STAT 512 hw 2

1. Let U_{1} and U_{2} be independent $\operatorname{Uniform}(0,1)$ random variables and let $Y=U_{1} U_{2}$.
(a) Write down the joint pdf of U_{1} and U_{2}.

$$
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right)=1 \cdot \mathbf{1}\left(0<u_{1}<1,0<u_{2}<1\right) .
$$

(b) Find the cdf of Y by obtaining an expression for $F_{Y}(y)=P(Y \leq y)=P\left(U_{1} U_{2} \leq y\right)$ for all y.

We have

$$
F_{Y}(y)=F_{Y}(y)=P(Y \leq y)=P\left(U_{1} U_{2} \leq y\right)=P\left(U_{2} \leq y / U_{1}\right)
$$

For $y \in(0,1)$, this probability is given by

$$
\begin{aligned}
\int_{0}^{y} \int_{0}^{1} 1 \cdot d u_{2} d u_{1}+\int_{y}^{1} \int_{0}^{y / u_{1}} 1 \cdot d u_{2} d u_{1} & =y+\int_{y}^{1} y / u_{1} d u_{1} \\
& =y+\left.\left[y \log u_{1}\right]\right|_{y} ^{1} \\
& =y+[y \log 1-y \log y] \\
& =y-y \log y
\end{aligned}
$$

Draw a picture to understand where these integrals come from! So we have

$$
F_{Y}(y)= \begin{cases}0, & y \leq 0 \\ y-y \log y, & 0<y<1 \\ 1, & y \geq 1\end{cases}
$$

(c) Find the pdf of Y by taking the derivative of $F_{Y}(y)$ with respect to y.

For $y \in(0,1)$ we have

$$
\frac{d}{d y} F_{Y}(y)=1-(y / y+1 \cdot \log y)=-\log y
$$

so the pdf of Y is given by

$$
f_{Y}(y)=(-\log y) \mathbf{1}(0<y<1) .
$$

(d) Let $X=U_{2}$ and find the joint pdf of the rv pair (X, Y) using the bivariate transformation method. Be careful when defining the joint support of (X, Y).

We have

$$
\begin{aligned}
& y=u_{1} u_{2}=: g_{1}\left(u_{1}, u_{2}\right) \\
& x=u_{2}=: g_{2}\left(u_{1}, u_{2}\right)
\end{aligned} \Longleftrightarrow \begin{aligned}
& u_{1}=y / x=: g_{1}^{-1}(x, y) \\
& u_{2}=x=: g_{2}^{-1}(x, y)
\end{aligned}
$$

with Jacobian

$$
J(x, y)=\left|\begin{array}{cc}
\frac{d}{d x} y / x & \frac{d}{d y} y / x \\
\frac{d}{d x} x & \frac{d}{d y} x
\end{array}\right|=\left|\begin{array}{cc}
-\left(y / x^{2}\right) & 1 / x \\
1 & 0
\end{array}\right|=-1 / x .
$$

Note that the support of (X, Y) is the set of values $\{x, y: 0<y<x<1\}$. So the joint pdf of X and Y is given by

$$
f_{X, Y}(x, y)=1 \cdot|-1 / x| \mathbf{1}(0<y<x<1)=\frac{1}{x} \mathbf{1}(0<y<x<1) .
$$

(e) Integrate the joint pdf of (X, Y) over X in order to get the pdf of Y.

For $y \in(0,1)$ we have

$$
f_{Y}(y)=\int_{y}^{1} \frac{1}{x} d x=\left.\log x\right|_{y} ^{1}=\log 1-\log y=-\log y
$$

so

$$
f_{Y}(y)=(-\log y) \mathbf{1}(0<y<1) .
$$

2. Let X_{1} and X_{2} be independent Exponential(1) rvs.
(a) Find the joint density of $U_{1}=X_{1}$ and $U_{2}=\log \left(X_{1}+X_{2}\right)-\log \left(X_{1}\right)$.

