STAT 512 su 2021 Lec 09 slides

Sample size calculations

Karl B. Gregory
University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

Let X_{1}, \ldots, X_{n} be iid rvs with mean μ and variance σ^{2}.
Large-sample $(1-\alpha) 100 \% \mathrm{Cl}$ for μ is

$$
\bar{X}_{n} \quad \pm \underbrace{z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}}_{\text {margin of error }}
$$

Strategy: Choose n to make the margin of error (ME) sufficiently small.

To achieve ME $\leq M^{*}$, set $n=\left\lceil\left(\frac{z_{\alpha / 2}}{M^{*}}\right)^{2} \sigma^{2}\right\rceil$

Exercise: Derive above formula.

Exercise: Researchers want a $95 \% \mathrm{CI}$ for μ with $\mathrm{ME} \leq 1 / 2$. Believed that $\sigma \approx 2$. Recommend a sample size.

Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}(p)$. Then $\mu=p$ and $\sigma^{2}=p(1-p)$.
A large-sample $(1-\alpha) 100 \% \mathrm{Cl}$ for p is

$$
\bar{X}_{n} \quad \pm \underbrace{z_{\alpha / 2} \sqrt{\frac{p(1-p)}{n}}}_{\text {margin of error }}
$$

To achieve ME $\leq M^{*}$, set $n=\left\lceil\left(\frac{z_{\alpha / 2}}{M^{*}}\right)^{2} p(1-p)\right\rceil$

Replace p with

- an estimate from a previous study
- the value $1 / 2$, at which $p(1-p)$ is maximized (err on the large side).

Example: Want 99\% CI for prop. of voters who will vote for a candidate with a ME not exceeding two percentage points. What sample size do we need?

For large n_{1}, n_{2}, a large-sample $(1-\alpha) 100 \% \mathrm{CI}$ for $\mu_{1}-\mu_{2}$ is

$$
\bar{X}-\bar{Y} \pm \underbrace{z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}_{\text {margin of error }}
$$

How should we choose n_{1} and n_{2} ?
To achieve $\mathrm{ME} \leq M^{*}$, set

$$
n_{1}=\left\lceil\left(\frac{\sigma_{1}}{\sigma_{1}+\sigma_{2}}\right) n^{*}\right\rceil \quad \text { and } \quad n_{2}=\left\lceil\left(\frac{\sigma_{2}}{\sigma_{1}+\sigma_{2}}\right) n^{*}\right\rceil \text {, }
$$

where $n^{*}=\left(\frac{z_{\alpha / 2}}{M^{*}}\right)^{2}\left(\sigma_{1}+\sigma_{2}\right)^{2}$.

Exercise: Derive the above.

Exercise: Suppose we have $\hat{\sigma}_{1}=2$ and $\hat{\sigma}_{2}=3$ from a previous study. We want a $99 \% \mathrm{Cl}$ for $\mu_{1}-\mu_{2}$ with ME $\leq 1 / 2$. Recommend sample sizes n_{1} and n_{2}.

For large n_{1}, n_{2}, a large-sample $(1-\alpha) 100 \% \mathrm{CI}$ for $p_{1}-p_{2}$ is

$$
\hat{p}_{1}-\hat{p}_{2} \pm \underbrace{z_{\alpha / 2} \sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}}_{\text {margin of error }}
$$

How should we choose n_{1} and n_{2} ?
Just as before with $\sigma_{1}^{2}=p_{1}\left(1-p_{1}\right)$ and $\sigma_{2}^{2}=p_{2}\left(1-p_{2}\right)$.
Can use $p_{1}=1 / 2$ and $p_{2}=1 / 2$ to err on large side.

