
STAT 512 hw 3

1. Let X1, . . . , X25
ind∼ Normal(µ = 3, σ2 = 4).

(a) Give the mgf of X1.

MX1(t) = e3t+4t2/2.

(b) Give the mgf of X̄25 = (1/25)(X1 + · · ·+X25).

MX1(t) = e3t+(4/25)t2/2.

(c) Give P (X1 < 2).

We have

P (X1 < 2) = P ((X1 − 3)/2 < (2− 3)/2) = P (Z < −1/2), Z ∼ Normal(0, 1),

and P (Z < −1/2) = pnorm(-1/2) = 0.3085375.

(d) Give P (X̄25 < 2).

We have

P (X̄25 < 2) = P (5(X̄25 − 3)/2 < 5(2− 3)/2) = P (Z < −5/2), Z ∼ Normal(0, 1),

and P (Z < −5/2) = pnorm(-2.5) = 0.006209665.

(e) Give P (|X1 − 3| > 1).

We have

P (|X1 − 3| > 1) = 1− P (−1 < X1 − 3 < 1)

= 1− P (−1/2 < (X1 − 3)/2 < 1/2)

= 1− P (−1/2 < Z < 1/2), Z ∼ Normal(0, 1),

= 2(1− P (Z < 1/2))

= 2*(1 - pnorm(1/2))

= 0.6170751.

(f) Give P (|X̄25 − 3| > 1).



We have

P (|X̄25 − 3| > 1) = 1− P (−1 < X̄25 − 3 < 1)

= 1− P (−5/2 < 5(X1 − 3)/2 < 5/2)

= 1− P (−5/2 < Z < 5/2), Z ∼ Normal(0, 1),

= 2(1− P (Z < 5/2))

= 2*(1 - pnorm(5/2))

= 0.01241933.

(g) Identify the distribution of 5(X̄25 − 3)/2.

This has the Normal(0, 1) distribution.

(h) Give P ([5(X̄25 − 3)/2]2 > 3.841459). Hint: Use the result from Question 2.

Since Z2 ∼ χ2
1 if Z ∼ Normal(0, 1), the answer is

P ([5(X̄25 − 3)/2]2 > 3.841459) = 1 - pchisq(3.841459,1) = 0.05.

(i) Now let X1, . . . , Xn
ind∼ Normal(µ = 3, σ2 = 4) for n ≥ 1 and set X̄n = (1/n)(X1 + · · ·+Xn).

i. Consider the probability P (|X̄n − 3| > ε), for some small ε > 0. Is this an increasing or a
decreasing function of n?

We have

P (|X̄n− 3| > ε) = P (
√
n|X̄n− 3|/2 >

√
nε/2) = P (|Z| >

√
nε/2), Z ∼ Normal(0, 1)

which is a decreasing function of n.

ii. What does your answer say about the quality of X̄n as an estimator of the mean?

As n increases, the probability that X̄n is within any fixed distance of the mean in-
creases. This means that X̄n can be made very close to the mean, with high probability,
if n (which we may call the sample size) is made large enough. This seems like a good
quality for an estimator to have! Maybe this property should have a name. . .

2. Let Z ∼ Normal(0, 1). Show that Z2 has the χ2
1 distribution (chi-squared with degrees of freedom

1), i.e. show that the pdf of Y = Z2 is

fY (y) =
1

Γ(1/2)21/2
y

1
2
−1e−y/21(y > 0).
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Hint: Γ(1/2) =
√
π.

We have Z ∼ φ(z) = (2π)−1/2e−z
2/2 for z ∈ R. Let Φ(z) =

∫ z
−∞ φ(t)dt denote the cdf of Z. The

random variable Y = Z2 has support (0,∞) and cdf given by

FY (y) = P (Y ≤ y)

= P (X2 ≤ y)

= P (−√y ≤ X ≤ √y)

= Φ(
√
y)− Φ(−√y)

for all y ∈ R. For y ∈ (0,∞), the pdf of Y is given by

fY (y) =
d

dy
FY (y)

=
d

dy
[Φ(
√
y)− Φ(−√y)]

= φ(
√
y)

(
1

2
√
y

)
− φ(−√y)

(
− 1

2
√
y

)
=

(
1

2
√
y

)
[φ(
√
y) + φ(−√y)]

=
1

2
√
y
φ(
√
y) {since φ(

√
y) = φ(−√y)}

=
1

Γ(1/2)21/2
y1/2−1ey/2.

