
STAT 512 hw 5

1. Let Y1, . . . , Yn
ind∼ Exponential(λ) and consider estimating λ with nY(1).

(a) Find the pdf of Y(1) and identify its distribution.

The cdf and pdf of the Exponential(λ) distribution are given by FY (y) = 1 − e−y/λ and
fY (y) = (1/λ)e−y/λ, so we have

fY(1)(y1) = n[1− (1− e−y/λ)]n−1(1/λ)e−y/λ

= (n/λ)e−y(n−1)/λe−y/λ

=
1

λ/n
e−y/(λ/n),

so Y(1) ∼ Exponential(λ/n).

(b) Find EnY(1) and Var(nY(1)).

We have EnY(1) = n(λ/n) = λ and Var(nY(1)) = n2(λ/n)2 = λ2.

(c) Find MSE(nY(1)) as an estimator of λ.

We have MSE(nY(1)) =
(
Bias(nY(1))

)2
+ Var(nY(1)) = 0 + λ2 = λ2.

(d) Find MSE Ȳn as an estimator of λ.

We have MSE Ȳn = (Bias Ȳn)2 + Var Ȳn = 0 + λ2/n = λ2/n.

2. Let X1, . . . , X5 be a random sample from a distribution with pdf

fX(x) =
1

δ
1(δ < x < 2δ)

for some δ > 0.

(a) Find the cdf FX corresponding to the pdf fX .

The cdf is given by

FX(x) =


1, x ≥ 2δ
x− δ
δ

, δ ≤ x < δ

0, x < δ

(b) Find the pdf of X(2).



For δ < x < 2δ We have

fX(2)
(x) =

5!

(2− 1)!(5− 2)!

[
x− δ
δ

]2−1 [
1− x− δ

δ

]5−2
1

δ
=

20

δ

[
x− δ
δ

] [
1− x− δ

δ

]3
.

(c) Find the pdf of the Y = (X(2) − δ)/δ of X(2) and give the name of the distribution of Y .

We have

y = (x− δ)/δ = g(x) ⇐⇒ x = δy + δ = g−1(y) and
d

dy
g−1(y) = δ.

Note that the support of Y is (0, 1). So the pdf of Y is given by

fY (y) =
20

δ
y(1− y)3 · |δ|

=
Γ(2 + 4)

Γ(2)Γ(4)
y2−1(1− y)4−1 for 0 < y < 1.

So Y has the Beta(2, 4) distribution.

(d) Give EY and VarY .

We have

EY =
2

2 + 4
= 1/3

VarY =
2(4)

(2 + 4)2(2 + 4 + 1)
= 2/63.

(e) Find the MSE of δ̂ = (3/4)X(2) when δ̂ is used as an estimator of δ. Hint: X(2) = δY + δ.

We have

Bias δ̂ = E(3/4)X(2) − δ = (3/4)(δEY + δ)− δ = (3/4)(4/3)δ − δ = 0

and
Var δ̂ = Var(3/4)X(2) = (9/16) Var[δY + δ] = (9/16)δ22/63 = δ2/56.

So

MSE δ̂ =
δ2

56
.
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3. Let Y1, . . . , Yn be a random sample from the distribution with cdf given by

FY (y) =


0, y < 0
(y/a)b, 0 ≤ y ≤ a
1, y > a

for some a, b > 0, where b is known. Consider the estimator of a given by â = Y(n).

(a) Find the pdf of Y(n).

The population pdf is given by

fY (y) =
b

ab
yb−1 for 0 < y < a

and the pdf of Y(n) is given by

fY(n)
(y) = n

[(y
a

)b]n−1
b

ab
yb−1 =

nb

anb
ynb−1 for 0 < y < a.

(b) Find an expression for Bias â

We have

Eâ = EY(n) =

∫ a

0

y
nb

anb
ynb−1dy = a

(
nb

nb+ 1

)
,

so that

Bias â = Eâ− a = a

(
nb

nb+ 1

)
− a = a

[(
nb

nb+ 1

)
− 1

]
= −a

(
1

nb+ 1

)
.

(c) Propose a scaled version of â which results in an unbiased estimator, ã, of a.

If we define

ã = â

(
nb+ 1

nb

)
,

then

Eã = Eâ
(
nb+ 1

nb

)
= a

(
nb

nb+ 1

)(
nb+ 1

nb

)
= a.

(d) Find the MSE of ã.

Since ã is unbiased,

MSE ã = Var ã = Var

[
â

(
nb+ 1

nb

)]
=

(
nb+ 1

nb

)2

Var â,
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where Var â = VarY(n) = EY(n) − (EYn)2. We have

EY 2
(n) =

∫ a

0

y2
nb

anb
ynb−1dy = a2

(
nb

nb+ 2

)
,

so that

VarY(n) = a2
(

nb

nb+ 2

)
−
[
a

(
nb

nb+ 1

)]2
= a2

[
nb

nb+ 2
−
(

nb

nb+ 1

)2
]
.

Finally we have

MSE ã =

(
nb+ 1

nb

)2

a2

[
nb

nb+ 2
−
(

nb

nb+ 1

)2
]

= a2
[

(nb+ 1)2

(nb+ 2)nb
− 1

]
=

a2

(nb+ 2)nb

(e) Find the transformation of a Uniform(0, 1) rv which will result in a realization of Y .

