
 

WOLAMONGMANDWAYSTOFINDESTIMATORSTHE
Rao Blackwell theorem gives good reasons to base

estimators on sufficient statistics but it doesn't tell
us what function of a sufficient statistic we should use

In the following we discuss two methods of constructing
estimators The first called themethodotmomentisa bit of a relic does not generally guarantee
good estimators and is seldom used The second called

maxilidestimmation always leads to an estimator
which is a function of a sufficient statistic and is
one of the most widely used estimation methods

EMETHODOFMOMENTSKTX.sc
be independent r.us with the same distribution

as X which depends on the parameters Q ad EOCR
If the first d moments EX FXd are finite then
the methane estimators Ö Öd of 9 Od are

the values of 0 _Od which solve the following system
of equations

mi f IExi EX p Q _Od
Moments of XEin GE

m'd t EXd µ 0

So we get the method of moments estimators of 0 Od by
matching the first d moments of the sample to the
first d moments of the population distribution

EIL ht X X üNormally Find theMoths estimators of µ and r

The equations m µ µ

mi otto Ex Varx E
2

give µ m and Ö mi Cmi
n

b µ In and ö II xi F L 4 II



Examje Let X _X Ü Gamma d ß Find theMoths estimators of Land ß

We have

m µ xp

mi µ xp t aß

2 m
ß

mi m.INT ffsmi B2 miptLmi5

z n n

ß mi t.EE nY tEEEY
mi In2

z
2 F F

mit tixim EEG FIEl

Recall that TLX.si X II Xi EX is a sufficient
statistic for LL ß

The Mohs estimator does not involve the quantity II Xi and
therefore by the Rao Blackwell theorem the Mons estimator
cannot be the MVUE

It can be verified however that Z and I are
consistent estimators of 2 and ß

Example ht X X Ü Uniform 0,0 Find the Motts estimator for 0

We have mi µ so Ö 2mi 25N

We investigated the properties of this estimator before and
found that it is much worse in terms of MSE
than the estimator Xing although it is unbiased

The Rao Blackwell theorem tells us that the best
unbiased estimator the MVUE of O is a function
of Xu so we should not use the Moths estimator
in this situation
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Example het Y po 4 f Is be a single realization of a

iv with the Geometrie t distribution Find the Mods
estimator for f
We have Y m µ

Y beingtheonlyobservation
isalsothe samplemean

giving the Mods estimator ß
Eg it the first success occurs on the fifth trial we
estimate the success probability to be one fifth

MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood estimation is one of the most widely used
methods for finding estimators of unknown parameter values

In essence having observed some data we find the values
of the unknown parameters under which the observed data
were most likely to occur

To define the maximum likelihood estimator we will reter
to the joint pdt pmf as the case may be of
the data as the likelihood function

Defy het X Xu be a random sample from a distribution with
pdf 49 Od or Pfad Od depending on some parameters

Od c Rd We denote by

9 Od X
Nd Xiii 49 ae

II Hi O X X texte O

the joint pdtpmt as the case may be of X Xu
regarded as a function of 0 Od and we call
this function the likelihoodfunctionn of X Xu
Moreover we define the function

da Od X logLC.ch Od X

and we refer to it as the log likelihood function



Rok When X X are not iid we still define LIA X
as the joint pdflpmt of X X then it is no longer
the product of marginal pdf pmts We consider only
the case of iid data

We may now define the maximum likelihood estimator

Def ht X X be r.us with likelihood function LIO _Od X X
for some parameters Od GOCIRD Then the maximum

fikelitmats of O _Od are the values Ö Öd
which maximize the likelihood function over all EG
That is

Ö Öd arymaxLLQ.i0aiX.s.n.XDCQi.y0dJEO

_argmaxlla.i 0dsX.s XD.fmheqiismII.I.IYogY
i.n.n.ODE0

The likelihood function is so named because it is an index of
the probability of observing the data at hand If X Xm
are observed and

ai _ad X Llb ba X

then the observed data were more likely under the parameter
values a ad than under b bd

The likelihood function is also so named because it does not
in general represent a probability if X _X are discrete
Q d X XD is the probability of observing X Xu under

0 _Od but if X X are continuous then LO Od X Xu
is equal to the height of a joint density which is net a

probability Using the word likelihood is a way of tiptoeingaround the fact that LIO _Od X is not in general
a probability

The data X X may also consist of some discrete and
some continuous random variables in which case 0 Od X X
is neither a probability nor the height of a joint density
In this case its interpretation is especially problematic and
the name likelihood for its ambiguity is especially appropriate 4



