STAT 512 hw 5

- 1. Let $Y_1, \ldots, Y_n \stackrel{\text{ind}}{\sim} \text{Exponential}(\lambda)$ and consider estimating λ with $nY_{(1)}$.
 - (a) Find the pdf of $Y_{(1)}$ and identify its distribution.

The cdf and pdf of the Exponential(λ) distribution are given by $F_Y(y) = 1 - e^{-y/\lambda}$ and $f_Y(y) = (1/\lambda)e^{-y/\lambda}$, so we have

$$f_{Y_{(1)}}(y_1) = n[1 - (1 - e^{-y/\lambda})]^{n-1}(1/\lambda)e^{-y/\lambda}$$

= $(n/\lambda)e^{-y(n-1)/\lambda}e^{-y/\lambda}$
= $\frac{1}{\lambda/n}e^{-y/(\lambda/n)},$

so $Y_{(1)} \sim \text{Exponential}(\lambda/n)$.

(b) Find $\mathbb{E}nY_{(1)}$ and $\operatorname{Var}(nY_{(1)})$.

We have $\mathbb{E}nY_{(1)} = n(\lambda/n) = \lambda$ and $\operatorname{Var}(nY_{(1)}) = n^2(\lambda/n)^2 = \lambda^2$.

(c) Find $MSE(nY_{(1)})$ as an estimator of λ .

We have
$$MSE(nY_{(1)}) = (Bias(nY_{(1)}))^2 + Var(nY_{(1)}) = 0 + \lambda^2 = \lambda^2.$$

(d) Find MSE \overline{Y}_n as an estimator of λ .

We have $MSE \overline{Y}_n = (Bias \overline{Y}_n)^2 + Var \overline{Y}_n = 0 + \lambda^2/n = \lambda^2/n$.

2. Let X_1, \ldots, X_5 be a random sample from a distribution with pdf

$$f_X(x) = \frac{1}{\delta} \mathbf{1}(\delta < x < 2\delta)$$

for some $\delta > 0$.

(a) Find the cdf F_X corresponding to the pdf f_X .

$$F_X(x) = \begin{cases} 1, & x \ge 2\delta \\ \frac{x-\delta}{\delta}, & \delta \le x < \delta \\ 0, & x < \delta \end{cases}$$

(b) Find the pdf of $X_{(2)}$.

For $\delta < x < 2\delta$ We have

$$f_{X_{(2)}}(x) = \frac{5!}{(2-1)!(5-2)!} \left[\frac{x-\delta}{\delta}\right]^{2-1} \left[1 - \frac{x-\delta}{\delta}\right]^{5-2} \frac{1}{\delta} = \frac{20}{\delta} \left[\frac{x-\delta}{\delta}\right] \left[1 - \frac{x-\delta}{\delta}\right]^3.$$

(c) Find the pdf of the $Y = (X_{(2)} - \delta)/\delta$ of $X_{(2)}$ and give the name of the distribution of Y.

We have

$$y = (x - \delta)/\delta = g(x) \iff x = \delta y + \delta = g^{-1}(y) \text{ and } \frac{d}{dy}g^{-1}(y) = \delta.$$

Note that the support of Y is (0, 1). So the pdf of Y is given by

$$f_Y(y) = \frac{20}{\delta} y(1-y)^3 \cdot |\delta|$$

= $\frac{\Gamma(2+4)}{\Gamma(2)\Gamma(4)} y^{2-1} (1-y)^{4-1}$ for $0 < y < 1$.

So Y has the Beta(2,4) distribution.

(d) Give $\mathbb{E}Y$ and $\operatorname{Var} Y$.

We have

$$\mathbb{E}Y = \frac{2}{2+4} = 1/3$$

Var $Y = \frac{2(4)}{(2+4)^2(2+4+1)} = 2/63.$

(e) Find the MSE of $\hat{\delta} = (3/4)X_{(2)}$ when $\hat{\delta}$ is used as an estimator of δ . *Hint:* $X_{(2)} = \delta Y + \delta$.

We have

Bias
$$\hat{\delta} = \mathbb{E}(3/4)X_{(2)} - \delta = (3/4)(\delta \mathbb{E}Y + \delta) - \delta = (3/4)(4/3)\delta - \delta = 0$$

and

$$\operatorname{Var}\hat{\delta} = \operatorname{Var}(3/4)X_{(2)} = (9/16)\operatorname{Var}[\delta Y + \delta] = (9/16)\delta^2 2/63 = \delta^2/56.$$

 So

$$\mathrm{MSE}\,\hat{\delta} = \frac{\delta^2}{56}.$$

3. Let Y_1, \ldots, Y_n be a random sample from the distribution with cdf given by

$$F_Y(y) = \begin{cases} 0, & y < 0\\ (y/a)^b, & 0 \le y \le a\\ 1, & y > a \end{cases}$$

for some a, b > 0, where b is known. Consider the estimator of a given by $\hat{a} = Y_{(n)}$.

