## STAT 512 su 2021 hw 1

1. Consider a function $g(x)=\sin (x)$ for $x \in(-\pi, \pi]$.
(a) Give the set $\mathcal{Y}=\{y: g(x)=y$ for some $x \in(-\pi, \pi]\}$.

$$
\mathcal{Y}=[-1,1] .
$$

(b) State whether $g$ is a one-to-one function.

It is not a one-to-one function, because, $\sin (\pi / 6)=\sin (5 \pi / 6)=1 / 2$, for example.
(c) Give $g^{-1}([0,1])$.

$$
g^{-1}([0,1])=[0, \pi] .
$$

(d) Give $g^{-1}(1 / 2)$.

$$
g^{-1}(1 / 2)=\{\pi / 6,5 \pi / 6\} .
$$

(e) Give $g^{-1}(\{-1,1\})$.

$$
g^{-1}(\{-1,1\})=\{-\pi / 2, \pi / 2\} .
$$

2. Let $g(x)=e^{x} /\left(1+e^{x}\right)$ for $x \in \mathbb{R}$.
(a) Give the set $\mathcal{Y}=\{y: g(x)=y$ for some $x \in \mathbb{R}\}$.

$$
\mathcal{Y}=(0,1)
$$

(b) State whether $g$ is a one-to-one function.

Yes, it is one-to-one.
(c) Find an expression for $g^{-1}(y)$ for all $y \in \mathcal{Y}$.

$$
g^{-1}(y)=\log (y /(1-y))
$$

3. Let $X \sim f_{X}(x)=(3 / 2) x^{2} \mathbf{1}(-1 \leq x \leq 1)$.
(a) Find the pdf of $Y=2 X$. Be sure to note the support of $Y$.

We have

$$
y=2 x=: g(x) \Longleftrightarrow x=y / 2=: g^{-1}(y), \quad \text { and } \quad \frac{d}{d y} g^{-1}(y)=1 / 2
$$

By the transformation method we have

$$
f_{Y}(y)=(3 / 2)(y / 2)^{2} \mathbf{1}(-1 \leq y / 2 \leq 1)|1 / 2|=(3 / 16) y^{2} \mathbf{1}(-2 \leq y \leq 2)
$$

(b) Find the pdf of $Y=X+1$. Be sure to note the support of $Y$.

We have

$$
y=x+1=: g(x) \Longleftrightarrow x=y-1=: g^{-1}(y), \quad \text { and } \quad \frac{d}{d y} g^{-1}(y)=1
$$

By the transformation method we have

$$
f_{Y}(y)=(3 / 2)(y-1)^{2} \mathbf{1}(-1 \leq y-1 \leq 1)|1|=(3 / 2)(y-1)^{2} \mathbf{1}(0 \leq y \leq 2)
$$

(c) Find the pdf of $Y=|X|$. Be sure to note the support of $Y$.

Since the transformation is not monotone, we cannot use the transformation method. Let's use the cdf method. We have

$$
F_{Y}(y)=P(Y \leq y)=P(|X| \leq y)=P(-y \leq X \leq y)=\int_{-y}^{y}(3 / 2) x^{2} \mathbf{1}(-1 \leq x \leq 1) d x
$$

For $y \in[0,1]$, we have

$$
\int_{-y}^{y}(3 / 2) x^{2} \underbrace{1(-1 \leq x \leq 1)}_{=1 \text { when } y \in[0,1]} d x=\int_{-y}^{y}(3 / 2) x^{2} d x=x^{3} /\left.2\right|_{-y} ^{y}=y^{3} \text {. }
$$

So the cdf is given by

$$
F_{Y}(y)= \begin{cases}0, & y<0 \\ y^{3}, & 0 \leq y \leq 1 \\ 1, & y>1\end{cases}
$$

Taking the derivative of each piece separately, we obtain

$$
\begin{aligned}
f_{Y}(y) & = \begin{cases}0, & y<0 \\
3 y^{2}, & 0 \leq y \leq 1 \\
0, & y>1\end{cases} \\
& =3 y^{2} \mathbf{1}(0 \leq y \leq 1) .
\end{aligned}
$$

4. Let $X \sim \operatorname{Gamma}(\alpha, \beta)$.
(a) For some constant $c>0$, identify the distribution of $Y=c X$.

We have

$$
y=c x=: g(x) \Longleftrightarrow x=y / c=: g^{-1}(y), \quad \text { and } \quad \frac{d}{d y} g^{-1}(y)=1 / c
$$

The support of $Y$ is $(0, \infty)$. By the transformation method we have

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{\Gamma(\alpha) \beta^{\alpha}}(y / c)^{\alpha-1} \exp (-(y / c) / \beta)|1 / c| \\
& =\frac{1}{\Gamma(\alpha)(c \beta)^{\alpha}} y^{\alpha-1} \exp (-y /(c \beta))
\end{aligned}
$$

for $y>0$, so $Y \sim \operatorname{Gamma}(\alpha, c \beta)$.
(b) The Gamma distribution parameter $\beta$ is often called the scale parameter. Explain why the parameter has this name.

