STAT 512 hw 4

1. Let $X \sim \operatorname{Normal}(\mu, 1)$.
(a) Give an interval (L, U), where U and L are based on X, such that $P(L<\mu<U)=0.99$.

We can begin by noting that $P\left(-z_{\alpha / 2}<(X-\mu) / 1<z_{\alpha / 2}\right)=1-\alpha$ for any $\alpha \in(0,1)$, since $(X-\mu) / 1 \sim \operatorname{Normal}(0,1)$. The can be rearranged to $P\left(X-z_{\alpha / 2}<\mu<X+z_{\alpha / 2}\right)=1-\alpha$, so a 99% confidence interval for μ is the interval with endpoints

$$
X \pm z_{0.01 / 2}=X \pm 2.576
$$

(b) Give an upper bound U based on X such that $P(\mu<U)=0.99$.

We can begin by noting that $P\left(-z_{\alpha}<(X-\mu) / 1\right)=1-\alpha$ for any $\alpha \in(0,1)$, since $(X-\mu) / 1 \sim \operatorname{Normal}(0,1)$. The can be rearranged to $P\left(\mu<X+z_{\alpha}\right)=1-\alpha$, so the 99% upper confidence limit for μ is

$$
X+z_{0.01}=X+2.326
$$

(c) Give a lower bound L based on X such that $P(L<\mu)=0.99$.

We can begin by noting that $P\left((X-\mu) / 1<z_{\alpha}\right)=1-\alpha$ for any $\alpha \in(0,1)$, since $(X-\mu) / 1 \sim \operatorname{Normal}(0,1)$. The can be rearranged to $P\left(X-z_{\alpha}<\mu\right)=1-\alpha$, so the 99% upper confidence limit for μ is

$$
X-z_{0.01}=X-2.326
$$

2. Let $X \sim \operatorname{Normal}\left(0, \sigma^{2}\right)$.
(a) Find the distribution of X^{2} / σ^{2}. Hint: It is a pivot quantity.

We have $X^{2} / \sigma^{2}=((X-0) / \sigma)^{2}$, which has the same distribution as Z^{2}, where $Z \sim$ $\operatorname{Normal}(0,1)$, which is the χ_{1}^{2} distribution. So $X^{2} / \sigma^{2} \sim \chi_{1}^{2}$.
(b) Give an interval (L, U), where U and L are based on X, such that $P\left(L<\sigma^{2}<U\right)=0.95$.

We may write $P\left(\chi_{1,1-\alpha / 2}^{2}<X^{2} / \sigma^{2}<\chi_{1, \alpha / 2}^{2}\right)=1-\alpha$ for any $\alpha \in(0,1)$. We may rearrange this to get as $P\left(X^{2} / \chi_{1, \alpha / 2}^{2}<\sigma^{2}<X^{2} / \chi_{1,1-\alpha / 2}^{2}\right)=1-\alpha$, so that

$$
\left(X^{2} / 5.023, X^{2} / 0.00098\right)
$$

is a 95% confidence interval for σ^{2}.
(c) Give an upper bound U based on X such that $P\left(\sigma^{2}<U\right)=0.95$.

We may write $P\left(\chi_{1,1-\alpha}^{2}<X^{2} / \sigma^{2}\right)=1-\alpha$ for any $\alpha \in(0,1)$. We may rearrange this to get as $P\left(\sigma^{2}<X^{2} / \chi_{1,1-\alpha}^{2}\right)=1-\alpha$, so that the upper 95% confidence limit for σ^{2} is

$$
X^{2} / \chi_{1,1-0.05}^{2}=X^{2} / 0.0039
$$

(d) Give a lower bound L based on X such that $P\left(L<\sigma^{2}\right)=0.95$.

We may write $P\left(X^{2} / \sigma^{2}<\chi_{1, \alpha}^{2}\right)=1-\alpha$ for any $\alpha \in(0,1)$. We may rearrange this to get as $P\left(X^{2} / \chi_{1, \alpha}^{2}<\sigma^{2}\right)=1-\alpha$, so that the upper 95% confidence limit for σ^{2} is

$$
X^{2} / \chi_{1,0.05}^{2}=X^{2} / 3.841
$$

3. The following data from [1] are carapace lengths (mm) of lobsters caught in some region:

$$
\begin{array}{llllllllll}
78 & 66 & 65 & 63 & 60 & 60 & 58 & 56 & 52 & 50
\end{array}
$$

Assume that the lengths of lobster carapaces in the region have a Normal distribution.
(a) Give a 95% confidence interval for the mean carapace length of lobsters in the region.