(a) Find the pdf of $Y_{(n)}$.

The population pdf is given by

$$f_Y(y) = \frac{b}{a^b} y^{b-1} \quad \text{for } 0 < y < a$$

and the pdf of $Y_{(n)}$ is given by

$$f_{Y_{(n)}}(y) = n \left[\left(\frac{y}{a} \right)^b \right]^{n-1} \frac{b}{a^b} y^{b-1} = \frac{nb}{a^{nb}} y^{nb-1} \quad \text{for } 0 < y < a.$$

(b) Find an expression for $\operatorname{Bias} \hat{a}$

We have

$$\mathbb{E}\hat{a} = \mathbb{E}Y_{(n)} = \int_0^a y \frac{nb}{a^{nb}} y^{nb-1} dy = a\left(\frac{nb}{nb+1}\right),$$

so that

Bias
$$\hat{a} = \mathbb{E}\hat{a} - a = a\left(\frac{nb}{nb+1}\right) - a = a\left[\left(\frac{nb}{nb+1}\right) - 1\right] = -a\left(\frac{1}{nb+1}\right).$$

(c) Propose a scaled version of \hat{a} which results in an unbiased estimator, \tilde{a} , of a.

If we define

$$\tilde{a} = \hat{a} \left(\frac{nb+1}{nb} \right),$$

then

$$\mathbb{E}\tilde{a} = \mathbb{E}\hat{a}\left(\frac{nb+1}{nb}\right) = a\left(\frac{nb}{nb+1}\right)\left(\frac{nb+1}{nb}\right) = a.$$

(d) Find the MSE of \tilde{a} .

Since
$$\tilde{a}$$
 is unbiased,

$$MSE \,\tilde{a} = Var \,\tilde{a} = Var \left[\hat{a} \left(\frac{nb+1}{nb} \right) \right] = \left(\frac{nb+1}{nb} \right)^2 Var \,\hat{a},$$

where $\operatorname{Var} \hat{a} = \operatorname{Var} Y_{(n)} = \mathbb{E} Y_{(n)} - (\mathbb{E} Y_n)^2$. We have

$$\mathbb{E}Y_{(n)}^{2} = \int_{0}^{a} y^{2} \frac{nb}{a^{nb}} y^{nb-1} dy = a^{2} \left(\frac{nb}{nb+2}\right)$$

so that

$$\operatorname{Var} Y_{(n)} = a^2 \left(\frac{nb}{nb+2} \right) - \left[a \left(\frac{nb}{nb+1} \right) \right]^2 = a^2 \left[\frac{nb}{nb+2} - \left(\frac{nb}{nb+1} \right)^2 \right]$$

Finally we have

$$MSE \tilde{a} = \left(\frac{nb+1}{nb}\right)^2 a^2 \left[\frac{nb}{nb+2} - \left(\frac{nb}{nb+1}\right)^2\right]$$
$$= a^2 \left[\frac{(nb+1)^2}{(nb+2)nb} - 1\right]$$
$$= \frac{a^2}{(nb+2)nb}$$

(e) Find the transformation of a Uniform(0,1) rv which will result in a realization of Y.

Setting $U = (Y/a)^b$, which has the Uniform(0, 1) distribution by the probability integral transform, and solving for Y gives

$$Y = aU^{1/b}.$$

which can be used to generate realizations of the random variable Y.

(f) Run a simulation using R to confirm the formula you obtained for MSE \tilde{a} . Specifically, choose values of a, b, and n and generate 1,000 samples of size n (I recommend choosing $b \leq 5$). On each sample, compute the estimator \tilde{a} and record its value. Then compute the average squared distance of your \tilde{a} values from a over the 1,000 simulated data sets. In addition, compute the value of MSE \tilde{a} according to your formula from part (d). The numbers should be quite close to each other. You may make use of the following partial code:

```
a.tilde <- numeric()
for(s in 1:S)
{
    U <- runif(n)
    Y <- # your formula for generating Y from U
    a.tilde[s] <- # compute a.tilde on the sample
}
mean( (a.tilde - a)^2 )
# compute also MSE of a.tilde according to your formula</pre>
```

Here is what to turn in:

- i. Your code.
- ii. Your simulated value of MSE \tilde{a} as well as its value according to the formula.
- iii. A histogram of your a.tilde values.

