Use the following result:
Result: If $n_{1} / n_{2} \rightarrow c, 0<c<\infty$, as $n_{1}, n_{2} \rightarrow \infty$, then

$$
\begin{aligned}
& \frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{\text {pooled }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \rightarrow z, \quad z \sim \operatorname{Normal}(0,1) \\
& \text { as } \quad n_{1}, n_{2} \rightarrow \infty .
\end{aligned}
$$

Proof: Let $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{\text {common }}^{2}$ and rewrite

$$
\begin{aligned}
& \frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{\text {pooled }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma_{\text {common }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \sqrt{\frac{\sigma_{\text {common }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}{S_{\text {poled }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
\end{aligned}
$$

8. the result follows by applying slutzky's theorem.

Application to C.I.s:

Because of the above result, we may write

$$
\begin{aligned}
& \lim _{n_{1}, n_{2} \rightarrow \infty} P\left(-z_{\alpha / 2}<\frac{\bar{x}-\bar{y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{\text {poole }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}<z_{\alpha / 2}\right)=1-\alpha \\
& \Leftrightarrow \\
& \left.\lim _{n_{1}, n_{2} \rightarrow \infty} P\left(\bar{X}-\bar{Y}-z_{\alpha / 2} \sqrt{S_{\text {pooled }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}\right)<\mu_{1}-\mu_{2}<\bar{x}-\bar{y}+z_{\alpha / 2} \sqrt{S_{\text {poole }}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}\right)=1-\alpha,
\end{aligned}
$$

A rule of thumb is $\min \left\{n_{1}, n_{2}\right\} \geqslant 30$
so that for large n_{1}, n_{2}

$$
\bar{X}-\bar{Y} \pm z_{d / 2} \sqrt{S_{p o o l e d}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

is an approximate $(1-\alpha)^{*} 100 \%$ c.I. for $\mu_{1}-\mu_{2}$.
SUMMARY OF C.I.S FOR THE DIFFERENCE IN MEANS

Let $X_{1}, \ldots, X_{n_{1}}$ be independent cos with the same distribution as X.
Let $Y_{1} \ldots, Y_{n_{2}}$ be independent r os with the same distribution as Y.
case (i) $\sigma_{1}^{2} \neq \sigma_{2}^{2}:$

$$
X \text { and } Y \text { Normal }
$$

These are both -approximate

Case (ii) $\quad \sigma_{1}^{2}=\sigma_{2}^{2}$:

COMPARING PROPORTIONS

Let $X_{1}, \ldots, X_{n} \stackrel{i a}{\sim}$ Bernoulli: $\left(p_{1}\right), \quad p_{1}$ unknown
$Y_{1}, \ldots, Y_{n_{2}} \stackrel{\text { id }}{\sim}$ Bernoulli: $\left(p_{2}\right), \quad p_{2}$ unknown.
Define $\hat{p}_{1}=\frac{1}{n_{1}}\left(x_{1}+\cdots+x_{n_{1}}\right)$ and $\hat{p}_{2}=\frac{1}{n_{2}}\left(y_{1}+\cdots+Y_{n_{2}}\right)$.
We wish to build a $(1-\alpha)^{*} 100 \%$ C.I. for $p_{1}-p_{2}$.
We use the following result:

Result: If $n_{1} / n_{2} \rightarrow c, 0<c<\infty$, as $n_{1}, n_{2} \rightarrow \infty$, then

$$
\begin{aligned}
& \quad \frac{\hat{p}_{1}-\hat{p}_{2}-\left(p_{1}-p_{2}\right)}{\sqrt{\hat{p}_{1}\left(1-\hat{p}_{1}\right)} \frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{1}}} \rightarrow z, \quad z \sim \operatorname{Normal}(0,1) \\
& \text { as } \quad n_{1}, n_{2} \rightarrow \infty .
\end{aligned}
$$

Proof: We can follow the proof of $(\hat{\nu}\rangle)$, using the fact that

$$
\begin{array}{ll}
& \hat{p}_{1}\left(1-\hat{p}_{1}\right) \rightarrow p
\end{array} p_{1}\left(1-p_{1}\right) \quad \text { as } \quad n_{1} \rightarrow \infty .
$$

Application to CESs:

We can use the above result to write

$$
\begin{aligned}
& \quad \lim _{n_{1}, n_{2} \rightarrow \infty} P\left(-z_{\alpha / 2}<\frac{\hat{p}_{1}-\hat{p}_{2}-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}}<z_{\alpha / 2}\right)=1-\alpha \\
& \Leftrightarrow \\
& \lim _{n_{1}, n_{2} \rightarrow \infty} P\left(\hat{p}_{1}-\hat{p}_{2}-z_{\alpha_{2}} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}<p_{1}-p_{2}<\hat{p}_{1}-\hat{p}_{2}+z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right.}{n_{2}}}\right)=1-\alpha_{2}
\end{aligned}
$$

giving that for large $\underbrace{n_{1} \text { and } n_{2}}$, Rule of thumb: $\min _{\min \left\{n_{1}\left\{\hat{p}_{1}, n_{1},\left(1-\hat{p}_{1}\right)\right\}\right.}^{\left.n_{2}, n_{2}\left(1-\hat{p}_{2}\right)\right\} \geqslant 15}$

$$
\hat{p}_{1}-\hat{p}_{2} \pm z_{d / 2} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

is an approximate $(1-\alpha)^{*} 100 \%$ C.I. for $p_{1}-p_{2}$.

COMPARING VARIANCES

Suppose we have two independent random samples

$$
\begin{aligned}
& X_{1}, \ldots, X_{n_{1}} \sim \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right) \\
& Y_{1}, \ldots, Y_{n_{2}} \sim N_{\text {oral }}\left(\mu_{2}, \sigma_{2}^{2}\right),
\end{aligned}
$$

and let

$$
S_{1}^{2}=\frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}}\left(X_{i}-\bar{X}_{n_{1}}\right)^{2} \quad \text { and } \quad S_{2}^{2}=\sum_{n_{2}-1}^{1} \sum_{i=1}^{n_{2}}\left(Y_{i}-\bar{Y}_{n_{2}}\right)^{2} .
$$

Result: $\quad \frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}} \sim F_{n_{1}-1, n_{2}-1}$.

Application to C.I.s:

$$
\begin{aligned}
& P_{s_{1}^{2}, s_{2}^{2}}\left(F_{n_{1}-1, n_{2}-1,1-\alpha / 2}<\frac{s_{1}^{2} / \sigma_{1}^{2}}{s_{2}^{2} / \sigma_{2}^{2}}<F_{n_{1}-1, n_{2}-1, \alpha / 2}\right)=1-\alpha \\
\Leftrightarrow & P_{s_{1}^{2}, s_{2}^{2}}\left(\frac{s_{2}^{2}}{s_{1}^{2}} F_{n_{1}-1, n_{2}-1,1-\alpha / 2}<\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}<\frac{s_{2}^{2}}{s_{1}^{2}} F_{n_{1}-1, n_{2}-1, \alpha / 2}\right)=1-\alpha \\
\Leftrightarrow & A(1-\alpha)^{* 100} \% \text { c.I. for } \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} \text { is } \\
& \left(\frac{s_{2}^{2}}{s_{1}^{2}} F_{n_{1}-1, n_{2}-1,1-\alpha / 2}, \frac{s_{2}^{2}}{s_{1}^{2}} F_{n_{1}-1, n_{2}-1, \alpha / 2}\right) .
\end{aligned}
$$