The joint density of X_{1} and X_{2} is given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=e^{-\left(x_{1}+x_{2}\right)} \mathbf{1}\left(x_{1}>0, x_{2}>0\right),
$$

and we have

$$
\begin{aligned}
& u_{1}=x_{1}=: g_{1}\left(x_{1}, x_{2}\right) \\
& u_{2}=\log \left(x_{1}+x_{2}\right)-\log \left(x_{1}\right)=: g_{2}\left(x_{1}, x_{2}\right)
\end{aligned} \Longleftrightarrow \begin{aligned}
& x_{1}=u_{1}=: g_{1}^{-1}\left(u_{1}, u_{2}\right) \\
& x_{2}=u_{1} e^{u_{2}}-u_{1}=: g_{2}^{-1}\left(u_{1}, u_{2}\right)
\end{aligned}
$$

with Jacobian

$$
J\left(u_{1}, u_{2}\right)=\left|\begin{array}{cc}
\frac{d}{d u_{1}} u_{1} & \frac{d}{d u_{2}} u_{1} \\
\frac{d}{d u_{1}} u_{1} e^{u_{2}}-u_{1} & \frac{d}{d u_{2}} u_{1} e^{u_{2}}-u_{1}
\end{array}\right|=\left|\begin{array}{cc}
1 & 0 \\
e^{u_{2}}-1 & u_{1} e^{u_{2}}
\end{array}\right|=u_{1} e^{u_{2}} .
$$

Note that the support of $\left(U_{1}, U_{2}\right)$ is $(0, \infty) \times(0, \infty)$. The joint pdf of U_{1} and U_{2} is given by

$$
\begin{aligned}
f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right) & =e^{-\left(u_{1}+u_{1} e^{u_{2}}-u_{1}\right)} \cdot\left|u_{1} e^{u_{2}}\right| \cdot \mathbf{1}\left(u_{1}>0, u_{2}>0\right) \\
& =u_{1} e^{u_{2}} e^{-u_{1} e^{u_{2}}} \mathbf{1}\left(u_{1}>0, u_{2}>0\right)
\end{aligned}
$$

(b) Show that $U_{2} \sim \operatorname{Exponential(1).~}$

For $u_{2} \in(0, \infty)$, the marginal pdf of U_{2} is given by

$$
f_{U_{2}}\left(u_{2}\right)=\int_{0}^{\infty} u_{1} e^{u_{2}} e^{-u_{1} e^{u_{2}}} d u_{1}=e^{-u_{2}}
$$

since the integral is equivalent to the expected value of an Exponential $\left(e^{-u_{2}}\right)$ random variable. So we have

$$
f_{U_{2}}\left(u_{2}\right)=e^{-u_{2}} \mathbf{1}\left(u_{2}>0\right),
$$

which is the pdf of the Exponential(1) distribution.
(c) Tell whether U_{1} and U_{2} are independent.

They are not independent because the joint density cannot be factored into the product of a function of u_{1} and a function of u_{2}.
3. Let $G_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \beta\right)$ and $G_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \beta\right)$ and let G_{1} and G_{2} be independent. Define $B_{1}=G_{1} /\left(G_{1}+G_{2}\right)$ and $B_{2}=G_{1}+G_{2}$.
(a) Find the joint pdf of $\left(B_{1}, B_{2}\right)$.

The joint pdf of $\left(G_{1}, G_{2}\right)$ is given by

$$
f_{G_{1}, G_{2}}\left(g_{1}, g_{2}\right)=\frac{1}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \beta^{\alpha_{1}} \beta^{\alpha_{2}}} g_{1}^{\alpha_{1}-1} g_{2}^{\alpha_{2}-1} e^{-g_{1} / \beta} e^{-g_{2} / \beta} \mathbf{1}\left(g_{1}>0, g_{2}>0\right)
$$

and we have

$$
\begin{aligned}
& b_{1}=g_{1} /\left(g_{1}+g_{2}\right) \\
& b_{2}=g_{1}+g_{2}
\end{aligned} \Longleftrightarrow \begin{aligned}
& g_{1}=b_{1} b_{2} \\
& g_{2}=b_{2}\left(1-b_{1}\right)
\end{aligned}
$$

with Jacobian

$$
J\left(b_{1}, b_{2}\right)=\left|\begin{array}{cc}
\frac{d}{d b_{1}} b_{1} b_{2} & \frac{d}{d b_{2}} b_{1} b_{2} \\
\frac{d}{d b_{1}} b_{2}\left(1-b_{1}\right) & \frac{d}{d b_{2}} b_{2}\left(1-b_{1}\right)
\end{array}\right|=\left|\begin{array}{cc}
b_{2} & b_{1} \\
-b_{2} & 1-b_{1}
\end{array}\right|=b_{2}\left(1-b_{1}\right)-b_{1} b_{2}=b_{2} .
$$

