STAT 512 hw 3

1. Let $X_{1}, \ldots, X_{25} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu=3, \sigma^{2}=4\right)$.
(a) Give the mgf of X_{1}.

$$
M_{X_{1}}(t)=e^{3 t+4 t^{2} / 2}
$$

(b) Give the mgf of $\bar{X}_{25}=(1 / 25)\left(X_{1}+\cdots+X_{25}\right)$.

$$
M_{X_{1}}(t)=e^{3 t+(4 / 25) t^{2} / 2}
$$

(c) Give $P\left(X_{1}<2\right)$.

We have

$$
P\left(X_{1}<2\right)=P\left(\left(X_{1}-3\right) / 2<(2-3) / 2\right)=P(Z<-1 / 2), \quad Z \sim \operatorname{Normal}(0,1),
$$

and $P(Z<-1 / 2)=\operatorname{pnorm}(-1 / 2)=0.3085375$.
(d) Give $P\left(\bar{X}_{25}<2\right)$.

We have

$$
P\left(\bar{X}_{25}<2\right)=P\left(5\left(\bar{X}_{25}-3\right) / 2<5(2-3) / 2\right)=P(Z<-5 / 2), \quad Z \sim \operatorname{Normal}(0,1),
$$

and $P(Z<-5 / 2)=\operatorname{pnorm}(-2.5)=0.006209665$.
(e) Give $P\left(\left|X_{1}-3\right|>1\right)$.

We have

$$
\begin{aligned}
P\left(\left|X_{1}-3\right|>1\right) & =1-P\left(-1<X_{1}-3<1\right) \\
& =1-P\left(-1 / 2<\left(X_{1}-3\right) / 2<1 / 2\right) \\
& =1-P(-1 / 2<Z<1 / 2), \quad Z \sim \operatorname{Normal}(0,1) \\
& =2(1-P(Z<1 / 2)) \\
& =2 *(1-\operatorname{pnorm}(1 / 2)) \\
& =0.6170751 .
\end{aligned}
$$

(f) Give $P\left(\left|\bar{X}_{25}-3\right|>1\right)$.

We have

$$
\begin{aligned}
P\left(\left|\bar{X}_{25}-3\right|>1\right) & =1-P\left(-1<\bar{X}_{25}-3<1\right) \\
& =1-P\left(-5 / 2<5\left(X_{1}-3\right) / 2<5 / 2\right) \\
& =1-P(-5 / 2<Z<5 / 2), \quad Z \sim \operatorname{Normal}(0,1), \\
& =2(1-P(Z<5 / 2)) \\
& =2 *(1-\operatorname{pnorm}(5 / 2)) \\
& =0.01241933 .
\end{aligned}
$$

(g) Identify the distribution of $5\left(\bar{X}_{25}-3\right) / 2$.

This has the $\operatorname{Normal}(0,1)$ distribution.
(h) Give $P\left(\left[5\left(\bar{X}_{25}-3\right) / 2\right]^{2}>3.841459\right)$. Hint: Use the result from Question 2.

Since $Z^{2} \sim \chi_{1}^{2}$ if $Z \sim \operatorname{Normal}(0,1)$, the answer is

$$
P\left(\left[5\left(\bar{X}_{25}-3\right) / 2\right]^{2}>3.841459\right)=1-\text { pchisq }(3.841459,1)=0.05
$$

(i) Now let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu=3, \sigma^{2}=4\right)$ for $n \geq 1$ and set $\bar{X}_{n}=(1 / n)\left(X_{1}+\cdots+X_{n}\right)$.
i. Consider the probability $P\left(\left|\bar{X}_{n}-3\right|>\varepsilon\right)$, for some small $\varepsilon>0$. Is this an increasing or a decreasing function of n ?

We have

$$
P\left(\left|\bar{X}_{n}-3\right|>\varepsilon\right)=P\left(\sqrt{n}\left|\bar{X}_{n}-3\right| / 2>\sqrt{n} \varepsilon / 2\right)=P(|Z|>\sqrt{n} \varepsilon / 2), \quad Z \sim \operatorname{Normal}(0,1)
$$

which is a decreasing function of n.
ii. What does your answer say about the quality of \bar{X}_{n} as an estimator of the mean?

As n increases, the probability that \bar{X}_{n} is within any fixed distance of the mean increases. This means that \bar{X}_{n} can be made very close to the mean, with high probability, if n (which we may call the sample size) is made large enough. This seems like a good quality for an estimator to have! Maybe this property should have a name...
2. Let $Z \sim \operatorname{Normal}(0,1)$. Show that Z^{2} has the χ_{1}^{2} distribution (chi-squared with degrees of freedom 1), i.e. show that the pdf of $Y=Z^{2}$ is

$$
f_{Y}(y)=\frac{1}{\Gamma(1 / 2) 2^{1 / 2}} y^{\frac{1}{2}-1} e^{-y / 2} \mathbf{1}(y>0)
$$

Hint: $\Gamma(1 / 2)=\sqrt{\pi}$.

