STAT 512 hw 5

1. Let $Y_{1}, \ldots, Y_{n} \stackrel{\text { ind }}{\sim} \operatorname{Exponential}(\lambda)$ and consider estimating λ with $n Y_{(1)}$.
(a) Find the pdf of $Y_{(1)}$ and identify its distribution.

The cdf and pdf of the Exponential (λ) distribution are given by $F_{Y}(y)=1-e^{-y / \lambda}$ and $f_{Y}(y)=(1 / \lambda) e^{-y / \lambda}$, so we have

$$
\begin{aligned}
f_{Y_{(1)}}\left(y_{1}\right) & =n\left[1-\left(1-e^{-y / \lambda}\right)\right]^{n-1}(1 / \lambda) e^{-y / \lambda} \\
& =(n / \lambda) e^{-y(n-1) / \lambda} e^{-y / \lambda} \\
& =\frac{1}{\lambda / n} e^{-y /(\lambda / n)}
\end{aligned}
$$

so $Y_{(1)} \sim \operatorname{Exponential}(\lambda / n)$.
(b) Find $\mathbb{E} n Y_{(1)}$ and $\operatorname{Var}\left(n Y_{(1)}\right)$.

We have $\mathbb{E} n Y_{(1)}=n(\lambda / n)=\lambda$ and $\operatorname{Var}\left(n Y_{(1)}\right)=n^{2}(\lambda / n)^{2}=\lambda^{2}$.
(c) Find $\operatorname{MSE}\left(n Y_{(1)}\right)$ as an estimator of λ.

We have $\operatorname{MSE}\left(n Y_{(1)}\right)=\left(\operatorname{Bias}\left(n Y_{(1)}\right)\right)^{2}+\operatorname{Var}\left(n Y_{(1)}\right)=0+\lambda^{2}=\lambda^{2}$.
(d) Find $\operatorname{MSE} \bar{Y}_{n}$ as an estimator of λ.

We have $\operatorname{MSE} \bar{Y}_{n}=\left(\operatorname{Bias} \bar{Y}_{n}\right)^{2}+\operatorname{Var} \bar{Y}_{n}=0+\lambda^{2} / n=\lambda^{2} / n$.
2. Let X_{1}, \ldots, X_{5} be a random sample from a distribution with pdf

$$
f_{X}(x)=\frac{1}{\delta} \mathbf{1}(\delta<x<2 \delta)
$$

for some $\delta>0$.
(a) Find the cdf F_{X} corresponding to the pdf f_{X}.

The cdf is given by

$$
F_{X}(x)= \begin{cases}1, & x \geq 2 \delta \\ \frac{x-\delta}{\delta}, & \delta \leq x<\delta \\ 0, & x<\delta\end{cases}
$$

(b) Find the pdf of $X_{(2)}$.

For $\delta<x<2 \delta$ We have

$$
f_{X_{(2)}}(x)=\frac{5!}{(2-1)!(5-2)!}\left[\frac{x-\delta}{\delta}\right]^{2-1}\left[1-\frac{x-\delta}{\delta}\right]^{5-2} \frac{1}{\delta}=\frac{20}{\delta}\left[\frac{x-\delta}{\delta}\right]\left[1-\frac{x-\delta}{\delta}\right]^{3} .
$$

(c) Find the pdf of the $Y=\left(X_{(2)}-\delta\right) / \delta$ of $X_{(2)}$ and give the name of the distribution of Y.

We have

$$
y=(x-\delta) / \delta=g(x) \Longleftrightarrow x=\delta y+\delta=g^{-1}(y) \text { and } \frac{d}{d y} g^{-1}(y)=\delta
$$

Note that the support of Y is $(0,1)$. So the pdf of Y is given by

$$
\begin{aligned}
f_{Y}(y) & =\frac{20}{\delta} y(1-y)^{3} \cdot|\delta| \\
& =\frac{\Gamma(2+4)}{\Gamma(2) \Gamma(4)} y^{2-1}(1-y)^{4-1} \text { for } 0<y<1
\end{aligned}
$$

So Y has the $\operatorname{Beta}(2,4)$ distribution.
(d) Give $\mathbb{E} Y$ and $\operatorname{Var} Y$.