We very often find the MLE by using the following result
though it does not apply in every setting

Rett If bla _Od X XD is differentiable and has a single
maximum in the interior of 0 then we may find the
MLES Ö _Öd by solving the system of equations

l 9 e Od X X 0

Jalta Od X X 0

This result will apply in most cases we encounter in this
course with a few notable exceptions

We often find the log likelihood easier to differentiate but this result
would still hold with bla Od X XD replaced by 219 Od X X

iid
Fud ht Xn Expl Find the MLE for a

We have

Xi

LG X IIIeIILxi o

x X log e 14 d

flog Ii t log ICK o
Ei 7

n n
n toga t log1L Xi o

E E

Now

d I taxi o
7
ja

n solvefor 7
D t.GLi Xn

ho the MLE of X is Ä In
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Example Let X X Ü Poisson 7 Find the MLE for X

We have for X X E 1,2

4 x xD II EI
Xi

und

LG X XD Efalogle t Xi log logli

na Exil Eloge
Now

Gela X n Ex f o

ve for 7
D t Xi In

ho the MLE of X is I Xn

Example ht _X ü Normal µ 5 Find the MLES of µ and r

We have

Llmrix I expf I.lk
and

n
eher _X flog Igf talk

Lloyd logo ILXi.MY
Now solving

Differentiate Jfk X Xi µ o

Wirt 2

geller _XD If I Xi o
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for µ auch 5 gives the MLES

µ t Xi In

E t.EU II
We omit verification of the conditions ensuring that ö
is the global maximizer of LG X _XD

In the following example we cannot use calculus methods
to find the MLE In this case it is because the
Support of the r.us depends on the parameter
so that the likelihood is not differentiable

iid
Example ht X _X Uniform 0,0 Find the MLE of O

We have

Llo X III Ilo Xiao

differentiable in 0

a II 16 440

2 if X Xp 0

0 otherwise

G ILoaxc.sn a

Decreasing in 0 so take smallest value of 0
admitted by och 0

By studying LLQX.snXD we see that the MLE of O is Ö X

The following is a nice property of MLES

Result The MLE is always a function of a sufficient statistic
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It Suppose This X is a sufficient statistic for an _Od
Then the likelihood function of Xi Kn which is
thejoint pot put of Xe Xu admits a factorization
of the form

a Od X X GGG _X D _Od hl _X
for some functions g and h

Therefore the
majmizer

ir.sOd of O _Od X _Xd is
the same as maximizer of g Thx X an Od in
O Od since hCxis X is constant in O Od The minimizer
of gTEX _X D Od in O Od is a function of Thx _X

Regt Note that Mods estimators do not have this property
In the setting X KnitUniform o o we have

Mods Önon 27m

MLE ÖME Xu
Recall that Xen is a sufficient statistic for O while
In is not

Note that the MLE is biased TÖNE EX E O

However if we modify it we get an unbiased estimator

äunbiased E ÖLE E Xun

Since this estimator is unbiased and is a function of
a sufficient statistic the Rao Blackwell theorem tells
us that it is the MVUE for a

The MLE is generally a good first guess when
trying to find the MVUE

Easy ht _Xu Gamma 2,2 Find the ME of a

The pdf of the Gamma tz distribution is given by

KG 9 for X 0



so the likelihood function is

LG X IT I Xi e x

a E e

EY

and the loglikelihood is

da X n logPlo na los GDE logxi EI
We have

Leela X n Pfg n los E lost Eto

2 the digamma function

So the MLE I for a is the value of a which
satisfies

n t n loyz E logXi 0

Flog Xi 4cal

Note that I is determined by the value of füxiwhich is a sufficient statistic for d

eine E los los E E i t.glEx
The next result tells us how to find the ME for a function
of a parameter The result is often called the invariance property
of MLES