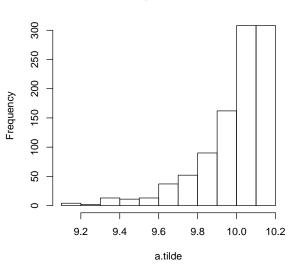
```
n <- 20
a <- 10
b <- 3
S <- 1000
a.tilde <- numeric()
for(s in 1:S)
{
    U <- runif(n)
    Y <- a*U^(1/b)
    a.tilde[s] <- max(Y) * ((n*b + 1)/(n*b))
}
```

```
# compare:
mean( (a.tilde - a)^2 )
a^2/( (n*b + 2)*n*b)
```

Under these settings the simulated value of MSE \tilde{a} was 0.02404551, and the theoretical value is

MSE
$$\tilde{a} = \frac{10^2}{(20(3) + 2)20(3)} = 0.02688172,$$

so the simulation results make sense. Below is a histogram of the 1,000 values of a.tilde from the simulation:



Histogram of a.tilde

4. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Bernoulli}(p)$ and let $Y = X_1 + \cdots + X_n$. Consider the two estimators of p given by

$$\hat{p} = \frac{Y}{n}$$
 and $\tilde{p} = \frac{Y+1}{n+2}$.

(a) Find Bias \hat{p} and Bias \tilde{p} .

We have $\operatorname{Bias} \hat{p} = 0$ since the sample mean is always unbiased for the population mean. For \tilde{p} we have

Bias
$$\tilde{p} = \frac{\mathbb{E}Y + 1}{n+2} = \frac{np+1}{n+2} - p = \frac{1-2p}{n+2}$$

(b) Find $\operatorname{Var} \hat{p}$ and $\operatorname{Var} \tilde{p}$.

We have $\operatorname{Var} \hat{p} = p(1-p)/n$, since the sample means is always the population variance divided by the sample size. For \tilde{p} we have

$$\operatorname{Var} \tilde{p} = \frac{\operatorname{Var} Y}{(n+2)^2} = \frac{np(1-p)}{(n+2)^2} = \left(\frac{n}{n+2}\right)^2 \frac{p(1-p)}{n}.$$

(c) Find MSE \hat{p} and MSE \tilde{p} .

Since \hat{p} is unbiased, $\text{MSE } \hat{p} = \text{Var } \hat{p} = p(1-p)/n$. For \tilde{p} we have $\text{MSE } \tilde{p} = (\text{Bias } \tilde{p})^2 + \text{Var } \tilde{p}$ $= \left(\frac{1-2p}{n+2}\right)^2 + \left(\frac{n}{n+2}\right)^2 \frac{p(1-p)}{n}$

(d) If the true value of p is 0.50, which estimator has a lower MSE?

We see that at p = 0.50, the bias of \tilde{p} is equal to zero. Since this estimator has a lower variance, that is, since

$$\operatorname{Var} \tilde{p} = \left(\frac{n}{n+2}\right)^2 \operatorname{Var} \hat{p},$$

we will have $MSE \tilde{p} < MSE \hat{p}$ when p = 0.50.

(e) If the true value of p is 0.95, which estimator has a lower MSE?

Plugging p = 0.95 into our formulas for $MSE \tilde{p}$ and $MSE \hat{p}$, we find that $MSE \hat{p} < MSE \tilde{p}$ for all $n \ge 1$.

5. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Poisson}(\lambda)$. Find a function of \overline{X}_n which is an unbiased estimator of λ^2 . *Hint: Begin by finding* $\mathbb{E}\overline{X}_n^2$.

We have $\mathbb{E}\bar{X}_n^2 = \operatorname{Var}\bar{X}_n + (\mathbb{E}\bar{X}_n)^2 = \lambda/n + \lambda^2$. We see that the estimator $\tilde{\lambda} = \bar{X}_n^2 - \bar{X}_n/n$ satisfies πĩ

$$\mathbb{E}\lambda = \mathbb{E}[\bar{X}_n^2 - \bar{X}_n/n] = \lambda/n + \lambda^2 - \lambda/n = \lambda^2,$$

so that it is an unbiased estimator of λ^2 .

- 6. Suppose X_1, \ldots, X_n are a random sample from the Poisson(λ) distribution, where λ is unknown.
 - (a) Find $\mathbb{E}\bar{X}_n$
 - (b) Find $\mathbb{E}S_n^2$.
 - (c) Which do you suggest as an estimator for λ ? Run a simulation to inform your suggestion: Choose a sample size n and a value of λ and generate 1,000 random samples of size n, computing on each random sample the value of \bar{X}_n and \bar{S}_n^2 and storing these. You can do this with a for loop like the following:

```
X.bar <- S.sq <- numeric(S) # S is the number of data sets to simulate
for(s in 1:S)
{
    X <- rpois(n,lambda)
    X.bar[s] <- mean(X)
    S.sq[s] <- var(X)
}
```

Make histograms of the 1,000 values of \bar{X}_n and \bar{S}_n^2 from your simulation and use these to argue for using one or the other as an estimator for λ . Turn in your code and the two histograms. Hint: Use rpois to generate the Poisson data.

These are the histograms resulting the simulation with n = 50 and $\lambda = 5$.