We have

$$
\begin{aligned}
\mathbb{E} Y & =\frac{2}{2+4}=1 / 3 \\
\operatorname{Var} Y & =\frac{2(4)}{(2+4)^{2}(2+4+1)}=2 / 63
\end{aligned}
$$

(e) Find the MSE of $\hat{\delta}=(3 / 4) X_{(2)}$ when $\hat{\delta}$ is used as an estimator of δ. Hint: $X_{(2)}=\delta Y+\delta$.

We have

$$
\operatorname{Bias} \hat{\delta}=\mathbb{E}(3 / 4) X_{(2)}-\delta=(3 / 4)(\delta \mathbb{E} Y+\delta)-\delta=(3 / 4)(4 / 3) \delta-\delta=0
$$

and

$$
\operatorname{Var} \hat{\delta}=\operatorname{Var}(3 / 4) X_{(2)}=(9 / 16) \operatorname{Var}[\delta Y+\delta]=(9 / 16) \delta^{2} 2 / 63=\delta^{2} / 56
$$

So

$$
\operatorname{MSE} \hat{\delta}=\frac{\delta^{2}}{56}
$$

3. Let Y_{1}, \ldots, Y_{n} be a random sample from the distribution with cdf given by

$$
F_{Y}(y)= \begin{cases}0, & y<0 \\ (y / a)^{b}, & 0 \leq y \leq a \\ 1, & y>a\end{cases}
$$

for some $a, b>0$, where b is known. Consider the estimator of a given by $\hat{a}=Y_{(n)}$.
(a) Find the pdf of $Y_{(n)}$.

The population pdf is given by

$$
f_{Y}(y)=\frac{b}{a^{b}} y^{b-1} \quad \text { for } 0<y<a
$$

and the pdf of $Y_{(n)}$ is given by

$$
f_{Y_{(n)}}(y)=n\left[\left(\frac{y}{a}\right)^{b}\right]^{n-1} \frac{b}{a^{b}} y^{b-1}=\frac{n b}{a^{n b}} y^{n b-1} \quad \text { for } 0<y<a .
$$

(b) Find an expression for Bias \hat{a}

We have

$$
\mathbb{E} \hat{a}=\mathbb{E} Y_{(n)}=\int_{0}^{a} y \frac{n b}{a^{n b}} y^{n b-1} d y=a\left(\frac{n b}{n b+1}\right)
$$

so that

$$
\operatorname{Bias} \hat{a}=\mathbb{E} \hat{a}-a=a\left(\frac{n b}{n b+1}\right)-a=a\left[\left(\frac{n b}{n b+1}\right)-1\right]=-a\left(\frac{1}{n b+1}\right) .
$$

(c) Propose a scaled version of \hat{a} which results in an unbiased estimator, \tilde{a}, of a.

If we define

$$
\tilde{a}=\hat{a}\left(\frac{n b+1}{n b}\right),
$$

then

$$
\mathbb{E} \tilde{a}=\mathbb{E} \hat{a}\left(\frac{n b+1}{n b}\right)=a\left(\frac{n b}{n b+1}\right)\left(\frac{n b+1}{n b}\right)=a .
$$

(d) Find the MSE of \tilde{a}.

