STAT 512 su 2021 Lec 11 slides

MoMs and MLEs

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.
They are not intended to explain or expound on any material.
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Let Xi,..., X, be a rs from a dist. with parameters (6,...,04) € © CRY, d > 1.
The method of moments sets population moments equal to sample moments.

Finds 01, ...,0y which make the first d population and sample moments equal.
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Method of moments (MoMs) estimators

The MoMs estimators of 61, ...,0, are the solutions to the system of equations

1 n
my = ;ZX,- =EX =: pj(01,...,04)

i=1

1 n
my == > OXE =EX? = piy(61, ..., 0a),
i=1

provided EX,EX?, ..., EXY are all finite.
The mi,..., m), are the sample moments.
The p, ..., 1l are the population moments, which depend on 61,...,04.

MoMs are param. vals for which 1st d pop. moments equal 1st d sample moments.
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Exercise: Let Xi,..., X, Normal(p, o2).

© Find the MoMs estimators of ;. and o2,
@ Discuss whether better estimators might exist.
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Exercise: Let Xi,..., X, e Gamma(a, /).
@ Find the MoMs estimators of o and (5.
© Discuss whether better estimators might exist.
© Compute MoMs estimators on birth data set from Davison (2003)
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—— Gamma pdf under MoMs parameter estimates
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Exercise: Let Xi,..., X, nd Uniform(0, 9).
@ Find the MoMs estimator of 6.
© Discuss whether better a estimator might exist.
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Exercise: Let Y7,...,Y), g Geometric(p).

© Find the MoMs estimator of p.

@ Compare to estimator p = , forn > 2.

n—1
i Yi—1
@ Run a simulation to compare the MSE of the two estimators at p = 1/2.
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Exercise: Let Xi,..., X, nd Beta(«, 3).

© Find the MoMs estimators of « and 3.
@ Discuss whether better estimators might exist.

© Compute MoMs est'rs on prostate cancer p-values data from Efron (2012).
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—— Beta pdf under MoMs parameter estimates
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Exercise: Let Xi,..., X, Weibull(a, b). The Weibull(a, b) pdf is given by
a x\ a1 X\ @
Kab)=(3)(5) o0l (5)]10>0).

@ Find the MoMs estimators of a and b.
© Discuss whether better estimators might exist.
@ Compute MoMs estimators on trees in Camden data.
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https://data.gov.uk/dataset/7920409f-4a05-40c6-8946-0cbb1b5252bf/trees-in-camden

—— Weibull pdf under MoMs parameter estimates

0.030
|

0.020
|

Density

0.010
|

0.000

Karl B. Gregory (U. of South Carolina) 12 / 38



A

The maximum-likelihood method takes another approach:
Find 61, ..., 604 which maximize joint pdf/pmf when evaluated at observed data.

Asks: Under which parameter values are the observed data the most “likely”?
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Likelihood and log-likelihood functions
Let Xi,...,X, ind fx(x;01,...,04), for some (01,...,04) € © CRY, d > 1.

Then the function
L0y, ..., 00 X1, ..., Xa) = [ fx(Xii 61, .., 0a)
i=1

is called the likelihood function and the function
6(01,...,6‘d;X1,...,X,,) = |0g£(01,...,Hd;Xl,...,X,,)

is called the log-likelihood function.

Same for discrete and continuous: fx(x;601,...,04) represents a pdf or a pmf.

Likelihood is just the joint pdf/pmf of the rvs in the random sample.
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Let Xi,..., X, have likelihood L£(01,...,04; X1,...,Xs), (01,...,04) € © C RY.

Maximum likelihood estimator (MLE)

The maximum likelihood estimators (MLEs) of 01, . ..,04 are the values b,...,0,
given by

~

(01,...,§d): argmax L(61,...,04; X1,...,Xy).
(91,...,9d)ee

The argmax returns the value of (01, ..., 604) which maximizes the function.
(91 ..... 0d)€@

We get the same estimator if we maximize the log-likelihood function:

(91,...,9‘1): argmax 6(91,...,9d;X1,...,X,,).
(01,..,04)€0
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We can often use calculus methods to find the MLEs. ..