Note that the support of $\left(B_{1}, B_{2}\right)$ is $(0,1),(0, \infty)$, over which the joint pdf of B_{1} and B_{2} is given by

$$
\begin{aligned}
f_{B_{1}, B_{2}}\left(b_{1}, b_{2}\right) & =\frac{1}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \beta^{\alpha_{1}} \beta^{\alpha_{2}}}\left(b_{1} b_{2}^{\alpha_{1}-1}\right)\left[b_{2}\left(1-b_{2}\right)\right]^{\alpha_{2}-1} \exp \left[-\frac{b_{1} b_{2}+b_{2}\left(1-b_{1}\right)}{\beta}\right] \cdot\left|b_{2}\right| \\
& =\frac{1}{\beta^{\alpha_{1}+\alpha_{2}}} b_{2}^{\alpha_{1}+\alpha_{2}-1} e^{-b_{2} / \beta} \frac{1}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} b_{1}^{\alpha_{1}-1}\left(1-b_{1}\right)^{\alpha_{2}-1}
\end{aligned}
$$

(b) Check whether B_{1} and B_{2} are independent.

The rvs B_{1} and B_{2} are independent since their joint pdf can be factored into the product of a function of b_{2} and a function of b_{1}, as seen above.
(c) Give the marginal pdf of B_{1} and identify its distribution.

Multiplying and dividing the expression for the joint pdf of B_{1} and B_{2} by $\Gamma\left(\alpha_{1}+\alpha_{2}\right)$, we see that it becomes the product of two pdfs:

$$
f_{B_{1}, B_{2}}\left(b_{1}, b_{2}\right)=\underbrace{\frac{1}{\Gamma\left(\alpha_{1}+\alpha_{2}\right) \beta^{\alpha_{1}+\alpha_{2}}} b_{2}^{\alpha_{1}+\alpha_{2}-1} e^{-b_{2} / \beta}}_{\text {pdf of } \operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, \beta\right)} \underbrace{\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} b_{1}^{\alpha_{1}-1}\left(1-b_{1}\right)^{\alpha_{2}-1}}_{\text {pdf of } \operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right)} .
$$

Were we to integrate with respect to b_{1} from 0 to 1 , we would obtain the $\operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right)$ pdf; that is

$$
f_{B_{1}}\left(b_{1}\right)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} b_{1}^{\alpha_{1}-1}\left(1-b_{1}\right)^{\alpha_{2}-1} \mathbf{1}\left(0<b_{1}<1\right) .
$$

(d) Give the marginal pdf of B_{2} and identify its distribution.

Were we to integrate the joint pdf with respect to b_{2} from 0 to ∞, we would obtain the $\operatorname{Gamma}\left(\alpha_{1}+\alpha_{2}, \beta\right) \mathrm{pdf}$; that is

$$
f_{B_{2}}\left(b_{2}\right)=\frac{1}{\Gamma\left(\alpha_{1}+\alpha_{2}\right) \beta^{\alpha_{1}+\alpha_{2}}} b_{2}^{\alpha_{1}+\alpha_{2}-1} e^{-b_{2} / \beta} \mathbf{1}\left(b_{2}>0\right) .
$$

4. Let X_{1}, \ldots, X_{N} be independent rvs and n_{1}, \ldots, n_{N} be positive integers such that $X_{i} \sim \operatorname{Binomial}\left(n_{i}, p\right)$ for $i=1, \ldots, N$. Give the pmf of $Y=X_{1}+\cdots+X_{N}$.

The mgf of Y is given by

$$
M_{Y}(t)=\prod_{i=1}^{N}\left[p e^{t}+(1-p)\right]^{n_{i}}=\left[p e^{t}+(1-p)\right]^{n_{1}+\cdots+n_{N}}
$$

so Y has the $\operatorname{Binomial}\left(n_{1}+\cdots+n_{N}, p\right)$ distribution.
5. Let X_{1}, \ldots, X_{N} be independent rvs and $\lambda_{1}, \ldots, \lambda_{n}$ be positive real numbers such that $X_{i} \sim \operatorname{Poisson}\left(\lambda_{i}\right)$ for $i=1, \ldots, n$. Give the pmf of $Y=X_{1}+\cdots+X_{n}$.

