STAT 512 su 2021 hw 2

1. Let U_{1} and U_{2} be independent $\operatorname{Uniform}(0,1)$ random variables and let $Y=U_{1} U_{2}$.
(a) Write down the joint pdf of U_{1} and U_{2}.
(b) Find the cdf of Y by obtaining an expression for $F_{Y}(y)=P(Y \leq y)=P\left(U_{1} U_{2} \leq y\right)$ for all y.
(c) Find the pdf of Y by taking the derivative of $F_{Y}(y)$ with respect to y.
(d) Let $X=U_{2}$ and find the joint pdf of the rv pair (X, Y) using the bivariate transformation method. Be careful when defining the joint support of (X, Y).
(e) Integrate the joint pdf of (X, Y) over X in order to get the pdf of Y.
2. Let X_{1} and X_{2} be independent Exponential(1) rvs.
(a) Find the joint density of $U_{1}=X_{1}$ and $U_{2}=\log \left(X_{1}+X_{2}\right)-\log \left(X_{1}\right)$.
(b) Show that $U_{2} \sim \operatorname{Exponential}(1)$.
(c) Tell whether U_{1} and U_{2} are independent.
3. Let $G_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \beta\right)$ and $G_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \beta\right)$ and let G_{1} and G_{2} be independent. Define $B_{1}=G_{1} /\left(G_{1}+G_{2}\right)$ and $B_{2}=G_{1}+G_{2}$.
(a) Find the joint pdf of $\left(B_{1}, B_{2}\right)$.
(b) Check whether B_{1} and B_{2} are independent.
(c) Give the marginal pdf of B_{1} and identify its distribution.
(d) Give the marginal pdf of B_{2} and identify its distribution.
4. Let X_{1}, \ldots, X_{N} be independent rvs and n_{1}, \ldots, n_{N} be positive integers such that $X_{i} \sim \operatorname{Binomial}\left(n_{i}, p\right)$ for $i=1, \ldots, N$. Give the pmf of $Y=X_{1}+\cdots+X_{N}$.
5. Let X_{1}, \ldots, X_{N} be independent rvs and $\lambda_{1}, \ldots, \lambda_{n}$ be positive real numbers such that $X_{i} \sim \operatorname{Poisson}\left(\lambda_{i}\right)$ for $i=1, \ldots, n$. Give the pmf of $Y=X_{1}+\cdots+X_{n}$.
6. Let X_{1}, \ldots, X_{25} be independent $\operatorname{Normal}\left(\mu=1, \sigma^{2}=5\right)$ rvs. Find the distributions of the following:
(a) $Y_{25}=X_{1}+\cdots+X_{25}$
(b) $\bar{X}_{25}=\frac{1}{25}\left(X_{1}+\cdots+X_{25}\right)$
7. Let Y_{1} and Y_{2} be independent rvs such that $Y_{1} \sim \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y_{2} \sim \operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ and let $a_{1}, a_{2} \in \mathbb{R}$. Find the distribution of the random variable $a_{1} Y_{1}+a_{2} Y_{2}$ using mgfs.
8. Suppose $\left(Z_{1}, Z_{2}\right)$ are standard bivariate Normal rvs with correlation ρ, with joint pdf

$$
f_{\left(Z_{1}, Z_{2}\right)}\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}}{1-\rho^{2}}\right] .
$$

Choose a value of ρ between 0.5 and 0.9 and use R to generate 1,000 realizations of $\left(Z_{1}, Z_{2}\right)$. Then transform these into realizations of $U_{1}=Z_{1}+Z_{2}$ and $U_{2}=Z_{1}-Z_{2}$. Then make two scatter plots: one of the Z_{2} values against the Z_{1} values and one of the U_{2} values against the U_{1} values. Turn in your code and these two plots, and say whether you think U_{1} and U_{2} are independent.
The following code will generate the $\left(Z_{1}, Z_{2}\right)$ realizations (you must define rho).

```
z1 <- rnorm(1000)
z2 <- rnorm(1000,rho*z1,1-rho^2)
```

Optional (do not turn in) problems for additional study from Wackerly, Mendenhall, Scheaffer, 7th Ed.:

- 6.37, 6.42, 6.46, 6.57
- 6.68

