STAT 512 hw 4

1. Let $X \sim \operatorname{Normal}(\mu, 1)$.
(a) Give an interval (L, U), where U and L are based on X, such that $P(L<\mu<U)=0.99$.
(b) Give an upper bound U based on X such that $P(\mu<U)=0.99$.
(c) Give a lower bound L based on X such that $P(L<\mu)=0.99$.
2. Let $X \sim \operatorname{Normal}\left(0, \sigma^{2}\right)$.
(a) Find the distribution of X^{2} / σ^{2}. Hint: It is a pivot quantity.
(b) Give an interval (L, U), where U and L are based on X, such that $P\left(L<\sigma^{2}<U\right)=0.95$.
(c) Give an upper bound U based on X such that $P\left(\sigma^{2}<U\right)=0.95$.
(d) Give a lower bound L based on X such that $P\left(L<\sigma^{2}\right)=0.95$.
3. The following data from [1] are carapace lengths (mm) of lobsters caught in some region:

$$
\begin{array}{llllllllll}
78 & 66 & 65 & 63 & 60 & 60 & 58 & 56 & 52 & 50
\end{array}
$$

Assume that the lengths of lobster carapaces in the region have a Normal distribution.
(a) Give a 95% confidence interval for the mean carapace length of lobsters in the region.
(b) Give a 95% confidence interval for the variance of carapace lengths of lobsters in the region.
4. Load the PlantGrowth data set in R by executing the command data(PlantGrowth). Assume that the weights in all the groups come from a Normal distribution.
(a) Give a 95% confidence interval for $\sigma_{2}^{2} / \sigma_{1}^{2}$, where σ_{1}^{2} is the variance of weights in the ctrl group and σ_{2}^{2} is the variance of the weights in the trt1 group.
(b) If $X_{1}, \ldots, X_{n_{1}} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y_{1}, \ldots, Y_{n_{2}} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ and if $\sigma_{1}^{2}=\sigma_{2}^{2}$, then we have the pivot quantity result

$$
\frac{\bar{X}_{n_{1}}-\bar{Y}_{n_{2}}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{\text {pooled }}^{2}\left(1 / n_{1}+1 / n_{2}\right)}} \sim t_{n_{1}+n_{2}-2}
$$

where

$$
S_{\text {pooled }}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}
$$

Assuming that the variances of the plant growths in the ctrl and the trt1 groups are equal, construct a 95% confidence interval for $\mu_{1}-\mu_{2}$, where μ_{1} is the mean of weights in the ctrl group and μ_{2} is the mean of the weights in the trt1 group.
5. Let Z_{1}, Z_{2}, Z_{3}, and Z_{4} be independent random variables having the $\operatorname{Normal}(0,1)$ distribution and let $\bar{Z}=\left(Z_{1}+Z_{2}+Z_{3}+Z_{4}\right) / 4$. Give the distributions of the following quantities.
(a) \bar{Z}
(b) $Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2}$
(c) $Z_{1} / \sqrt{\left(Z_{2}^{2}+Z_{3}^{2}\right) / 2}$
(d) $2 \bar{Z}\left[(1 / 3) \sum_{i=1}^{4}\left(Z_{i}-\bar{Z}_{4}\right)^{2}\right]^{-1 / 2}$
(e) $\sum_{i=1}^{4}\left(Z_{i}-\bar{Z}_{4}\right)^{2}$
(f) $\left(Z_{1}^{2}+Z_{2}^{2}\right) /\left(Z_{3}^{2}+Z_{4}^{2}\right)$
6. Let Z and W be independent random variables such that $Z \sim \operatorname{Normal}(0,1)$ and $W \sim \chi_{\nu}^{2}$, for some $\nu>0$. Recall that the random variable

$$
T=\frac{Z}{\sqrt{W / \nu}} \sim t_{\nu}
$$

(a) Find the mean of a random variable having the t_{ν} distribution.
(b) Show that $\mathbb{E} W^{-1}=1 /(\nu-2)$, assuming $\nu>2$.
(c) Find the variance of a random variable having the t_{ν} distribution.
7. Two javelin throwers will compete. Suppose the distances thrown by the first follow the $\operatorname{Normal}(70,25)$ distribution (units in meters) and those of the second follow the $\operatorname{Normal}(68,36)$ distribution. Give the probability that the second javelin thrower throws further than the first, assuming that their throws are independent.

References

[1] William B Jeffries, Chang Man Yang, and Harold K Voris. Diversity and distribution of the pedunculate barnacle octolasmis gray, 1825 epizoic on the scyllarid lobster, thenus orientalis (lund, 1793). Crustaceana, 46(3):300-308, 1984.