Theorem (Finding MLEs with calculus)

1061, ...,04; X1, ... ’X'l) is differentiable and has a single maximum in the
interior of ©, the MLEs 61, ...,0y are the solutions to the system of equations

9
g7+ 00: %, X0) =0

0
—l(O01,...,04; X1,...,X,) =
89d ( 1, s Udy A1, ) ) 0

We often prefer using the log-likelihood, because it is easier to differentiate it.
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Exercise: Let Xy,..., X, nd Exponental(}).
© Find the MLE of \.
@ Plot the log-likelihood function based on a simulated sample under A\ = 5.
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Exercise: Let Xi,..., X, Poisson(\). Find the MLE of \.

o = = E A
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Exercise: Let Xy, ..., X, * Normal(,o2). Find the MLEs of 1 and 2.

o = = E A
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Exercise: Let Xy, ..., X, ~ Uniform(0, ). Find the MLE of 0.

o = = E A
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@j

Theorem (MLEs always functions of sufficient statistics) J

The MLE is always a function of a sufficient statistic.

So MLEs use all the information in the sample about the target parameter.

Instructor: Show proof.
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Exercise: Let Xi,..., X, ind Gamma(a, 2).
@ Find the MLE & of a.
© Plot many values of the pair (&, []"_; X;) for simulated data under a = 3.
© Compare the MSE of & to that of the MoMs estimator &.
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Exercise: Let X,..., X, nd Beta(«, 3).

© Find the MLEs & and 5 of a and 3.
@ Compute MLEs on prostate cancer p-values data from Efron (2012).
© Compare to MoMs estimates.
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Exercise: Let Xi,..., X, g Weibull(a, b).
© Find the MLEs 4 and b of a and b.
© Compute MLEs on trees in Camden data.
© Compare to MoMs estimates.
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https://data.gov.uk/dataset/7920409f-4a05-40c6-8946-0cbb1b5252bf/trees-in-camden
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Now consider estimating a function 7(6) of 6 with ML.

Theorem
If @ is the MLE for 6, then for any function T, 7() is the MLE for (). J

Instructor: Prove the result.
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Exercise: Let 1, ...,e, be ind. Normal rvs with mean 0 and standard dev. o.
@ Find the MLE of o.
@ Find the MLE of 7 = ¢2.
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Exercise: Let X7,..., X, nd Exponential(\).
@ Find the MLE of n = 1/A.
@ Find the MLE of the median of the Exponential(\) distribution.
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Exercise: Let X7,..., X, nd Bernoulli(p).
© Find the MLE of p.

@ Find the MLE of p(1 — p).

o = = E A
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In certain “nice” settings, MLEs are asymptotically Normal. &

Theorem (Asymptotic distribution of MLEs)
Let fx(x; 0) for 8 € © C R be a family of pdfs/pmfs. Suppose

() X1, ..., Xy ind fx(x; 6p), so that 0y denotes the true value of 6.
(i) 0 =0 <= fx(x;0) = fx(x;0) for all x € R.

(iii) fx(x; 0) is differentiable with respect to 6 for all x € R.

(iv) 0o is not on the boundary of ©.

(v),(vi) See Casella and Berger (2021), 2nd Ed, pg. 516.

Then the MLE 0, satisfies
V(B — 0o) 2, Normal(0,1/Z(6p)) as n— oo

where
Z(00) = E[(:Z log fx(X; 0)[9=6,)%],  with X ~ fx(x; 6o).

The quantity Z(6p) is called the Fisher information.
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Exercise: Let X7,..., X, nd Exponential(\g).
@ Get the Fisher information Z(\).
© Make a statement about the asymptotic behavior of /n(}, — o).
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Exercise: Let Xi,..., X, Beta(1, ).

© Find the MLE for 6.

@ Get the Fisher information Z(6p).

© Make a statement about the asymptotic behavior of \/n(d, — 6o).
@ Run a simulation to check the coverage of the confidence intervals

0, + Zo)2 - nY2.77Y2(0) and 0, =+ Zo)2 - nY2.77Y2(4,)
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Coverages under & = 0.10 over 1,000 simulated data sets under § = 10,

n 2 4 8 16 32 64 128 256
Z(6p) 0.76 0.84 0.86 0.88 090 091 0.89 0.89
Z(6,) 0.92 091 090 092 091 091 0.89 0.89
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