STAT 512 su 2021 hw 2

- 1. Let U_1 and U_2 be independent Uniform(0,1) random variables and let $Y = U_1 U_2$.
 - (a) Write down the joint pdf of U_1 and U_2 .
 - (b) Find the cdf of Y by obtaining an expression for $F_Y(y) = P(Y \le y) = P(U_1 U_2 \le y)$ for all y.
 - (c) Find the pdf of Y by taking the derivative of $F_Y(y)$ with respect to y.
 - (d) Let $X = U_2$ and find the joint pdf of the rv pair (X, Y) using the bivariate transformation method. Be careful when defining the joint support of (X, Y).
 - (e) Integrate the joint pdf of (X, Y) over X in order to get the pdf of Y.
- 2. Let X_1 and X_2 be independent Exponential(1) rvs.
 - (a) Find the joint density of $U_1 = X_1$ and $U_2 = \log(X_1 + X_2) \log(X_1)$.
 - (b) Show that $U_2 \sim \text{Exponential}(1)$.
 - (c) Tell whether U_1 and U_2 are independent.
- 3. Let $G_1 \sim \text{Gamma}(\alpha_1, \beta)$ and $G_2 \sim \text{Gamma}(\alpha_2, \beta)$ and let G_1 and G_2 be independent. Define $B_1 = G_1/(G_1 + G_2)$ and $B_2 = G_1 + G_2$.
 - (a) Find the joint pdf of (B_1, B_2) .
 - (b) Check whether B_1 and B_2 are independent.
 - (c) Give the marginal pdf of B_1 and identify its distribution.
 - (d) Give the marginal pdf of B_2 and identify its distribution.
- 4. Let X_1, \ldots, X_N be independent rvs and n_1, \ldots, n_N be positive integers such that $X_i \sim \text{Binomial}(n_i, p)$ for $i = 1, \ldots, N$. Give the pmf of $Y = X_1 + \cdots + X_N$.
- 5. Let X_1, \ldots, X_N be independent rvs and $\lambda_1, \ldots, \lambda_n$ be positive real numbers such that $X_i \sim \text{Poisson}(\lambda_i)$ for $i = 1, \ldots, n$. Give the pmf of $Y = X_1 + \cdots + X_n$.
- 6. Let X_1, \ldots, X_{25} be independent Normal $(\mu = 1, \sigma^2 = 5)$ rvs. Find the distributions of the following:
 - (a) $Y_{25} = X_1 + \dots + X_{25}$
 - (b) $\bar{X}_{25} = \frac{1}{25}(X_1 + \dots + X_{25})$
- 7. Let Y_1 and Y_2 be independent rvs such that $Y_1 \sim \text{Normal}(\mu_1, \sigma_1^2)$ and $Y_2 \sim \text{Normal}(\mu_2, \sigma_2^2)$ and let $a_1, a_2 \in \mathbb{R}$. Find the distribution of the random variable $a_1Y_1 + a_2Y_2$ using mgfs.
- 8. Suppose (Z_1, Z_2) are standard bivariate Normal rvs with correlation ρ , with joint pdf

$$f_{(Z_1,Z_2)}(z_1,z_2) = \frac{1}{2\pi} \frac{1}{\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2} \frac{z_1^2 - 2\rho z_1 z_2 + z_2^2}{1-\rho^2}\right]$$

Choose a value of ρ between 0.5 and 0.9 and use R to generate 1,000 realizations of (Z_1, Z_2) . Then transform these into realizations of $U_1 = Z_1 + Z_2$ and $U_2 = Z_1 - Z_2$. Then make two scatter plots: one of the Z_2 values against the Z_1 values and one of the U_2 values against the U_1 values. Turn in your code and these two plots, and say whether you think U_1 and U_2 are independent.

The following code will generate the (Z_1, Z_2) realizations (you must define **rho**).

```
z1 <- rnorm(1000)
z2 <- rnorm(1000,rho*z1,1-rho^2)</pre>
```

Optional (do not turn in) problems for additional study from Wackerly, Mendenhall, Scheaffer, 7th Ed.:

- 6.37, 6.42, 6.46, 6.57
- 6.68