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1. Let X ∼ Normal(µ, 1).

(a) Give an interval (L,U), where U and L are based on X, such that P (L < µ < U) = 0.99.

We can begin by noting that P (−zα/2 < (X−µ)/1 < zα/2) = 1−α for any α ∈ (0, 1), since
(X −µ)/1 ∼ Normal(0, 1). The can be rearranged to P (X − zα/2 < µ < X + zα/2) = 1−α,
so a 99% confidence interval for µ is the interval with endpoints

X ± z0.01/2 = X ± 2.576.

(b) Give an upper bound U based on X such that P (µ < U) = 0.99.

We can begin by noting that P (−zα < (X − µ)/1) = 1 − α for any α ∈ (0, 1), since
(X − µ)/1 ∼ Normal(0, 1). The can be rearranged to P (µ < X + zα) = 1− α, so the 99%
upper confidence limit for µ is

X + z0.01 = X + 2.326.

(c) Give a lower bound L based on X such that P (L < µ) = 0.99.

We can begin by noting that P ((X − µ)/1 < zα) = 1 − α for any α ∈ (0, 1), since
(X − µ)/1 ∼ Normal(0, 1). The can be rearranged to P (X − zα < µ) = 1− α, so the 99%
upper confidence limit for µ is

X − z0.01 = X − 2.326.

2. Let X ∼ Normal(0, σ2).

(a) Find the distribution of X2/σ2. Hint: It is a pivot quantity.

We have X2/σ2 = ((X − 0)/σ)2, which has the same distribution as Z2, where Z ∼
Normal(0, 1), which is the χ2

1 distribution. So X2/σ2 ∼ χ2
1.

(b) Give an interval (L,U), where U and L are based on X, such that P (L < σ2 < U) = 0.95.

We may write P (χ2
1,1−α/2 < X2/σ2 < χ2

1,α/2) = 1− α for any α ∈ (0, 1). We may rearrange

this to get as P (X2/χ2
1,α/2 < σ2 < X2/χ2

1,1−α/2) = 1− α, so that(
X2/5.023, X2/0.00098

)



is a 95% confidence interval for σ2.

(c) Give an upper bound U based on X such that P (σ2 < U) = 0.95.

We may write P (χ2
1,1−α < X2/σ2) = 1 − α for any α ∈ (0, 1). We may rearrange this to

get as P (σ2 < X2/χ2
1,1−α) = 1− α, so that the upper 95% confidence limit for σ2 is

X2/χ2
1,1−0.05 = X2/0.0039.

(d) Give a lower bound L based on X such that P (L < σ2) = 0.95.

We may write P (X2/σ2 < χ2
1,α) = 1− α for any α ∈ (0, 1). We may rearrange this to get

as P (X2/χ2
1,α < σ2) = 1− α, so that the upper 95% confidence limit for σ2 is

X2/χ2
1,0.05 = X2/3.841.

3. The following data from [1] are carapace lengths (mm) of lobsters caught in some region:

78 66 65 63 60 60 58 56 52 50

Assume that the lengths of lobster carapaces in the region have a Normal distribution.

(a) Give a 95% confidence interval for the mean carapace length of lobsters in the region.

The following R code computes in the bounds of the interval.

x <- c(78,66,65,63,60,60,58,56,52,50)

n <- length(x)

S <- sd(x)

alpha <- 0.05

L <- mean(x) - qt(1 - alpha/2,n-1)*S/sqrt(n)

U <- mean(x) + qt(1 - alpha/2,n-1)*S/sqrt(n)

The interval is (55.099, 66.501).

(b) Give a 95% confidence interval for the variance of carapace lengths of lobsters in the region.

The following R code computes in the bounds of the interval.

L <- (n-1)*S^2/qchisq(1-alpha/2,n-1)

U <- (n-1)*S^2/qchisq(alpha/2,n-1)

The interval is (30.048, 211.673).
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4. Load the PlantGrowth data set in R by executing the command data(PlantGrowth). Assume that
the weights in all the groups come from a Normal distribution.

(a) Give a 95% confidence interval for σ2
2/σ

2
1, where σ2

1 is the variance of weights in the ctrl group
and σ2

2 is the variance of the weights in the trt1 group.

The following R code computes the lower and upper bounds of the 95% confidence interval.

data("PlantGrowth")

ctrl <- PlantGrowth$weight[PlantGrowth$group == "ctrl"]

trt1 <- PlantGrowth$weight[PlantGrowth$group == "trt1"]

n1 <- length(ctrl)

n2 <- length(trt1)

S1 <- sd(ctrl)

S2 <- sd(trt1)

alpha <- .05

L <- S2^2/S1^2 * qf(alpha/2, n1-1,n2-1)

U <- S2^2/S1^2 * qf(1-alpha/2, n1-1,n2-1)

The interval is (0.460, 7.459).