Ref If Ö is the ME for O then for any function T
Ö is the MLE for Elo
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Proof We first prove the result in the Simple case in which
I is a one to one function

het c 0 It be a one to one function with inverse 5
such that

2 16 0 5

and let Ö be the NILE for O

Define the induced likelihood induced by the reparameterization
2 10 as

z X XD L c Cz

Then

hat X X
g

Llüte X xD

sup LIO X X
060

Ö X X

ötv

dä

so that J dä is the maximize of Lf X

If I H is not one to one define E as

c g O ILO 1 Could be manyOrales

and the induced likelihood as
giving the same Ilo value

z x sup klo X X
Oetker

qplfz.sn Xn sy jqzagLl9Xn Xn



sup O X
060

Ö belongs to the set c Gay
KÖ X

and is the maximize of L K
sup 210 X
OEÜGLÖD

ilo X X

so that J ö is the maximize of 2 X

Remart The above result is also true it 0 10 consists of
72 parameters and I is a function of 0 d
Ö Öd are the MLEs of Q Od then KÖ Öd

is the MLE of ILO Od

Exam k ht X X üExpla Find the NILE of 2 42
We previously found that the NILE of 7 is I In
ho the NILE of z is J
Note that EI 7 but EI 2 unbiasedness is not
a guaranteed property of MLES

Exaufple ht X Xu Bernoulli p Find the NILE of Var X

We have VarX fell t Find MLE Ts of Is
ThenTollF is the NILE of pll p
The likelihood function is

LH X a III in
for X Xu C 0,1 giving

elf X logttk XDI.gl t



Next take

gelb
X X Ex C K E E

LEX

IET Ep

Solving for p gives

p LEX In

So the MLE for pll p is phi f I 1 In
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IASYMPTOTICPROPERTIESOFMLE

IIncerta.innice situations MLEs have the enviable property
of being asymptotically Normally distributed

Pff

let 40 for Oe 0 CIR be a family of pdfs
or puts Then suppose

i X Xnüdflx 0 do to being the the value of a

0 0 Sy x O x o for all ER

Ciii Sylt is differentiable with respect to O

Liv Oo is not on the boundary of O

r vi See Casella Berger 2nd Ed pg 516These conditions are a bit ghastly

Theorie Under conditions i Ci the ME Ön satisfies

F Ö 0
D
Normal o 2 Ilo

where

Ilo El folg x o

a

with the expectation based on X 4 o

Definite The quantity ICO is called the Eisherinformation

Evang ht Kid Exponential x The ME of 7 is 7 7

The Fisher information is obtained as follows First we find
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turtle glatte
los E

t t
2

Then if to is the true value of the parameter I

II EI logtylx

E
For X Klan ff 2 En

lx x EY

f 2 II
H

So wo kam by the theorem

Tu In 1 Es Normal o a as n n

Note we knew already by the C LT that

Elin a a NCo as n n
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Eugh ht KidBeta 1,0 s Cx o OG x 2C as

We have

o X E OG xD ÖL.EC x

and

do X X nlogotcoDE.ly 1 X

Then

Geloix X to E.ly 1 x 70

ÖLE EICH

To find the Fisher information we need

folgt o folgfoc 9

logo G Dlg r

t t logli x

Then we must find

Effolg x o
a

tot t.gl

El tat E look Cjd

with X Ayla o
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We find via the transformation method that for Y log 1

Y fly a de I yoo

so tht

EY too and EF top j

The Fisher information ICO is this given by

Elfolgflxo
a tut Ff toi

Finally by the theorem we have

ru ÖLE 0 is Normal o o

as no go
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het Xu tn Beta apIii

anointed aus

mit Ep
mi TEASED
mi ji Git Ep i m

anti müI
xp mäh

IEEE
a mit

nä i mit

c
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So letting E mi mi we have

E Infant
ÄHHH

The following is a case in which the Mods estimators do not
admit a closed form

Monsofweibullparametere ht Kid Weibull ab

The Weibull ab pdf is

Klein 34 expf 5 thx d

To find the Mods of a and b we need
expressions for the first two moments µ and

my of the Weibull ab distribution Let's go aheadand derive an expression for the k moment µ of
the Weibull ab distribution for hat

We have

in Ix L er 5 a

L L 1 a

let n Y x but dx btut_ du oanco

BIE d epf.nl ntndn
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Bfn't tat Edm

p alt rien

J Recall the definition of the gamma function
Split

Now the Mods estimators of a and b are the solutions
to the set of equations

mi bPC t

mi IPC E

The above can be manipulated to give

b mi Mitt

ü Ei
so that the Mods estimator of a is the root of a

complicated function We can find the root ä of the
function

E Hi
using a numerical procedure such as is implemented by the
unirootl function in R Having found ä we have

5 mi Mitt

NEE The MLEs for the Weibull ab parameters must also be
found numerically
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E

nii.EE I

Ep logt

Find Taylor expansion of log x around X L and evaluate at p

loop los ftpgl ftpEE

1 hi t.IE
o Ei Ei Ei Ei
E l pÄ F

20