Since \tilde{a} is unbiased,

$$
\operatorname{MSE} \tilde{a}=\operatorname{Var} \tilde{a}=\operatorname{Var}\left[\hat{a}\left(\frac{n b+1}{n b}\right)\right]=\left(\frac{n b+1}{n b}\right)^{2} \operatorname{Var} \hat{a},
$$

where Var $\hat{a}=\operatorname{Var} Y_{(n)}=\mathbb{E} Y_{(n)}-\left(\mathbb{E} Y_{n}\right)^{2}$. We have

$$
\mathbb{E} Y_{(n)}^{2}=\int_{0}^{a} y^{2} \frac{n b}{a^{n b}} y^{n b-1} d y=a^{2}\left(\frac{n b}{n b+2}\right)
$$

so that

$$
\operatorname{Var} Y_{(n)}=a^{2}\left(\frac{n b}{n b+2}\right)-\left[a\left(\frac{n b}{n b+1}\right)\right]^{2}=a^{2}\left[\frac{n b}{n b+2}-\left(\frac{n b}{n b+1}\right)^{2}\right]
$$

Finally we have

$$
\begin{aligned}
\operatorname{MSE} \tilde{a} & =\left(\frac{n b+1}{n b}\right)^{2} a^{2}\left[\frac{n b}{n b+2}-\left(\frac{n b}{n b+1}\right)^{2}\right] \\
& =a^{2}\left[\frac{(n b+1)^{2}}{(n b+2) n b}-1\right] \\
& =\frac{a^{2}}{(n b+2) n b}
\end{aligned}
$$

(e) Find the transformation of a $\operatorname{Uniform}(0,1)$ rv which will result in a realization of Y.

Setting $U=(Y / a)^{b}$, which has the $\operatorname{Uniform}(0,1)$ distribution by the probability integral transform, and solving for Y gives

$$
Y=a U^{1 / b}
$$

which can be used to generate realizations of the random variable Y.
(f) Run a simulation using R to confirm the formula you obtained for MSE \tilde{a}. Specifically, choose values of a, b, and n and generate 1,000 samples of size n (I recommend choosing $b \leq 5$). On each sample, compute the estimator \tilde{a} and record its value. Then compute the average squared distance of your \tilde{a} values from a over the 1,000 simulated data sets. In addition, compute the value of MSE \tilde{a} according to your formula from part (d). The numbers should be quite close to each other. You may make use of the following partial code:

```
a.tilde <- numeric()
for(s in 1:S)
{
    U <- runif(n)
    Y <- # your formula for generating Y from U
    a.tilde[s] <- # compute a.tilde on the sample
}
mean( (a.tilde - a)^2 )
# compute also MSE of a.tilde according to your formula
```

Here is what to turn in:
i. Your code.
ii. Your simulated value of $\operatorname{MSE} \tilde{a}$ as well as its value according to the formula.
iii. A histogram of your a.tilde values.

```
n <- 20
a <- 10
b <- 3
S <- 1000
a.tilde <- numeric()
for(s in 1:S)
{
    U <- runif(n)
    Y <- a*U^(1/b)
    a.tilde[s] <- max(Y) * ((n*b + 1)/(n*b))
}
# compare:
mean( (a.tilde - a)^2 )
a^2/( (n*b + 2)*n*b)
```

Under these settings the simulated value of $\operatorname{MSE} \tilde{a}$ was 0.02404551 , and the theoretical value is

$$
\operatorname{MSE} \tilde{a}=\frac{10^{2}}{(20(3)+2) 20(3)}=0.02688172,
$$

so the simulation results make sense. Below is a histogram of the 1,000 values of a.tilde from the simulation:

4. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}(p)$ and let $Y=X_{1}+\cdots+X_{n}$. Consider the two estimators of p given by

$$
\hat{p}=\frac{Y}{n} \quad \text { and } \quad \tilde{p}=\frac{Y+1}{n+2} .
$$

(a) Find Bias \hat{p} and Bias \tilde{p}.

We have $\operatorname{Bias} \hat{p}=0$ since the sample mean is always unbiased for the population mean. For \tilde{p} we have

$$
\operatorname{Bias} \tilde{p}=\frac{\mathbb{E} Y+1}{n+2}=\frac{n p+1}{n+2}-p=\frac{1-2 p}{n+2} .
$$

(b) Find $\operatorname{Var} \hat{p}$ and $\operatorname{Var} \tilde{p}$.

