STAT 512 su 2021 hw 3

1. Let $X_{1}, \ldots, X_{25} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu=3, \sigma^{2}=4\right)$.
(a) Give the mgf of X_{1}.
(b) Give the mgf of $\bar{X}_{25}=(1 / 25)\left(X_{1}+\cdots+X_{25}\right)$.
(c) Give $P\left(X_{1}<2\right)$.
(d) Give $P\left(\bar{X}_{25}<2\right)$.
(e) Give $P\left(\left|X_{1}-3\right|>1\right)$.
(f) Give $P\left(\left|\bar{X}_{25}-3\right|>1\right)$.
(g) Identify the distribution of $5\left(\bar{X}_{25}-3\right) / 2$.
(h) Give $P\left(\left[5\left(\bar{X}_{25}-3\right) / 2\right]^{2}>3.841459\right)$. Hint: Use the result from Question 2.
(i) Now let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu=3, \sigma^{2}=4\right)$ for $n \geq 1$ and set $\bar{X}_{n}=(1 / n)\left(X_{1}+\cdots+X_{n}\right)$.
i. Consider the probability $P\left(\left|\bar{X}_{n}-3\right|>\varepsilon\right)$, for some small $\varepsilon>0$. Is this an increasing or a decreasing function of n ?
ii. What does your answer say about the quality of \bar{X}_{n} as an estimator of the mean?
2. Let $Z \sim \operatorname{Normal}(0,1)$. Show that Z^{2} has the χ_{1}^{2} distribution (chi-squared with degrees of freedom 1), i.e. show that the pdf of $Y=Z^{2}$ is

$$
f_{Y}(y)=\frac{1}{\Gamma(1 / 2) 2^{1 / 2}} y^{\frac{1}{2}-1} e^{-y / 2} \mathbf{1}(y>0)
$$

Hint: $\Gamma(1 / 2)=\sqrt{\pi}$.
3. Let $W \sim$ Chi-squared (ν), so that the pdf of W is given by

$$
f_{W}(w)=\frac{1}{\Gamma(\nu / 2) 2^{\nu / 2}} w^{\nu / 2-1} e^{-w / 2} \mathbf{1}(w>0)
$$

where $\nu>0$ is the degrees of freedom.
(a) Give α and β such the $\operatorname{Gamma}(\alpha, \beta)$ and Chi-squared (ν) distributions are the same.
(b) Give $\mathbb{E} W$ in terms of the degrees of freedom parameter ν.
(c) Give $\operatorname{Var} W$ in terms of the degrees of freedom parameter ν.
4. Let $Y_{1}, \ldots, Y_{n} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}(p)$ distribution, $p \in(0,1)$. Let $\hat{p}_{n}=\bar{Y}_{n}=n^{-1}\left(Y_{1}+\cdots+Y_{n}\right)$.
(a) Show that

$$
\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}=\frac{n}{n-1} \hat{p}_{n}\left(1-\hat{p}_{n}\right) .
$$

(b) Find $\mathbb{E}\left[n(n-1)^{-1} \hat{p}_{n}\left(1-\hat{p}_{n}\right)\right]$.
5. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Poisson}(\lambda)$ distribution. Find the expected value of $\hat{\lambda}=n^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$. Hint: $\mathbb{E} \hat{\lambda} \neq \lambda$.
6. Let X_{1}, \ldots, X_{n} be a random sample from the $\operatorname{Weibull}(k, \lambda)$ distribution, which has pdf

$$
f(x)= \begin{cases}\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x / \lambda)^{k}}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

for $k, \lambda>0$.
(a) Find the cdf F_{X} of the $\operatorname{Weibull}(k, \lambda)$ distribution. Hint: Set up the integral $F_{X}(x)=\int_{0}^{x} f_{X}(t) d t$ and do the change of variable $u=(t / \lambda)^{k}$.
(b) Find the pdf of $X_{(1)}$.
(c) Show that $X_{(1)}$ has the $\operatorname{Weibull}\left(k, \lambda n^{-1 / k}\right)$ distribution.
7. Let U_{1}, \ldots, U_{n} be a random sample from the $\operatorname{Uniform}(0, \theta)$ distribution.
(a) Find the joint density of order statistics $U_{(1)}$ and $U_{(n)}$.
(b) Find the joint density of the random variables $R=U_{(1)} / U_{(n)}$ and $M=U_{(n)}$.
(c) State whether R and M are independent.
(d) Give the marginal pdf of R and identify the distribution.
8. Let X_{1}, \ldots, X_{n} be a random sample from the $\operatorname{Uniform}(0,1)$ distribution, where n is an odd number. Show that
(a) The expected value of the median is $1 / 2$.
(b) The variance of the median is $\frac{1}{4} \frac{1}{n+2}$.
9. Use R to run the following simulation. Choose a sample size $n \leq 20$ and draw 1,000 samples of size n from the Uniform $(0,1)$ distribution. In so doing:
(a) Choose a value of $k, 1<k<n$, and from each of the 1,000 samples, save the k th order statistic. Make a histogram of the 1,000 values of the k th order statistic and overlay the pdf of the sampling distribution of the k th order statistic (you must figure out and input the shape parameters of the beta distribution). Use the following code to get started:

```
S <- 1000 # number of random samples to generate
Yk <- numeric(S) # create empty vector in which to store values
for(s in 1:S) # run a loop of length S
{
    Y <- runif(n)
    Yk[s] <- sort(Y)[k] # get kth order statistic
}
hist(Yk,freq=FALSE,xlim=c(0,1))
y.seq <- seq(0,1,length=100)
lines(dbeta(y.seq, shape1=???,shape2=???)~y.seq, col="blue",lwd=2)
```

(b) Do the same thing for the nth order statistic and the 1st order statistic. Turn in all three histograms with densities overlaid and all your code.

