STAT 512 sp 2020 hw 1

1. Consider a function $g(x)=\sin (x)$ for $x \in(-\pi, \pi]$.
(a) Give the set $\mathcal{Y}=\{y: g(x)=y$ for some $x \in(-\pi, \pi]\}$.
(b) State whether g is a one-to-one function.
(c) Give $g^{-1}([0,1])$.
(d) Give $g^{-1}(1 / 2)$.
(e) Give $g^{-1}(\{-1,1\})$.
2. Let $g(x)=e^{x} /\left(1+e^{x}\right)$ for $x \in \mathbb{R}$.
(a) Give the set $\mathcal{Y}=\{y: g(x)=y$ for some $x \in \mathbb{R}\}$.
(b) State whether g is a one-to-one function.
(c) Find an expression for $g^{-1}(y)$ for all $y \in \mathcal{Y}$.
3. Let $X \sim f_{X}(x)=(3 / 2) x^{2} \mathbf{1}(-1 \leq x \leq 1)$.
(a) Find the pdf of $Y=2 X$. Be sure to note the support of Y.
(b) Find the pdf of $Y=X+1$. Be sure to note the support of Y.
(c) Find the pdf of $Y=|X|$. Be sure to note the support of Y.
4. Let $X \sim \operatorname{Gamma}(\alpha, \beta)$.
(a) For some constant $c>0$, identify the distribution of $Y=c X$.
(b) The Gamma distribution parameter β is often called the scale parameter. Explain why the parameter has this name.
5. Let Y be a random variable with cdf given by

$$
F_{Y}(y)= \begin{cases}0, & y<0 \\ (y / a)^{b}, & 0 \leq y \leq a \\ 1, & y>a\end{cases}
$$

for some $a, b>0$.
(a) Find the pdf of Y.
(b) We can generate a realization of Y by passing a $\operatorname{Uniform}(0,1)$ random variable through the quantile function of Y. Find the quantile function of Y. Hint: Since the cdf is continuous, the quantile function is just the inverse function of the cdf.
6. Let $X \sim \operatorname{Uniform}(0,1)$. Find the pdf of $Y=-\lambda \log X$, where $\lambda>0$.
7. Let X be a rv with the $\operatorname{Weibull}(k, \lambda)$ distribution, which has pdf

$$
f(x)= \begin{cases}\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x / \lambda)^{k}}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

for $k, \lambda>0$.
(a) Find the pdf of $V=X / \lambda$.
(b) Find the pdf of $Z=X^{k}$.
(c) Find $\mathbb{E} X^{k}$.
(d) Let $Y \sim \operatorname{Exponential(1).~For~any~} k>0$, find the pdf of $W=\lambda Y^{1 / k}$.
(e) Explain how you could transform a $\operatorname{Uniform}(0,1)$ realization into a $\operatorname{Weibull}(k, \lambda)$ realization. Hint: First transform the Uniform $(0,1)$ to an Exponential (1), and then make another transformation to get the Weibull (k, λ).
8. Let $X \sim \operatorname{Uniform}(-\pi / 2, \pi / 2)$.
(a) Find the pdf f_{Y} of $Y=\tan (X)$.
(b) The pdf of the t_{ν} distribution, where $\nu>0$ is the degrees of freedom, is given by

$$
f_{T}(t ; \nu)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\sqrt{\nu \pi}}\left(1+\frac{t^{2}}{\nu}\right)^{-(\nu+1) / 2} \quad \text { for }-\infty<t<\infty
$$

Verify that the pdf of the t_{1} distribution is the same as the answer to part (a).
9. Let T have the t_{ν} distribution, of which the pdf is given in Question 8. The t distributions will be very important later on this semester.
(a) Find the pdf of $R=T^{2}$.
(b) The pdf of the $F_{\nu_{1}, \nu_{2}}$ distribution, where $\nu_{1}>0$ and $\nu_{2}>0$ are called, respectively, the numerator and the denominator degrees of freedom, is given by

$$
f_{R}\left(r ; \nu_{1}, \nu_{2}\right)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\nu_{1} / 2} r^{\left(\nu_{1}-2\right) / 2}\left(1+\frac{\nu_{1}}{\nu_{2}} r\right)^{-\left(\nu_{1}+\nu_{2}\right) / 2} \mathbf{1}(r>0) .
$$

The F distributions will be very important later on this semester. Argue that squaring a t_{ν} random variable results in a $F_{1, \nu}$ random variable.
10. Use R to generate 100 realizations of the random variable

$$
X \sim f_{X}(x)=0.2 e^{-0.2 x} \mathbf{1}(x>0)
$$

by generating Uniform $(0,1)$ realizations and transforming them. Turn in the following:
(a) R code.
(b) A histogram of the 100 realizations of X.