The following R code computes in the bounds of the interval.
$\mathrm{x}<-\mathrm{c}(78,66,65,63,60,60,58,56,52,50)$
n <- length (x)
S <- sd(x)
alpha <- 0.05
L <- mean(x) - qt(1 - alpha/2,n-1) $* S /$ sqrt (n)
$\mathrm{U}<-\operatorname{mean}(\mathrm{x})+\mathrm{qt}(1-\mathrm{alpha} / 2, \mathrm{n}-1) * \mathrm{~S} / \mathrm{sqrt}(\mathrm{n})$
The interval is $(55.099,66.501)$.
(b) Give a 95% confidence interval for the variance of carapace lengths of lobsters in the region.

The following R code computes in the bounds of the interval.
L <- ($\mathrm{n}-1$) *S^2/qchisq(1-alpha/2, $\mathrm{n}-1$)
$\mathrm{U}<-(\mathrm{n}-1) * \mathrm{~S}^{\wedge} 2 / \mathrm{qchisq}(\mathrm{alpha} / 2, \mathrm{n}-1)$
The interval is $(30.048,211.673)$.
4. Load the PlantGrowth data set in R by executing the command data(PlantGrowth). Assume that the weights in all the groups come from a Normal distribution.
(a) Give a 95% confidence interval for $\sigma_{2}^{2} / \sigma_{1}^{2}$, where σ_{1}^{2} is the variance of weights in the ctrl group and σ_{2}^{2} is the variance of the weights in the trt1 group.

The following R code computes the lower and upper bounds of the 95% confidence interval.

```
data("PlantGrowth")
ctrl <- PlantGrowth$weight[PlantGrowth$group == "ctrl"]
trt1 <- PlantGrowth$weight[PlantGrowth$group == "trt1"]
n1 <- length(ctrl)
n2 <- length(trt1)
S1 <- sd(ctrl)
S2 <- sd(trt1)
alpha <- . . }0
L <- S2^2/S1^2 * qf(alpha/2, n1-1,n2-1)
U <- S2^2/S1^2 * qf(1-alpha/2, n1-1,n2-1)
```

The interval is $(0.460,7.459)$.
(b) If $X_{1}, \ldots, X_{n_{1}} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y_{1}, \ldots, Y_{n_{2}} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ and if $\sigma_{1}^{2}=\sigma_{2}^{2}$, then we have the pivot quantity result

$$
\frac{\bar{X}_{n_{1}}-\bar{Y}_{n_{2}}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{\text {pooled }}^{2}\left(1 / n_{1}+1 / n_{2}\right)}} \sim t_{n_{1}+n_{2}-2}
$$

where

$$
S_{\text {pooled }}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2} .
$$

Assuming that the variances of the plant growths in the ctrl and the trt1 groups are equal, construct a 95% confidence interval for $\mu_{1}-\mu_{2}$, where μ_{1} is the mean of weights in the ctrl group and μ_{2} is the mean of the weights in the trt1 group.

Because of the pivot quantity result, we may write

$$
\begin{aligned}
1-\alpha & =P\left(t_{n_{1}+n_{2}-2,1-\alpha / 2}<\frac{\bar{X}_{n_{1}}-\bar{Y}_{n_{2}}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{\text {pooled }}^{2}\left(1 / n_{1}+1 / n_{2}\right)}}<t_{n_{1}+n_{2}-2, \alpha / 2}\right) \\
=P\left(\bar{X}_{n_{1}}-\bar{Y}_{n_{2}}-\right. & \sqrt{S_{\text {pooled }}^{2}\left(1 / n_{1}+1 / n_{2}\right)} t_{n_{1}+n_{2}-2,1-\alpha / 2}<\mu_{1}-\mu_{2} \\
& \left.<\bar{X}_{n_{1}}-\bar{Y}_{n_{2}}+\sqrt{S_{\text {pooled }}^{2}\left(1 / n_{1}+1 / n_{2}\right)} t_{n_{1}+n_{2}-2, \alpha / 2}\right),
\end{aligned}
$$

which gives for a $(1-\alpha) 100 \%$ confidence interval the bounds

$$
\bar{X}_{n_{1}}-\bar{Y}_{n_{2}} \pm \sqrt{S_{\text {pooled }}^{2}\left(1 / n_{1}+1 / n_{2}\right)} t_{n_{1}+n_{2}-2, \alpha / 2}
$$

The following R code computes this on the data.
Sp <- sqrt (($\mathrm{n} 1-1$) *S1^2 + (n2-1) *S2^2 $) /(\mathrm{n} 1+\mathrm{n} 2-2)$)
$\mathrm{L}<-$ mean $(\operatorname{ctrl})-$ mean $(\operatorname{trt} 1)-\operatorname{sqrt}(\operatorname{Sp} \wedge 2 *(1 / \mathrm{n} 1+1 / \mathrm{n} 2)) * q t(1-\mathrm{alpha} / 2, \mathrm{n} 1+\mathrm{n} 2-2)$ U <- mean(ctrl) - mean(trt1) + sqrt($\left.\operatorname{Sp}^{\wedge} 2 *(1 / \mathrm{n} 1+1 / n 2)\right)$ * qt(1-alpha/2,n1+n2-2)