We have $\operatorname{Var} \hat{p}=p(1-p) / n$, since the sample means is always the population variance divided by the sample size. For \tilde{p} we have

$$
\operatorname{Var} \tilde{p}=\frac{\operatorname{Var} Y}{(n+2)^{2}}=\frac{n p(1-p)}{(n+2)^{2}}=\left(\frac{n}{n+2}\right)^{2} \frac{p(1-p)}{n} .
$$

(c) Find MSE \hat{p} and MSE \tilde{p}.

Since \hat{p} is unbiased, MSE $\hat{p}=\operatorname{Var} \hat{p}=p(1-p) / n$. For \tilde{p} we have

$$
\begin{aligned}
\operatorname{MSE} \tilde{p} & =(\operatorname{Bias} \tilde{p})^{2}+\operatorname{Var} \tilde{p} \\
& =\left(\frac{1-2 p}{n+2}\right)^{2}+\left(\frac{n}{n+2}\right)^{2} \frac{p(1-p)}{n}
\end{aligned}
$$

(d) If the true value of p is 0.50 , which estimator has a lower MSE?

We see that at $p=0.50$, the bias of \tilde{p} is equal to zero. Since this estimator has a lower variance, that is, since

$$
\operatorname{Var} \tilde{p}=\left(\frac{n}{n+2}\right)^{2} \operatorname{Var} \hat{p}
$$

we will have MSE $\tilde{p}<\operatorname{MSE} \hat{p}$ when $p=0.50$.
(e) If the true value of p is 0.95 , which estimator has a lower MSE?

Plugging $p=0.95$ into our formulas for $\operatorname{MSE} \tilde{p}$ and MSE \hat{p}, we find that $\operatorname{MSE} \hat{p}<\operatorname{MSE} \tilde{p}$ for all $n \geq 1$.
5. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Poisson (λ). Find a function of \bar{X}_{n} which is an unbiased estimator of λ^{2}. Hint: Begin by finding $\mathbb{E} \bar{X}_{n}^{2}$.

We have $\mathbb{E} \bar{X}_{n}^{2}=\operatorname{Var} \bar{X}_{n}+\left(\mathbb{E} \bar{X}_{n}\right)^{2}=\lambda / n+\lambda^{2}$. We see that the estimator $\tilde{\lambda}=\bar{X}_{n}^{2}-\bar{X}_{n} / n$ satisfies

$$
\mathbb{E} \tilde{\lambda}=\mathbb{E}\left[\bar{X}_{n}^{2}-\bar{X}_{n} / n\right]=\lambda / n+\lambda^{2}-\lambda / n=\lambda^{2}
$$

so that it is an unbiased estimator of λ^{2}.
6. Suppose X_{1}, \ldots, X_{n} are a random sample from the $\operatorname{Poisson}(\lambda)$ distribution, where λ is unknown.
(a) Find $\mathbb{E} \bar{X}_{n}$
(b) Find $\mathbb{E} S_{n}^{2}$.
(c) Which do you suggest as an estimator for λ ? Run a simulation to inform your suggestion: Choose a sample size n and a value of λ and generate 1,000 random samples of size n, computing on each random sample the value of \bar{X}_{n} and \bar{S}_{n}^{2} and storing these. You can do this with a for loop like the following:

```
X.bar <- S.sq <- numeric(S) # S is the number of data sets to simulate
for(s in 1:S)
{
    X <- rpois(n,lambda)
    X.bar[s] <- mean(X)
    S.sq[s] <- var(X)
}
```

Make histograms of the 1,000 values of \bar{X}_{n} and \bar{S}_{n}^{2} from your simulation and use these to argue for using one or the other as an estimator for λ. Turn in your code and the two histograms. Hint: Use rpois to generate the Poisson data.

These are the histograms resulting the simulation with $n=50$ and $\lambda=5$.

Histogram of S.sq

Histogram of X.bar

We can see that although both histograms are centered at the value of λ, the values of S_{n}^{2} are much more spread out than the values of \bar{X}_{n}, so we would prefer \bar{X}_{n} as an estimator of λ.