If you scale a $\operatorname{Gamma}(\alpha, \beta)$ rv by a constant $c$, the result is a $\operatorname{Gamma}(\alpha, c \beta) \mathrm{rv}$, so that the parameter $\beta$ is scaled by $c$.
5. Let $Y$ be a random variable with cdf given by

$$
F_{Y}(y)= \begin{cases}0, & y<0 \\ (y / a)^{b}, & 0 \leq y \leq a \\ 1, & y>a\end{cases}
$$

for some $a, b>0$.
(a) Find the pdf of $Y$.

Taking the derivative of each piece separately, we obtain

$$
\begin{aligned}
f_{Y}(y) & = \begin{cases}0, & y<0 \\
(b / a)(y / a)^{b-1}, & 0 \leq y \leq a \\
0, & y>a\end{cases} \\
& =(b / a)(y / a)^{b-1} \mathbf{1}(0 \leq y \leq a) .
\end{aligned}
$$

(b) We can generate a realization of $Y$ by passing a $\operatorname{Uniform}(0,1)$ random variable through the quantile function of $Y$. Find the quantile function of $Y$. Hint: Since the cdf is continuous, the quantile function is just the inverse function of the cdf.

We write

$$
u=(y / a)^{b} \Longleftrightarrow a u^{1 / b}=y
$$

so the function $F_{Y}^{-1}(u)=a u^{1 / b}$ returns the $u$ th quantile of $Y$ for $u \in[0,1]$. Therefore, if we generate a Uniform $(0,1)$ realization $U$, then $Y=a U^{1 / b}$ will be a realization from the distribution with cdf $F_{Y}$.
6. Let $X \sim \operatorname{Uniform}(0,1)$. Find the pdf of $Y=-\lambda \log X$, where $\lambda>0$.

We have $f_{X}(x)=\mathbf{1}(0<x<1)$ and

$$
y=-\lambda \log x \Longleftrightarrow x=e^{-y / \lambda}, \quad \text { and } \quad \frac{d}{d y} e^{-y / \lambda}=(1 / \lambda) e^{-y / \lambda}
$$

The support of $Y$ is $(0, \infty)$. By the transformation method we have

$$
f_{Y}(y)=\frac{1}{\lambda} e^{-y / \lambda}
$$

for $y>0$.
7. Let $X$ be a rv with the $\operatorname{Weibull}(k, \lambda)$ distribution, which has pdf

$$
f(x)= \begin{cases}\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x / \lambda)^{k}}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

for $k, \lambda>0$.
(a) Find the pdf of $V=X / \lambda$.

We have

$$
v=x / \lambda=: g(x) \Longleftrightarrow x=\lambda v=: g^{-1}(v), \quad \text { and } \quad \frac{d}{d v} g^{-1}(v)=\lambda
$$

The support of $V$ is $(0, \infty)$. By the transformation method we have

$$
f_{V}(v)=\frac{k}{\lambda}\left(\frac{\lambda v}{\lambda}\right)^{k-1} e^{-(\lambda v / \lambda)^{k}}|\lambda|=k v^{k-1} e^{-v^{k}}
$$

for $v>0$.
(b) Find the pdf of $Z=X^{k}$.

We have

$$
z=x^{k}=: g(x) \Longleftrightarrow x=z^{1 / k}=: g^{-1}(z) \quad \text { and } \quad \frac{d}{d z} g^{-1}(z)=(1 / k) z^{1 / k-1}
$$

The support of $Z$ is $(0, \infty)$. By the transformation method we have

$$
f_{Z}(z)=\frac{k}{\lambda}\left(\frac{z^{1 / k}}{\lambda}\right)^{k-1} e^{-\left(z^{1 / k} / \lambda\right)^{k}}\left|(1 / k) z^{1 / k-1}\right|=\left(1 / \lambda^{k}\right) e^{-z / \lambda^{k}}
$$

for $z>0$.
(c) Find $\mathbb{E} X^{k}$.

By the previous result, we see that $\mathbb{E} X^{k}=\lambda^{k}$, since $X^{k}$ has the Exponential $\left(\lambda^{k}\right)$ distribution, which has mean $\lambda^{k}$.
(d) Let $Y \sim \operatorname{Exponential(1).~For~any~} k>0$, find the pdf of $W=\lambda Y^{1 / k}$.

We have $f_{Y}(y)=e^{-y}$ for $y>0$ and

$$
w=\lambda y^{1 / k}=: g(y) \Longleftrightarrow y=(w / \lambda)^{k}=: g^{-1}(w), \quad \text { and } \quad \frac{d}{d w} g^{-1}(w)=\left(k / \lambda^{k}\right) w^{k-1}
$$

The support of $W$ is $(0, \infty)$. By the transformation method we have

$$
f_{V}(v)=\exp \left(-(w / \lambda)^{k}\right)\left|\left(k / \lambda^{k}\right) w^{k-1}\right|=\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x / \lambda)^{k}}
$$

for $w>0$, which is the pdf of the $\operatorname{Weibull}(k, \lambda)$ distribution.
(e) Explain how you could transform a Uniform $(0,1)$ realization into a $\operatorname{Weibull}(k, \lambda)$ realization. Hint: First transform the Uniform $(0,1)$ to an Exponential $(1)$, and then make another transformation to get the $\operatorname{Weibull}(k, \lambda)$.