The interval is $(-0.283,1.0253)$.
5. Let Z_{1}, Z_{2}, Z_{3}, and Z_{4} be independent random variables having the $\operatorname{Normal}(0,1)$ distribution and let $\bar{Z}=\left(Z_{1}+Z_{2}+Z_{3}+Z_{4}\right) / 4$. Give the distributions of the following quantities.
(a) \bar{Z}

This has the $\operatorname{Normal}(0,1 / 4)$ distribution.
(b) $Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2}$

This has the χ_{3}^{2} distribution.
(c) $Z_{1} / \sqrt{\left(Z_{2}^{2}+Z_{3}^{2}\right) / 2}$

This has the t_{2} distribution.
(d) $2 \bar{Z}\left[(1 / 3) \sum_{i=1}^{4}\left(Z_{i}-\bar{Z}_{4}\right)^{2}\right]^{-1 / 2}$

This has the t_{3} distribution.
(e) $\sum_{i=1}^{4}\left(Z_{i}-\bar{Z}_{4}\right)^{2}$

This has the χ_{3}^{2} distribution.
(f) $\left(Z_{1}^{2}+Z_{2}^{2}\right) /\left(Z_{3}^{2}+Z_{4}^{2}\right)$

This has the $F_{2,2}$ distribution.
6. Let Z and W be independent random variables such that $Z \sim \operatorname{Normal}(0,1)$ and $W \sim \chi_{\nu}^{2}$, for some $\nu>0$. Recall that the random variable

$$
T=\frac{Z}{\sqrt{W / \nu}} \sim t_{\nu}
$$

(a) Find the mean of a random variable having the t_{ν} distribution.

We have $\mathbb{E} \frac{Z}{\sqrt{W / \nu}}=\sqrt{\nu} \mathbb{E} X \mathbb{E} W^{-1 / 2}=0$, where we have used that fact that Z and W are independent and $\mathbb{E} Z=0$.
(b) Show that $\mathbb{E} W^{-1}=1 /(\nu-2)$, assuming $\nu>2$.

We have

$$
\begin{aligned}
\mathbb{E} W^{-1} & =\int_{0}^{\infty} \frac{1}{w} \frac{1}{\Gamma(\nu / 2) 2^{\nu / 2}} w^{\nu / 2-1} e^{-w / 2} d w \\
& =\frac{\Gamma(\nu / 2-1) 2^{\nu / 2-1}}{\Gamma(\nu / 2) 2^{\nu / 2}} \underbrace{\int_{0}^{\infty} \frac{1}{\Gamma(\nu / 2-1) 2^{\nu / 2-1}} w^{(\nu / 2-1)-1} e^{-w / 2} d w}_{=1} \\
& =\frac{\Gamma(\nu / 2-1)}{(\nu / 2-1) \Gamma(\nu / 2-1) 2} \quad \text { (property of Gamma function) } \\
& =1 /(\nu-2) .
\end{aligned}
$$

(c) Find the variance of a random variable having the t_{ν} distribution.

Since $\mathbb{E} T=0$, we have $\operatorname{Var} T=\mathbb{E} T^{2}=\nu \mathbb{E} Z^{2} \mathbb{E} W^{-1}=\nu /(\nu-2)$, since $\mathbb{E} Z^{2}=1$.
7. Two javelin throwers will compete. Suppose the distances thrown by the first follow the $\operatorname{Normal}(70,25)$ distribution (units in meters) and those of the second follow the $\operatorname{Normal}(68,36)$ distribution. Give the probability that the second javelin thrower throws further than the first, assuming that their throws are independent.

Let T_{1} and T_{2} be the distances thrown by the two javelin throwers. Then we wish to find $P\left(T_{1}<T_{2}\right)$. Finding this probability directly would require taking a double integral over the product of two Normal pdfs, which is very complicated. Instead, we may formulate the event $T_{1}<T_{2}$ in terms of the difference between T_{1} and T_{2} by defining the new random variable $D=T_{1}-T_{2}$, so that $P\left(T_{1}<T_{2}\right)=P\left(T_{1}-T_{2}<0\right)=P(D<0)$. From the Lecture 2 notes, we find that the distribution of D, which is a linear combination of independent Normal random variables, is the $\operatorname{Normal}(-2,25)$ distribution. So we have

$$
P(D<0)=P((D-2) / 5<-2 / 5)=P(Z<-2 / 5), \quad Z \sim \operatorname{Normal}(0,1)
$$

and the answer is $\Phi(-2 / 5)=$ pnorm $(-2 / 5)=0.3445783$.

References

[1] William B Jeffries, Chang Man Yang, and Harold K Voris. Diversity and distribution of the pedunculate barnacle octolasmis gray, 1825 epizoic on the scyllarid lobster, thenus orientalis (lund, 1793). Crustaceana, 46(3):300-308, 1984.