Setting U = (Y/a)b, which has the Uniform(0, 1) distribution by the probability integral
transform, and solving for Y gives

Y = aU1/b,

which can be used to generate realizations of the random variable Y .

(f) Run a simulation using R to confirm the formula you obtained for MSE ã. Specifically, choose
values of a, b, and n and generate 1,000 samples of size n (I recommend choosing b ≤ 5). On
each sample, compute the estimator ã and record its value. Then compute the average squared
distance of your ã values from a over the 1,000 simulated data sets. In addition, compute the
value of MSE ã according to your formula from part (d). The numbers should be quite close
to each other. You may make use of the following partial code:

a.tilde <- numeric()

for(s in 1:S)

{

U <- runif(n)

Y <- # your formula for generating Y from U

a.tilde[s] <- # compute a.tilde on the sample

}

mean( (a.tilde - a)^2 )

# compute also MSE of a.tilde according to your formula
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Here is what to turn in:

i. Your code.

ii. Your simulated value of MSE ã as well as its value according to the formula.

iii. A histogram of your a.tilde values.

n <- 20

a <- 10

b <- 3

S <- 1000

a.tilde <- numeric()

for(s in 1:S)

{

U <- runif(n)

Y <- a*U^(1/b)

a.tilde[s] <- max(Y) * ((n*b + 1)/(n*b))

}

# compare:

mean( (a.tilde - a)^2 )

a^2/( (n*b + 2)*n*b)

Under these settings the simulated value of MSE ã was 0.02404551, and the theoretical
value is

MSE ã =
102

(20(3) + 2)20(3)
= 0.02688172,

so the simulation results make sense. Below is a histogram of the 1,000 values of a.tilde
from the simulation:
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4. Let X1, . . . , Xn
ind∼ Bernoulli(p) and let Y = X1 + · · ·+Xn. Consider the two estimators of p given

by

p̂ =
Y

n
and p̃ =

Y + 1

n+ 2
.

(a) Find Bias p̂ and Bias p̃.

We have Bias p̂ = 0 since the sample mean is always unbiased for the population mean. For
p̃ we have

Bias p̃ =
EY + 1

n+ 2
=
np+ 1

n+ 2
− p =

1− 2p

n+ 2
.

(b) Find Var p̂ and Var p̃.

We have Var p̂ = p(1 − p)/n, since the sample means is always the population variance
divided by the sample size. For p̃ we have

Var p̃ =
VarY

(n+ 2)2
=
np(1− p)
(n+ 2)2

=

(
n

n+ 2

)2
p(1− p)

n
.

(c) Find MSE p̂ and MSE p̃.

Since p̂ is unbiased, MSE p̂ = Var p̂ = p(1− p)/n. For p̃ we have

MSE p̃ = (Bias p̃)2 + Var p̃

=

(
1− 2p

n+ 2

)2

+

(
n

n+ 2

)2
p(1− p)

n

(d) If the true value of p is 0.50, which estimator has a lower MSE?

We see that at p = 0.50, the bias of p̃ is equal to zero. Since this estimator has a lower
variance, that is, since

Var p̃ =

(
n

n+ 2

)2

Var p̂,

we will have MSE p̃ < MSE p̂ when p = 0.50.

(e) If the true value of p is 0.95, which estimator has a lower MSE?

Plugging p = 0.95 into our formulas for MSE p̃ and MSE p̂, we find that MSE p̂ < MSE p̃
for all n ≥ 1.
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5. Let X1, . . . , Xn
ind∼ Poisson(λ). Find a function of X̄n which is an unbiased estimator of λ2.

Hint: Begin by finding EX̄2
n.

We have EX̄2
n = Var X̄n + (EX̄n)2 = λ/n + λ2. We see that the estimator λ̃ = X̄2

n − X̄n/n
satisfies

Eλ̃ = E[X̄2
n − X̄n/n] = λ/n+ λ2 − λ/n = λ2,

so that it is an unbiased estimator of λ2.

6. Suppose X1, . . . , Xn are a random sample from the Poisson(λ) distribution, where λ is unknown.

(a) Find EX̄n

(b) Find ES2
n.

(c) Which do you suggest as an estimator for λ? Run a simulation to inform your suggestion:
Choose a sample size n and a value of λ and generate 1,000 random samples of size n, computing
on each random sample the value of X̄n and S̄2

n and storing these. You can do this with a for
loop like the following:

X.bar <- S.sq <- numeric(S) # S is the number of data sets to simulate

for(s in 1:S)

{

X <- rpois(n,lambda)

X.bar[s] <- mean(X)

S.sq[s] <- var(X)

}

Make histograms of the 1,000 values of X̄n and S̄2
n from your simulation and use these to argue

for using one or the other as an estimator for λ. Turn in your code and the two histograms.
Hint: Use rpois to generate the Poisson data.

These are the histograms resulting the simulation with n = 50 and λ = 5.
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Histogram of S.sq
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We can see that although both histograms are centered at the value of λ, the values of S2
n are

much more spread out than the values of X̄n, so we would prefer X̄n as an estimator of λ.
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