We have $Z \sim \phi(z)=(2 \pi)^{-1 / 2} e^{-z^{2} / 2}$ for $z \in \mathbb{R}$. Let $\Phi(z)=\int_{-\infty}^{z} \phi(t) d t$ denote the cdf of Z. The random variable $Y=Z^{2}$ has support $(0, \infty)$ and cdf given by

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P\left(X^{2} \leq y\right) \\
& =P(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& =\Phi(\sqrt{y})-\Phi(-\sqrt{y})
\end{aligned}
$$

for all $y \in \mathbb{R}$. For $y \in(0, \infty)$, the pdf of Y is given by

$$
\begin{aligned}
f_{Y}(y) & =\frac{d}{d y} F_{Y}(y) \\
& =\frac{d}{d y}[\Phi(\sqrt{y})-\Phi(-\sqrt{y})] \\
& =\phi(\sqrt{y})\left(\frac{1}{2 \sqrt{y}}\right)-\phi(-\sqrt{y})\left(-\frac{1}{2 \sqrt{y}}\right) \\
& =\left(\frac{1}{2 \sqrt{y}}\right)[\phi(\sqrt{y})+\phi(-\sqrt{y})] \\
& =\frac{1}{2 \sqrt{y}} \phi(\sqrt{y}) \quad\{\text { since } \phi(\sqrt{y})=\phi(-\sqrt{y})\} \\
& =\frac{1}{\Gamma(1 / 2) 2^{1 / 2}} y^{1 / 2-1} e^{y} / 2 .
\end{aligned}
$$

3. Let $W \sim \operatorname{Chi}-$ squared (ν), so that the pdf of W is given by

$$
f_{W}(w)=\frac{1}{\Gamma(\nu / 2) 2^{\nu / 2}} w^{\nu / 2-1} e^{-w / 2} \mathbf{1}(w>0)
$$

where $\nu>0$ is the degrees of freedom.
(a) Give α and β such the $\operatorname{Gamma}(\alpha, \beta)$ and Chi-squared (ν) distributions are the same.

The pdf of the $\Gamma(\nu / 2,2)$ is that of the Chi-squared (ν) distribution.
(b) Give $\mathbb{E} W$ in terms of the degrees of freedom parameter ν.

The expected value of a $\operatorname{Gamma}(\alpha, \beta)$ random variable is $\alpha \beta$, so $\mathbb{E} W=(\nu / 2) 2=\nu$.
(c) Give $\operatorname{Var} W$ in terms of the degrees of freedom parameter ν.

The variance of a $\operatorname{Gamma}(\alpha, \beta)$ random variable is $\alpha \beta^{2}$, so $\operatorname{Var} W=(\nu / 2) 2^{2}=2 \nu$.
4. Let $Y_{1}, \ldots, Y_{n} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}(p)$ distribution, $p \in(0,1)$. Let $\hat{p}_{n}=\bar{Y}_{n}=n^{-1}\left(Y_{1}+\cdots+Y_{n}\right)$.
(a) Show that

$$
\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}=\frac{n}{n-1} \hat{p}_{n}\left(1-\hat{p}_{n}\right)
$$

Write

$$
\begin{aligned}
\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2} & =\frac{1}{n-1}\left[\sum_{i=1}^{n} Y_{i}^{2}-n \bar{Y}_{n}^{2}\right] \\
& =\frac{1}{n-1}\left[n \hat{p}_{n}-n \hat{p}_{n}^{2}\right] \\
& =\frac{n}{n-1} \hat{p}_{n}\left(1-\hat{p}_{n}\right)
\end{aligned}
$$

The trick is to note that $Y_{i}^{2}=Y_{i}$ since $Y_{i} \in\{0,1\}$ for all $i=1, \ldots, n$.
(b) Find $\mathbb{E}\left[n(n-1)^{-1} \hat{p}_{n}\left(1-\hat{p}_{n}\right)\right]$.

Since this is the same as $\mathbb{E} S_{n}^{2}$, where $S_{n}^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}$, the expectation is $p(1-p)$, since this is the variance of the $\operatorname{Bernoulli}(p)$ distribution.
5. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Poisson}(\lambda)$ distribution. Find the expected value of $\hat{\lambda}=n^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$. Hint: $\mathbb{E} \hat{\lambda} \neq \lambda$.

