STAT 512 hw 5

- 1. Let $Y_1, \ldots, Y_n \stackrel{\text{ind}}{\sim} \text{Exponential}(\lambda)$ and consider estimating λ with $nY_{(1)}$.
 - (a) Find the pdf of $Y_{(1)}$ and identify its distribution.
 - (b) Find $\mathbb{E}nY_{(1)}$ and $\operatorname{Var}(nY_{(1)})$.
 - (c) Find $MSE(nY_{(1)})$ as an estimator of λ .
 - (d) Find MSE \overline{Y}_n as an estimator of λ .
- 2. Let X_1, \ldots, X_5 be a random sample from a distribution with pdf

$$f_X(x) = \frac{1}{\delta} \mathbf{1}(\delta < x < 2\delta)$$

for some $\delta > 0$.

- (a) Find the cdf F_X corresponding to the pdf f_X .
- (b) Find the pdf of $X_{(2)}$.
- (c) Find the pdf of the $Y = (X_{(2)} \delta)/\delta$ of $X_{(2)}$ and give the name of the distribution of Y.
- (d) Give $\mathbb{E}Y$ and $\operatorname{Var}Y$.
- (e) Find the MSE of $\hat{\delta} = (3/4)X_{(2)}$ when $\hat{\delta}$ is used as an estimator of δ . Hint: $X_{(2)} = \delta Y + \delta$.
- 3. Let Y_1, \ldots, Y_n be a random sample from the distribution with cdf given by

$$F_Y(y) = \begin{cases} 0, & y < 0\\ (y/a)^b, & 0 \le y \le a\\ 1, & y > a \end{cases}$$

for some a, b > 0, where b is known. Consider the estimator of a given by $\hat{a} = Y_{(n)}$.

- (a) Find the pdf of $Y_{(n)}$.
- (b) Find an expression for $\text{Bias}\,\hat{a}$
- (c) Propose a scaled version of \hat{a} which results in an unbiased estimator, \tilde{a} , of a.
- (d) Find the MSE of \tilde{a} .
- (e) Find the transformation of a Uniform(0,1) rv which will result in a realization of Y.
- (f) Run a simulation using R to confirm the formula you obtained for MSE \tilde{a} . Specifically, choose values of a, b, and n and generate 1,000 samples of size n (I recommend choosing $b \leq 5$). On each sample, compute the estimator \tilde{a} and record its value. Then compute the average squared distance of your \tilde{a} values from a over the 1,000 simulated data sets. In addition, compute the value of MSE \tilde{a} according to your formula from part (d). The numbers should be quite close to each other. You may make use of the following partial code:

```
a.tilde <- numeric()
for(s in 1:S)
{
    U <- runif(n)</pre>
```

```
Y <- # your formula for generating Y from U
a.tilde[s] <- # compute a.tilde on the sample
}</pre>
```

mean((a.tilde - a)^2)

compute also MSE of a.tilde according to your formula

Here is what to turn in:

- i. Your code.
- ii. Your simulated value of $MSE \tilde{a}$ as well as its value according to the formula.
- iii. A histogram of your a.tilde values.

4. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Bernoulli}(p)$ and let $Y = X_1 + \cdots + X_n$. Consider the two estimators of p given by

$$\hat{p} = \frac{Y}{n}$$
 and $\tilde{p} = \frac{Y+1}{n+2}$

- (a) Find Bias \hat{p} and Bias \tilde{p} .
- (b) Find $\operatorname{Var} \hat{p}$ and $\operatorname{Var} \tilde{p}$.
- (c) Find MSE \hat{p} and MSE \tilde{p} .
- (d) If the true value of p is 0.50, which estimator has a lower MSE?
- (e) If the true value of p is 0.95, which estimator has a lower MSE?
- 5. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Poisson}(\lambda)$. Find a function of \bar{X}_n which is an unbiased estimator of λ^2 . Hint: Begin by finding $\mathbb{E}\bar{X}_n^2$.
- 6. Suppose X_1, \ldots, X_n are a random sample from the Poisson(λ) distribution, where λ is unknown.
 - (a) Find $\mathbb{E}\bar{X}_n$
 - (b) Find $\mathbb{E}S_n^2$.
 - (c) Which do you suggest as an estimator for λ ? Run a simulation to inform your suggestion: Choose a sample size n and a value of λ and generate 1,000 random samples of size n, computing on each random sample the value of \bar{X}_n and \bar{S}_n^2 and storing these. You can do this with a for loop like the following:

```
X.bar <- S.sq <- numeric(S) # S is the number of data sets to simulate
for(s in 1:S)
{
     X <- rpois(n,lambda)
     X.bar[s] <- mean(X)
     S.sq[s] <- var(X)
}</pre>
```

Make histograms of the 1,000 values of \bar{X}_n and \bar{S}_n^2 from your simulation and use these to argue for using one or the other as an estimator for λ . Turn in your code and the two histograms. *Hint: Use* **rpois** to generate the Poisson data.