
STAT 512 hw 6

1. Let Y1, . . . , Yn be a random sample from the distribution with pdf given by

fY (y) =
Γ(2 + β)

Γ(β)
y(1− y)β−1, 0 < y < 1.

(a) Find EȲn. Hint: Try to recognize the pdf.

We recognize the pdf as that of the Beta(2, β) distribution, which has expected value equal
to 2/(2 + β). Since the sample mean has expected value equal to the population mean, we
have EȲn = 2/(2 + β).

(b) Find Var Ȳn.

The variance of the sample mean is equal to the population mean divided by the sample
size n, so we have

Var Ȳn =
2β

n(2 + β)2(2 + β + 1)
.

(c) Show that Ȳn is a consistent estimator of 2/(2 + β).

Note that 2/(2 + β) is the population mean.

If Bias Ȳn and Var Ȳn converge to 0 as n → ∞, then Ȳn is a consistent estimator. This is
the case, since Bias Ȳn = 0 and Var Ȳn has n in its denominator, so that it will converge to
0 as n→∞.

We could also argue from the WLLN: Since the variance of the population, which is 2β/[(2+
β)2(2 +β+ 1)], is finite, the sample mean converges in probability to the population mean,
i.e. the sample mean is a consistent estimator of the population mean.

(d) Propose a function of Ȳn which is a consistent estimator of β.

We have

Ȳn
p−→ 2

2 + β
=⇒ 2− 2Ȳn

Ȳn

p−→ β,

so that

β̂ =
2− 2Ȳn
Ȳn

is a consistent estimator of β. We can obtain this by setting Ȳn = 2/(2 + β) and solving
for β. Then we note that the function

Ȳn 7→
2− 2Ȳn
Ȳn

is continuous for Ȳn ∈ (0, 1).



2. Let X1, . . . , Xn be a random sample from the distribution with cdf given by

FX(x) =

{
1−

(
c
x

)α
, x ≥ c

0, x < c

(a) Find the population pdf.

Taking the derivative of the cdf, we obtain

fX(x) = αcαx−(α+1), x ≥ c.

(b) Find the pdf of X(1).

We have

fX(1)
(x) = n

[
1−

(
1−

( c
x

)α)]n−1

αcαx−(α+1)

= nαcnαx−(nα+1), x ≥ c.

(c) Show that X(1) is a consistent estimator of c by directly showing that

lim
n→∞

P (|X(1) − c| < ε) = 1

for every ε > 0.

We have

P (|X(1) − c| < ε) = P (c− ε < X(1) < c+ ε)

= P (c < X(1) < c+ ε) (support begins at c)

=

∫ c+ε

c

nαcnαx−(nα+1)dx

= cnα
[
c−nα + (c+ ε)−nα

]
= 1−

(
c

c+ ε

)nα
Since ε > 0, the second term goes to zero as n→∞, so that the limit is 1.

3. Suppose X1, . . . , Xn
iid∼ Normal(µ, σ2).

(a) For n = 10, give the value of a such that P
(
X̄n − aSn/

√
n < µ < X̄n + aSn/

√
n
)

= 0.99.
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The value of a needs to be the upper 0.005 quantile of the t9 distribution, which is
qt(.995,9) = 3.249836.

(b) For n = 10, find P
(
X̄n > µ+ 2Sn/

√
n
)
.

We have

P
(
X̄n > µ+ 2Sn/

√
n
)

= P
(√

n(X̄n − µ)/Sn > 2
)

= P (T > 2), T ∼ t9.

So the answer is 1-pt(2,9) = 0.03827641.

(c) For n = 10, find P
(
X̄n − 2Sn/

√
n < µ < X̄n + 2Sn/

√
n
)
.

P
(
X̄n − 2Sn/

√
n < µ < X̄n + 2Sn/

√
n
)

= P

(
−2 <

X̄n − µ
Sn/
√
n
< 2

)
= P (−2 < T < 2), T ∼ t9.

So the answer is pt(2,9) - pt(-2,9) = 0.9234472.

(d) Give limn→∞ P
(
X̄n − 2Sn/

√
n < µ < X̄n + 2Sn/

√
n
)
.

We have

lim
n→∞

P
(
X̄n − 2Sn/

√
n < µ < X̄n + 2Sn/

√
n
)

= lim
n→∞

P

(
−2 <

X̄n − µ
Sn/
√
n
< 2

)
= P (−2 < Z < 2), Z ∼ Normal(0, 1).

So the answer is pnorm(2) - pnorm(-2) = 0.9544997.

4. Suppose X1, . . . , Xn
iid∼ Normal(µ, σ2).

(a) For n = 10, give values of a and b such that P (aS2
n < σ2 < bS2

n) = 0.90.

Writing

0.90 = P
(
aS2

n < σ2 < bS2
n

)
= P

(
1

aS2
n

>
1

σ2
>

1

bS2
n

)
= P

(
n− 1

a
>

(n− 1)S2
n

σ2
>
n− 1

b

)
,

we see that we can choose a and b which satisfy

n− 1

a
= χ2

n−1,0.05 ⇐⇒ a =
n− 1

χ2
n−1,0.05

and
n− 1

b
= χ2

n−1,1−0.05 ⇐⇒ b =
n− 1

χ2
n−1,1−0.05

.
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For n = 10 we have

a = 9/qchisq(.95,9) = 0.531947 and b = 9/qchisq(.05,9) = 2.706675.