3. Let W ∼ Chi-squared(ν), so that the pdf of W is given by

fW (w) =
1

Γ(ν/2)2ν/2
wν/2−1e−w/21(w > 0),

where ν > 0 is the degrees of freedom.

(a) Give α and β such the Gamma(α, β) and Chi-squared(ν) distributions are the same.

The pdf of the Γ(ν/2, 2) is that of the Chi-squared(ν) distribution.

(b) Give EW in terms of the degrees of freedom parameter ν.

The expected value of a Gamma(α, β) random variable is αβ, so EW = (ν/2)2 = ν.

(c) Give VarW in terms of the degrees of freedom parameter ν.
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The variance of a Gamma(α, β) random variable is αβ2, so VarW = (ν/2)22 = 2ν.

4. Let Y1, . . . , Yn
ind∼ Bernoulli(p) distribution, p ∈ (0, 1). Let p̂n = Ȳn = n−1(Y1 + · · ·+ Yn).

(a) Show that

1

n− 1

n∑
i=1

(Yi − Ȳn)2 =
n

n− 1
p̂n(1− p̂n).

Write

1

n− 1

n∑
i=1

(Yi − Ȳn)2 =
1

n− 1

[
n∑
i=1

Y 2
i − nȲ 2

n

]
=

1

n− 1

[
np̂n − np̂2n

]
=

n

n− 1
p̂n(1− p̂n).

The trick is to note that Y 2
i = Yi since Yi ∈ {0, 1} for all i = 1, . . . , n.

(b) Find E [n(n− 1)−1p̂n(1− p̂n)].

Since this is the same as ES2
n, where S2

n = (n − 1)−1
∑n

i=1(Yi − Ȳn)2, the expectation is
p(1− p), since this is the variance of the Bernoulli(p) distribution.

5. Let X1, . . . , Xn
ind∼ Poisson(λ) distribution. Find the expected value of λ̂ = n−1

∑n
i=1(Xi − X̄n)2.

Hint: Eλ̂ 6= λ.

Since variance of the Poisson(λ) distribution is λ, ES2
n = λ, where S2

n = (n−1)−1
∑n

i=1(Xi−X̄n)2.

We can write λ̂ as λ̂ = (n− 1)n−1S2
n. Therefore

Eλ̂ = (n− 1)n−1λ.

6. Let X1, . . . , Xn be a random sample from the Weibull(k, λ) distribution, which has pdf

f(x) =

{
k
λ

(
x
λ

)k−1
e−(x/λ)

k
, x ≥ 0

0, x < 0,

for k, λ > 0.
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(a) Find the cdf FX of the Weibull(k, λ) distribution. Hint: Set up the integral FX(x) =
∫ x
0
fX(t)dt

and do the change of variable u = (t/λ)k.

For x > 0 we have

FX(x) =

∫ x

0

k

λ

(
t

λ

)k−1
e−(t/λ)

k

dt

=

∫ (x/λ)k

0

e−udt by u = (x/λ)k

= 1− e−(x/λ)k .

(b) Find the pdf of X(1).

According to the formula in the lecture notes

fX(1)
(x) = n[1− FX(x)]n−1fX(x)

= ne−(n−1)(x/λ)
k k

λ

(x
λ

)k−1
e−(x/λ)

k

=
k

λn−1/k

( x

λn−1/k

)k−1
exp

[
−
( x

λn−1/k

)k]
for x > 0.

(c) Show that X(1) has the Weibull(k, λn−1/k) distribution.

We note that the pdf of X(1) can be written such that it is recognized as the pdf of the
Weibull(k, λn−1/k) distribution.

7. Let U1, . . . , Un be a random sample from the Uniform(0, θ) distribution.

(a) Find the joint density of order statistics U(1) and U(n).

The pdf of the Uniform(0, θ) distribution is fU(u) = θ−11(0 < u < θ) and the cdf is

FU(u) =


0, u < 0
u/θ, 0 ≤ u ≤ θ
1, u > θ

From the lecture notes, we have

fU(1),U(n)
(u1, un) =

n(n− 1)

θ2

[
1

θ
un −

1

θ
u1

]n−2
1(0 < u1 < un < θ)

=
n(n− 1)

θn
(un − u1)n−21(0 < u1 < un < θ).
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(b) Find the joint density of the random variables R = U(1)/U(n) and M = U(n).