Since variance of the Poisson (λ) distribution is $\lambda, \mathbb{E} S_{n}^{2}=\lambda$, where $S_{n}^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$. We can write $\hat{\lambda}$ as $\hat{\lambda}=(n-1) n^{-1} S_{n}^{2}$. Therefore

$$
\mathbb{E} \hat{\lambda}=(n-1) n^{-1} \lambda
$$

6. Let X_{1}, \ldots, X_{n} be a random sample from the $\operatorname{Weibull}(k, \lambda)$ distribution, which has pdf

$$
f(x)= \begin{cases}\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x / \lambda)^{k}}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

for $k, \lambda>0$.
(a) Find the cdf F_{X} of the $\operatorname{Weibull}(k, \lambda)$ distribution. Hint: Set up the integral $F_{X}(x)=\int_{0}^{x} f_{X}(t) d t$ and do the change of variable $u=(t / \lambda)^{k}$.

For $x>0$ we have

$$
\begin{aligned}
F_{X}(x) & =\int_{0}^{x} \frac{k}{\lambda}\left(\frac{t}{\lambda}\right)^{k-1} e^{-(t / \lambda)^{k}} d t \\
& =\int_{0}^{(x / \lambda)^{k}} e^{-u} d t \quad \text { by } u=(x / \lambda)^{k} \\
& =1-e^{-(x / \lambda)^{k}} .
\end{aligned}
$$

(b) Find the pdf of $X_{(1)}$.

According to the formula in the lecture notes

$$
\begin{aligned}
f_{X_{(1)}}(x) & =n\left[1-F_{X}(x)\right]^{n-1} f_{X}(x) \\
& =n e^{-(n-1)(x / \lambda)^{k}} \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x / \lambda)^{k}} \\
& =\frac{k}{\lambda n^{-1 / k}}\left(\frac{x}{\lambda n^{-1 / k}}\right)^{k-1} \exp \left[-\left(\frac{x}{\lambda n^{-1 / k}}\right)^{k}\right]
\end{aligned}
$$

for $x>0$.
(c) Show that $X_{(1)}$ has the $\operatorname{Weibull}\left(k, \lambda n^{-1 / k}\right)$ distribution.

We note that the pdf of $X_{(1)}$ can be written such that it is recognized as the pdf of the $\operatorname{Weibull}\left(k, \lambda n^{-1 / k}\right)$ distribution.
7. Let U_{1}, \ldots, U_{n} be a random sample from the $\operatorname{Uniform}(0, \theta)$ distribution.
(a) Find the joint density of order statistics $U_{(1)}$ and $U_{(n)}$.

The pdf of the Uniform $(0, \theta)$ distribution is $f_{U}(u)=\theta^{-1} \mathbf{1}(0<u<\theta)$ and the cdf is

$$
F_{U}(u)= \begin{cases}0, & u<0 \\ u / \theta, & 0 \leq u \leq \theta \\ 1, & u>\theta\end{cases}
$$

From the lecture notes, we have

$$
\begin{aligned}
f_{U_{(1)}, U_{(n)}}\left(u_{1}, u_{n}\right) & =\frac{n(n-1)}{\theta^{2}}\left[\frac{1}{\theta} u_{n}-\frac{1}{\theta} u_{1}\right]^{n-2} \mathbf{1}\left(0<u_{1}<u_{n}<\theta\right) \\
& =\frac{n(n-1)}{\theta^{n}}\left(u_{n}-u_{1}\right)^{n-2} \mathbf{1}\left(0<u_{1}<u_{n}<\theta\right) .
\end{aligned}
$$

\qquad
(b) Find the joint density of the random variables $R=U_{(1)} / U_{(n)}$ and $M=U_{(n)}$.

We have

$$
\begin{aligned}
& r=u_{1} / u_{n}=: g_{1}\left(u_{1}, u_{n}\right) \\
& m=u_{n}=: g_{2}\left(u_{1}, u_{n}\right)
\end{aligned} \Longleftrightarrow \begin{aligned}
& u_{1}=r m=: g_{1}^{-1}(r, m) \\
& u_{n}=m=: g_{2}^{-1}(r, m)
\end{aligned}
$$

with Jacobian

$$
J(r, m)=\left|\begin{array}{cc}
\frac{d}{d r} r m & \frac{d}{d m} r m \\
\frac{d}{d r} m & \frac{d}{d m} m
\end{array}\right|=\left|\begin{array}{cc}
m & r \\
0 & 1
\end{array}\right|=m .
$$

Note that the support of (R, M) is the set of values $\{r, m: 0<r<1,0<m<\theta\}$. So the joint pdf of R and M is given by

$$
\begin{aligned}
f_{R, M}(r, m) & =\frac{n(n-1)}{\theta^{n}}(m-r m)^{n-2}|m| \mathbf{1}(0<r<1,0<m<\theta) \\
& =\frac{n(n-1)}{\theta} m^{n-1}(1-r)^{n-2} \mathbf{1}(0<r<1,0<m<\theta)
\end{aligned}
$$

(c) State whether R and M are independent.