The mgf of Y is given by

$$
M_{Y}(t)=\prod_{i=1}^{N} e^{\lambda_{i}\left(e^{t}-1\right)}=e^{\left(\lambda_{1}+\cdots+\lambda_{n}\right)\left(e^{t}-1\right)}
$$

so Y has the $\operatorname{Poisson}\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ distribution.
6. Let X_{1}, \ldots, X_{25} be independent $\operatorname{Normal}\left(\mu=1, \sigma^{2}=5\right)$ rvs. Find the distributions of the following:
(a) $Y_{25}=X_{1}+\cdots+X_{25}$

The mgf of Y is given by

$$
M_{Y}(t)=\left[e^{t+5 t^{2} / 2}\right]^{25}=e^{25 t+125^{2} t^{2} / 2}
$$

so $Y \sim \operatorname{Normal}\left(\mu=25, \sigma^{2}=125\right)$.
(b) $\bar{X}_{25}=\frac{1}{25}\left(X_{1}+\cdots+X_{25}\right)$

The mgf of \bar{X} is given by

$$
M_{\bar{X}_{n}}(t)=M_{\left(X_{1}+\cdots+X_{n}\right) / 25}(t)=M_{X_{1}+\cdots+X_{n}}(t / 25)=\left[e^{t / 25+5(t / 25)^{2} / 2}\right]^{25}=e^{t}+(1 / 5) t / 2
$$

so $\bar{X}_{n} \sim \operatorname{Normal}\left(\mu=1, \sigma^{2}=1 / 5\right)$.
7. Let Y_{1} and Y_{2} be independent rvs such that $Y_{1} \sim \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y_{2} \sim \operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ and let $a_{1}, a_{2} \in \mathbb{R}$. Find the distribution of the random variable $a_{1} Y_{1}+a_{2} Y_{2}$ using mgfs.

We have

$$
\begin{aligned}
M_{a_{1} Y_{1}+a_{2} Y_{2}} & =M_{a_{1} Y_{1}}(t) M_{a_{2} Y_{2}}(t) \\
& =M_{Y_{1}}\left(a_{1} t\right) M_{Y_{2}}\left(a_{2} t\right) \\
& =e^{\mu_{1}\left(a_{1}\right) t+\sigma_{1}^{2}\left(a_{1} t\right)^{2} / 2} e^{\mu_{2}\left(a_{2}\right) t+\sigma_{2}^{2}\left(a_{2} t\right)^{2} / 2} \\
& =e^{\left(a_{1} \mu_{1}+a_{2} \mu_{2}\right) t+\left(a_{1}^{2} \sigma_{1}^{2}+a_{2}^{2} \sigma_{2}^{2}\right) t^{2} / 2},
\end{aligned}
$$

so that $a_{1} Y_{1}+a_{2} Y_{2} \sim \operatorname{Normal}\left(a_{1} \mu_{1}+a_{2} \mu_{2}, a_{1}^{2} \sigma_{1}^{2}+a_{2}^{2} \sigma_{2}^{2}\right)$.
8. Suppose $\left(Z_{1}, Z_{2}\right)$ are standard bivariate Normal rvs with correlation ρ, with joint pdf

$$
f_{\left(Z_{1}, Z_{2}\right)}\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}}{1-\rho^{2}}\right]
$$

Choose a value of ρ between 0.5 and 0.9 and use R to generate 1,000 realizations of $\left(Z_{1}, Z_{2}\right)$. Then transform these into realizations of $U_{1}=Z_{1}+Z_{2}$ and $U_{2}=Z_{1}-Z_{2}$. Then make two scatter plots: one of the Z_{2} values against the Z_{1} values and one of the U_{2} values against the U_{1} values. Turn in your code and these two plots, and say whether you think U_{1} and U_{2} are independent.
The following code will generate the $\left(Z_{1}, Z_{2}\right)$ realizations (you must define rho).

```
z1 <- rnorm(1000)
z2 <- rnorm(1000,rho*z1,1-rho^2)
```

The R code
rho <- . 8
z1 <- rnorm(1000)
z2 <- rnorm(1000,rho*z1,1-rho^2)
$u 1<-z 1+z 2$
u2 <- z1 - z2
$\operatorname{par}(m f r o w=c(1,2))$
plot ($z 2^{\sim} z 1$)
plot(u2~u1)
produces the plots

It appears that U_{1} and U_{2} are independent (they are indeed; see class notes for this example).

Optional (do not turn in) problems for additional study from Wackerly, Mendenhall, Scheaffer, 7th Ed.:

- $6.37,6.42,6.46,6.57$
- 6.68

Page 7