We have
r = u1/un =: g1(u1, un)
m = un =: g2(u1, un)

⇐⇒ u1 = rm =: g−11 (r,m)
un = m =: g−12 (r,m)

with Jacobian

J(r,m) =

∣∣∣∣ d
dr
rm d

dm
rm

d
dr
m d

dm
m

∣∣∣∣ =

∣∣∣∣ m r
0 1

∣∣∣∣ = m.

Note that the support of (R,M) is the set of values {r,m : 0 < r < 1, 0 < m < θ}. So the
joint pdf of R and M is given by

fR,M(r,m) =
n(n− 1)

θn
(m− rm)n−2|m|1(0 < r < 1, 0 < m < θ)

=
n(n− 1)

θ
mn−1(1− r)n−21(0 < r < 1, 0 < m < θ).

(c) State whether R and M are independent.

We can write down the joint pdf of R and M as

fR,M(r,m) =
n(n− 1)

θn
mn−11(0 < m < 1) · (1− r)n−21(0 < r < 1),

which is the product of a function of just r and a function of just m, so R and M are
independent.

(d) Give the marginal pdf of R and identify the distribution.

For r ∈ (0, 1), integrating the joint density of R and M over m ∈ (0, θ) gives

fR(r) =

∫ θ

0

n(n− 1)

θn
mn−1(1− r)n−2dm = (n− 1)(1− r)n−2m

n

θn

∣∣∣θ
0

= (n− 1)(1− r)n−2.

We can write this as

fR(r) =
Γ(n− 1 + 1)

Γ(n− 1)Γ(1)
r1−1(1− r)(n−1)−11(0 < r < 1),

which we recognize as the pdf of the Beta(1, n− 1) distribution.

8. Let X1, . . . , Xn be a random sample from the Uniform(0, 1) distribution, where n is an odd number.
Show that
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(a) The expected value of the median is 1/2.

From the lecture, X(k) ∼ Beta(k, n− k + 1) so that

X((n+1)/2) ∼ Beta((n+ 1)/2, n− (n+ 1)/2 + 1),

giving

EX((n+1)/2) =
(n+ 1)/2

(n+ 1)/2 + n− (n+ 1)/2 + 1
= 1/2.

(b) The variance of the median is 1
4

1
n+2

.

VarX((n+1)/2) =
(n+ 1)/2× (n− (n+ 1)/2 + 1)

((n+ 1)/2 + n− (n+ 1)/2 + 1)2((n+ 1)/2 + n− (n+ 1)/2 + 1 + 1)

=
1

4

1

n+ 2

9. Use R to run the following simulation. Choose a sample size n ≤ 20 and draw 1,000 samples of size
n from the Uniform(0, 1) distribution. In so doing:

(a) Choose a value of k, 1 < k < n, and from each of the 1,000 samples, save the kth order
statistic. Make a histogram of the 1,000 values of the kth order statistic and overlay the pdf of
the sampling distribution of the kth order statistic (you must figure out and input the shape
parameters of the beta distribution). Use the following code to get started:

S <- 1000 # number of random samples to generate

Yk <- numeric(S) # create empty vector in which to store values

for(s in 1:S) # run a loop of length S

{

Y <- runif(n)

Yk[s] <- sort(Y)[k] # get kth order statistic

}

hist(Yk,freq=FALSE,xlim=c(0,1))

y.seq <- seq(0,1,length=100)

lines(dbeta(y.seq,shape1=???,shape2=???)~y.seq,col="blue",lwd=2)

(b) Do the same thing for the nth order statistic and the 1st order statistic.

Turn in all three histograms with densities overlaid and all your code.
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n <- 10

S <- 1000

k <- 3

Ymin <- Ymax <- Yk <- numeric(S)

for(s in 1:S)

{

Y <- runif(n)

Ymin[s] <- min(Y)

Ymax[s] <- max(Y)

Yk[s] <- sort(Y)[k]

}

par(mfrow=c(1,3))

hist(Yk,freq=FALSE,xlim=c(0,1))

y.seq <- seq(0,1,length=100)

lines(dbeta(y.seq,shape1=k,shape2=n-k+1)~y.seq,col="blue",lwd=2)

hist(Ymin,freq=FALSE,xlim=c(0,1))

y.seq <- seq(0,1,length=100)

lines(dbeta(y.seq,shape1=1,shape2=n)~y.seq,col="blue",lwd=2)

hist(Ymax,freq=FALSE,xlim=c(0,1))

y.seq <- seq(0,1,length=100)

lines(dbeta(y.seq,shape1=n,shape2=1)~y.seq,col="blue",lwd=2)
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