(b) If X1, . . . , Xn1

ind∼ Normal(µ1, σ
2
1) and Y1, . . . , Yn2

ind∼ Normal(µ2, σ
2
2) and if σ2

1 = σ2
2, then we

have the pivot quantity result

X̄n1 − Ȳn2 − (µ1 − µ2)√
S2
pooled(1/n1 + 1/n2)

∼ tn1+n2−2,

where

S2
pooled =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

Assuming that the variances of the plant growths in the ctrl and the trt1 groups are equal,
construct a 95% confidence interval for µ1 − µ2, where µ1 is the mean of weights in the ctrl

group and µ2 is the mean of the weights in the trt1 group.
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Because of the pivot quantity result, we may write

1− α = P

tn1+n2−2,1−α/2 <
X̄n1 − Ȳn2 − (µ1 − µ2)√
S2
pooled(1/n1 + 1/n2)

< tn1+n2−2,α/2


= P

(
X̄n1 − Ȳn2 −

√
S2
pooled(1/n1 + 1/n2)tn1+n2−2,1−α/2 < µ1 − µ2

< X̄n1 − Ȳn2 +
√
S2
pooled(1/n1 + 1/n2)tn1+n2−2,α/2

)
,

which gives for a (1− α)100% confidence interval the bounds

X̄n1 − Ȳn2 ±
√
S2
pooled(1/n1 + 1/n2)tn1+n2−2,α/2.

The following R code computes this on the data.

Sp <- sqrt( ((n1-1)*S1^2 + (n2-1)*S2^2 ) / (n1 + n2 - 2) )

L <- mean(ctrl) - mean(trt1) - sqrt( Sp^2*(1/n1 + 1/n2) ) * qt(1-alpha/2,n1+n2-2)

U <- mean(ctrl) - mean(trt1) + sqrt( Sp^2*(1/n1 + 1/n2) ) * qt(1-alpha/2,n1+n2-2)

The interval is (−0.283, 1.0253).

5. Let Z1, Z2, Z3, and Z4 be independent random variables having the Normal(0, 1) distribution and
let Z̄ = (Z1 + Z2 + Z3 + Z4)/4. Give the distributions of the following quantities.

(a) Z̄

This has the Normal(0, 1/4) distribution.

(b) Z2
1 + Z2

2 + Z2
3

This has the χ2
3 distribution.

(c) Z1/
√

(Z2
2 + Z2

3)/2

This has the t2 distribution.

(d) 2Z̄[(1/3)
∑4

i=1(Zi − Z̄4)
2]−1/2

This has the t3 distribution.

(e)
∑4

i=1(Zi − Z̄4)
2

Page 4



This has the χ2
3 distribution.

(f) (Z2
1 + Z2

2)/(Z2
3 + Z2

4)

This has the F2,2 distribution.

6. Let Z and W be independent random variables such that Z ∼ Normal(0, 1) and W ∼ χ2
ν , for some

ν > 0. Recall that the random variable

T =
Z√
W/ν

∼ tν .

(a) Find the mean of a random variable having the tν distribution.

We have E Z√
W/ν

=
√
νEXEW−1/2 = 0, where we have used that fact that Z and W are

independent and EZ = 0.

(b) Show that EW−1 = 1/(ν − 2), assuming ν > 2.

We have

EW−1 =

∫ ∞
0

1

w

1

Γ(ν/2)2ν/2
wν/2−1e−w/2dw

=
Γ(ν/2− 1)2ν/2−1

Γ(ν/2)2ν/2

∫ ∞
0

1

Γ(ν/2− 1)2ν/2−1
w(ν/2−1)−1e−w/2dw︸ ︷︷ ︸

=1

=
Γ(ν/2− 1)

(ν/2− 1)Γ(ν/2− 1)2
(property of Gamma function)

= 1/(ν − 2).

(c) Find the variance of a random variable having the tν distribution.

Since ET = 0, we have VarT = ET 2 = νEZ2EW−1 = ν/(ν − 2), since EZ2 = 1.

7. Two javelin throwers will compete. Suppose the distances thrown by the first follow the Normal(70, 25)
distribution (units in meters) and those of the second follow the Normal(68, 36) distribution. Give
the probability that the second javelin thrower throws further than the first, assuming that their
throws are independent.

Page 5



Let T1 and T2 be the distances thrown by the two javelin throwers. Then we wish to find
P (T1 < T2). Finding this probability directly would require taking a double integral over the
product of two Normal pdfs, which is very complicated. Instead, we may formulate the event
T1 < T2 in terms of the difference between T1 and T2 by defining the new random variable
D = T1 − T2, so that P (T1 < T2) = P (T1 − T2 < 0) = P (D < 0). From the Lecture 2 notes, we
find that the distribution of D, which is a linear combination of independent Normal random
variables, is the Normal(−2, 25) distribution. So we have

P (D < 0) = P ((D − 2)/5 < −2/5) = P (Z < −2/5), Z ∼ Normal(0, 1),

and the answer is Φ(−2/5) = pnorm(-2/5) = 0.3445783.
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