The transformation is $\lambda(-\log U)^{1 / k}$, since $-\log U \sim \operatorname{Exponential}(1)$, by the answer to Question 6. We can also use $-\log (1-U) \sim \operatorname{Exponential}(1)$.
8. Let $X \sim \operatorname{Uniform}(-\pi / 2, \pi / 2)$.
(a) Find the pdf $f_{Y}$ of $Y=\tan (X)$.

We have $f_{X}(x)=(1 / \pi) \mathbf{1}(-\pi / 2<x<\pi / 2)$ and

$$
y=\tan (x)=: g(x) \Longleftrightarrow x=\tan ^{-1}(y) \quad \text { and } \quad \frac{d}{d y} \tan ^{-1}(y)=1 /\left(1+y^{2}\right)
$$

The support of $Y$ is $(-\infty, \infty)$. By the transformation method we have

$$
f_{Y}(y)=\frac{1}{\pi} \frac{1}{1+y^{2}}
$$

for all $y \in \mathbb{R}$. This is the pdf of the Cauchy distribution!
(b) The pdf of the $t_{\nu}$ distribution, where $\nu>0$ is the degrees of freedom, is given by

$$
f_{T}(t ; \nu)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\sqrt{\nu \pi}}\left(1+\frac{t^{2}}{\nu}\right)^{-(\nu+1) / 2} \quad \text { for }-\infty<t<\infty
$$

Verify that the pdf of the $t_{1}$ distribution is the same as the answer to part (a).
Use $\Gamma(1 / 2)=\sqrt{\pi}$ to show that

$$
f_{T}(t ; 1)=\frac{1}{\pi} \frac{1}{1+t^{2}} \quad \text { for }-\infty<t<\infty
$$

9. Let $T$ have the $t_{\nu}$ distribution, of which the pdf is given in Question 8. The $t$ distributions will be very important later on this semester.
(a) Find the pdf of $R=T^{2}$.

The transformation is not monotone over the support of $T$, so we cannot use the transformation method; it is not a shift-and-scale transformtion, we cannot use the mgf method; let's use the cdf method. We write

$$
F_{R}(r)=P(R \leq r)=P\left(T^{2}<r\right)=P(-\sqrt{r}<T<\sqrt{r})=F_{T}(\sqrt{r} ; \nu)-F_{T}(-\sqrt{r} ; \nu)
$$

for $r>0$, where $F_{T}(\cdot ; \nu)$ is the cdf of the $t_{\nu}$ distribution. Taking the derivative of the above with respect to $r$ gives

$$
f_{R}(r)=f_{T}(\sqrt{r} ; \nu)\left(\frac{1}{2 \sqrt{r}}\right)-f_{T}(-\sqrt{r} ; \nu)\left(-\frac{1}{2 \sqrt{r}}\right)=f_{T}(\sqrt{r} ; \nu) / \sqrt{r}
$$

since $f_{T}(a ; \nu)=f_{T}(-a ; \nu)$ for all $a \in \mathbb{R}$. So we have

$$
f_{R}(r)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\sqrt{\nu \pi}} \frac{1}{\sqrt{r}}\left(1+\frac{r}{\nu}\right)^{-(\nu+1) / 2} \quad \text { for }-\infty<r<\infty .
$$

(b) The pdf of the $F_{\nu_{1}, \nu_{2}}$ distribution, where $\nu_{1}>0$ and $\nu_{2}>0$ are called, respectively, the
numerator and the denominator degrees of freedom, is given by

$$
f_{R}\left(r ; \nu_{1}, \nu_{2}\right)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\nu_{1} / 2} r^{\left(\nu_{1}-2\right) / 2}\left(1+\frac{\nu_{1}}{\nu_{2}} r\right)^{-\left(\nu_{1}+\nu_{2}\right) / 2} \mathbf{1}(r>0) .
$$

The $F$ distributions will be very important later on this semester. Argue that squaring a $t_{\nu}$ random variable results in a $F_{1, \nu}$ random variable.

We see that the pdf of the $F_{1, \nu}$ distribution can be simplified to the answer from part (a).
10. Use $R$ to generate 100 realizations of the random variable

$$
X \sim f_{X}(x)=0.2 e^{-0.2 x} \mathbf{1}(x>0)
$$

by generating Uniform $(0,1)$ realizations and transforming them. Turn in the following:
(a) $R$ code.

The rv $X$ has the Exponential(5) distribution, which we can see by writing its pdf as

$$
f_{X}(x)=\frac{1}{1 / 0.2} e^{-x /(1 / 0.2)} \mathbf{1}(x>0)=\frac{1}{5} e^{-x / 5} \mathbf{1}(x>0)
$$

According to the answer to Question 6, we need to generate 100 realizations from the $\operatorname{Uniform}(0,1)$ distribution and transform them according to $X=-5 \log U$. The following code does this:

U <- runif(100)
X <- $-5 * \log (U)$
(b) A histogram of the 100 realizations of $X$.

The histogram should like something like this:

Histogram of $X$


