STAT 512 su 2021 hw 6

1. Let Y_{1}, \ldots, Y_{n} be a random sample from the distribution with pdf given by

$$
f_{Y}(y)=\frac{\Gamma(2+\beta)}{\Gamma(\beta)} y(1-y)^{\beta-1}, \quad 0<y<1 .
$$

(a) Find $\mathbb{E} \bar{Y}_{n}$. Hint: Try to recognize the pdf.
(b) Find $\operatorname{Var} \bar{Y}_{n}$.
(c) Show that \bar{Y}_{n} is a consistent estimator of $2 /(2+\beta)$.
(d) Propose a function of \bar{Y}_{n} which is a consistent estimator of β.
2. Let X_{1}, \ldots, X_{n} be a random sample from the distribution with cdf given by

$$
F_{X}(x)= \begin{cases}1-\left(\frac{c}{x}\right)^{\alpha}, & x \geq c \\ 0, & x<c\end{cases}
$$

(a) Find the population pdf.
(b) Find the pdf of $X_{(1)}$.
(c) Show that $X_{(1)}$ is a consistent estimator of c by directly showing that

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{(1)}-c\right|<\varepsilon\right)=1
$$

for every $\varepsilon>0$.
3. Suppose $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right)$.
(a) For $n=10$, give the value of a such that $P\left(\bar{X}_{n}-a S_{n} / \sqrt{n}<\mu<\bar{X}_{n}+a S_{n} / \sqrt{n}\right)=0.99$.
(b) For $n=10$, find $P\left(\bar{X}_{n}>\mu+2 S_{n} / \sqrt{n}\right)$.
(c) For $n=10$, find $P\left(\bar{X}_{n}-2 S_{n} / \sqrt{n}<\mu<\bar{X}_{n}+2 S_{n} / \sqrt{n}\right)$.
(d) Give $\lim _{n \rightarrow \infty} P\left(\bar{X}_{n}-2 S_{n} / \sqrt{n}<\mu<\bar{X}_{n}+2 S_{n} / \sqrt{n}\right)$.
4. Suppose $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right)$.
(a) For $n=10$, give values of a and b such that $P\left(a S_{n}^{2}<\sigma^{2}<b S_{n}^{2}\right)=0.90$.
(b) For $n=10$, find $P\left((0.473) S_{n}^{2}<\sigma^{2}<(3.333) S_{n}^{2}\right)$.
(c) Give $\lim _{n \rightarrow \infty} P\left(-0.01<S_{n}^{2}-\sigma^{2}<0.01\right)$.
5. Suppose $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim}$ Exponential (λ). Then according to the central limit theorem

$$
\frac{\bar{X}_{n}-\lambda}{\lambda / \sqrt{n}} \rightarrow^{D} Z
$$

as $n \rightarrow \infty$, where $Z \sim \operatorname{Normal}(0,1)$.
(a) Use the above result to find

$$
\lim _{n \rightarrow \infty} P\left(1<\frac{\bar{X}_{n}-\lambda}{\lambda / \sqrt{n}}\right) .
$$

(b) Use mgfs to show that $\sqrt{n} \bar{X}_{n} / \lambda \sim \operatorname{Gamma}(n, 1 / \sqrt{n})$.
(c) Use the previous result to compute the probability

$$
P\left(1<\frac{\bar{X}_{n}-\lambda}{\lambda / \sqrt{n}}\right)
$$

for $\lambda=10$ and $n=10,20,30,100,500,1000,10000$. The numbers should approach your answer from part (a). Hint: Use the pgamma function.
(d) Suppose we observe $\bar{X}_{n}=20.2$ on a sample of size $n=50$. Give a 95% CI for λ based on
i. the exact pivot quantity result $\sqrt{n} \bar{X}_{n} / \lambda \sim \operatorname{Gamma}(n, 1 / \sqrt{n})$.
ii. the asymptotic pivot quantity result $\sqrt{n}\left(\bar{X}_{n}-\lambda\right) / \lambda \xrightarrow{\mathrm{D}} Z, Z \sim \operatorname{Normal}(0,1)$.

Hint: Use qgamma(.,shape $=$., scale $=$.) to obtain quantiles of the Gamma distribution.
6. Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Bernoulli}(p)$, and let $\hat{p}_{n}=n^{-1}\left(X_{1}+\cdots+X_{n}\right)$.
(a) Give an exact expression for $P\left(1 / 2<\hat{p}_{n}\right)$.
(b) Evaluate your expression from part (a) for $n=200$ and $p=4 / 9$.
(c) Find an approximation to $P\left(1 / 2<\hat{p}_{n}\right)$ when $n=200$ and $p=4 / 9$ using the fact that

$$
\frac{\hat{p}_{n}-p}{\sqrt{\frac{p(1-p)}{n}}} \rightarrow^{D} Z
$$

as $n \rightarrow \infty$, where $Z \sim \operatorname{Normal}(0,1)$.
(d) Suppose that for $n=200, \hat{p}=0.64$. Give an approximate 95% CI for p based on this data.
7. Consider drawing a random sample $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Exponential (λ) and computing the interval

$$
\bar{X}_{n} \pm z_{\alpha / 2} S_{n} / \sqrt{n}
$$

(a) Give $\lim _{n \rightarrow \infty} P\left(\bar{X}_{n}-S_{n} / \sqrt{n}<\lambda<\bar{X}_{n}+S_{n} / \sqrt{n}\right)$.
(b) For small values of n, the interval $\bar{X}_{n} \pm z_{\alpha / 2} S_{n} / \sqrt{n}$ will not contain λ with the desired probability of $1-\alpha$. For large n, however, by the central limit theorem and an application of Slutzky's theorem, the probability that $\bar{X}_{n} \pm z_{\alpha / 2} S_{n} / \sqrt{n}$ contains λ should be close to $1-\alpha$.
The coverage of a confidence interval is the probability that it contains its target. The nominal coverage $1-\alpha$ is the stated and desired coverage, which may differ from the actual coverage. Conduct some simulations to estimate the coverage of the confidence interval $\bar{X}_{n} \pm z_{\alpha / 2} S_{n} / \sqrt{n}$ for $\alpha=0.05$ when $\lambda=20$ for the sample sizes $n=5,10,15,25,50,100$. For each value of n, generate 1000 realizations of the interval. Here is partial code:

```
covered <- logical(S) # vector to store TRUE/FALSE values
for(s in 1:S)
{
    # generate random sample from Exp(lambda)
    X <- rexp(n,1/lambda)
    X.bar <- mean(X)
    S.n <- sd(X)
    L <- X.bar - qnorm(1-alpha/2) * S.n / sqrt(n)
    U <- X.bar + qnorm(1-alpha/2) * S.n / sqrt(n)
    # check whether interval contained lambda
    covered[s] <- ( L < lambda ) & ( U > lambda )
}
# compute proportion of TRUE values
coverage <- mean(covered)
coverage
```

What coverages do you get for the sample sizes $n=5,10,15,25,50,100$? For what sample sizes do you advise using this confidence interval (for what sample sizes is the coverage close to 0.95$)$?

Optional (do not turn in) problems for additional study from Wackerly, Mendenhall, Scheaffer, 7th Ed.:

- $8.60,8.63$
- 9.17, 9.20, 9.25 (about consistency)