We can write down the joint pdf of R and M as

$$
f_{R, M}(r, m)=\frac{n(n-1)}{\theta^{n}} m^{n-1} \mathbf{1}(0<m<1) \cdot(1-r)^{n-2} \mathbf{1}(0<r<1),
$$

which is the product of a function of just r and a function of just m, so R and M are independent.
(d) Give the marginal pdf of R and identify the distribution.

For $r \in(0,1)$, integrating the joint density of R and M over $m \in(0, \theta)$ gives

$$
f_{R}(r)=\int_{0}^{\theta} \frac{n(n-1)}{\theta^{n}} m^{n-1}(1-r)^{n-2} d m=\left.(n-1)(1-r)^{n-2} \frac{m^{n}}{\theta^{n}}\right|_{0} ^{\theta}=(n-1)(1-r)^{n-2}
$$

We can write this as

$$
f_{R}(r)=\frac{\Gamma(n-1+1)}{\Gamma(n-1) \Gamma(1)} r^{1-1}(1-r)^{(n-1)-1} \mathbf{1}(0<r<1)
$$

which we recognize as the pdf of the $\operatorname{Beta}(1, n-1)$ distribution.
8. Let X_{1}, \ldots, X_{n} be a random sample from the $\operatorname{Uniform}(0,1)$ distribution, where n is an odd number. Show that
(a) The expected value of the median is $1 / 2$.

From the lecture, $X_{(k)} \sim \operatorname{Beta}(k, n-k+1)$ so that

$$
X_{((n+1) / 2)} \sim \operatorname{Beta}((n+1) / 2, n-(n+1) / 2+1)
$$

giving

$$
\mathbb{E} X_{((n+1) / 2)}=\frac{(n+1) / 2}{(n+1) / 2+n-(n+1) / 2+1}=1 / 2
$$

(b) The variance of the median is $\frac{1}{4} \frac{1}{n+2}$.

$$
\begin{aligned}
\operatorname{Var} X_{((n+1) / 2)} & =\frac{(n+1) / 2 \times(n-(n+1) / 2+1)}{((n+1) / 2+n-(n+1) / 2+1)^{2}((n+1) / 2+n-(n+1) / 2+1+1)} \\
& =\frac{1}{4} \frac{1}{n+2}
\end{aligned}
$$

9. Use R to run the following simulation. Choose a sample size $n \leq 20$ and draw 1,000 samples of size n from the Uniform $(0,1)$ distribution. In so doing:
(a) Choose a value of $k, 1<k<n$, and from each of the 1,000 samples, save the k th order statistic. Make a histogram of the 1,000 values of the k th order statistic and overlay the pdf of the sampling distribution of the k th order statistic (you must figure out and input the shape parameters of the beta distribution). Use the following code to get started:
```
S <- 1000 # number of random samples to generate
Yk <- numeric(S) # create empty vector in which to store values
for(s in 1:S) # run a loop of length S
{
    Y <- runif(n)
    Yk[s] <- sort(Y) [k] # get kth order statistic
}
hist(Yk,freq=FALSE,xlim=c(0,1))
y.seq <- seq(0,1,length=100)
lines(dbeta(y.seq, shape1=???,shape2=???) ~ y.seq, col="blue",lwd=2)
```

(b) Do the same thing for the nth order statistic and the 1st order statistic.

Turn in all three histograms with densities overlaid and all your code.

```
n <- 10
S <- 1000
k <- 3
Ymin <- Ymax <- Yk <- numeric(S)
for(s in 1:S)
{
    Y <- runif(n)
    Ymin[s] <- min(Y)
    Ymax[s] <- max(Y)
    Yk[s] <- sort(Y) [k]
}
par(mfrow=c(1,3))
hist(Yk,freq=FALSE,xlim=c(0,1))
y.seq <- seq(0,1,length=100)
lines(dbeta(y.seq,shape1=k,shape2=n-k+1)~ y.seq, col="blue",lwd=2)
hist(Ymin,freq=FALSE, xlim=c(0,1))
y.seq <- seq(0,1,length=100)
lines(dbeta(y.seq,shape1=1,shape2=n)~y.seq,col="blue",lwd=2)
hist(Ymax,freq=FALSE, xlim=c(0,1))
y.seq <- seq(0,1,length=100)
lines(dbeta(y.seq,shape1=n,shape2=1)~y.seq, col="blue",lwd=2)
```

Histogram of $\mathbf{Y k}$

Histogram of Ymin

Histogram of Ymax

Page 8