(b) For n = 10, find P ((0.473)S2
n < σ2 < (3.333)S2

n).

We have

P
(
(0.473)S2

n < σ2 < (3.333)S2
n

)
= P

(
n− 1

0.473
>

(n− 1)S2
n

σ2
>
n− 1

3.333

)
.

For n = 10 this becomes

P

(
9

0.473
>

9S2
9

σ2
<

9

3.333

)
= P

(
9

0.473
> W >

9

3.333

)
, W ∼ χ2

9.

So the answer is pchisq(9/0.473,9) - pchisq(9/3.333,9) = 0.9500436.

(c) Give limn→∞ P (−0.01 < S2
n − σ2 < 0.01).

Since under these settings S2
n is a consistent estimator of σ2 (shown in the notes), the limit

is 1.

5. Suppose X1, . . . , Xn
iid∼ Exponential(λ). Then according to the central limit theorem

X̄n − λ
λ/
√
n
→D Z,

as n→∞, where Z ∼ Normal(0, 1).

(a) Use the above result to find

lim
n→∞

P

(
1 <

X̄n − λ
λ/
√
n

)
.

Since the mean and variance of the Exponential(λ) distribution are λ and λ2, respectively,
we have

lim
n→∞

P

(
1 <

X̄n − λ
λ/
√
n

)
= P (1 < Z), Z ∼ Normal(0, 1),

so the answer is 1 - pnorm(1) = 0.1586553.

(b) Use mgfs to show that
√
nX̄n/λ ∼ Gamma(n, 1/

√
n).
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We have

M√nX̄n/λ(t) = MX̄n
(
√
nt/λ)

= M(X1+···+Xn)/n(
√
nt/λ)

= MX1+···+Xn(t/(
√
nλ))

= [MX1(t/(
√
nλ))]n

= [(1− λ(t/(
√
nλ)))−1]n

= (1− (1/
√
n)t)−n,

which we recognize as the mgf of the Gamma(n, 1/
√
n) distribution.

(c) Use the previous result to compute the probability

P

(
1 <

X̄n − λ
λ/
√
n

)
for λ = 10 and n = 10, 20, 30, 100, 500, 1000, 10000. The numbers should approach your answer
from part (a). Hint: Use the pgamma function.

We have

P

(
1 <

X̄n − λ
λ/
√
n

)
= P

(
1 + 1/

√
n <
√
nX̄n/λ

)
= P (1 +

√
n < G), G ∼ Gamma(n, 1/

√
n).

The following R code computes the probabilities:

lambda <- 10

n <- c(10,20,30,100,500,1000,10000)

1 - pgamma(1 + sqrt(n),shape = n,scale=1/sqrt(n))

The probabilities are

0.1553584 0.1569141 0.1574648 0.1582787 0.1585771 0.1586158 0.1586512

We note that these approach the value of 1 − Φ(1) = 0.1586553, where Φ is the standard
Normal cdf.

(d) Suppose we observe X̄n = 20.2 on a sample of size n = 50. Give a 95% CI for λ based on

i. the exact pivot quantity result
√
nX̄n/λ ∼ Gamma(n, 1/

√
n).

To construct a (1 − α)100% confidence interval for λ based on the pivot quantity
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√
nX̄n/λ, we write

P

(
Gn,1/

√
n,1−α/2 <

√
nX̄n

λ
< Gn,1/

√
n,α/2

)
= 1− α,

where Gn,1/
√
n,ξ is the upper ξ quantile of the Gamma(n, 1/

√
n) distribution for ξ ∈

(0, 1). Rearranging this until λ appears alone in the middle results in

P

( √
nX̄n

Gn,1/
√
n,α/2

< λ <

√
nX̄n

Gn,1/
√
n,1−α/2

)
= 1− α.

For α = 0.05, n = 50 and X̄n = 20.2, the confidence interval is given by(√
50(20.2)

9.16136
,

√
50(20.2)

5.248283

)
= (15.59109, 27.21568) ,

where

9.16136 = qgamma(.975,shape=n,scale=1/sqrt(n))

5.248283 = qgamma(.025,shape=n,scale=1/sqrt(n)).

ii. the asymptotic pivot quantity result
√
n(X̄n − λ)/λ

D−→ Z, Z ∼ Normal(0, 1).

Because of the central limit theorem we can write

lim
n→∞

P
(
−zα/2 <

√
n(X̄n − λ)/λ < zα/2

)
= 1− α,

which we can by rearrangement write as

lim
n→∞

P

( √
nX̄n√

n− zα/2
< λ <

√
nX̄n√

n+ zα/2

)
= 1− α.

So an approximate 95% confidence interval for λ based on n = 50 and X̄n = 20.2 is
given by

(15.81609, 27.94613).

It is quite similar to the exact one!

Hint: Use qgamma(.,shape = ., scale = .) to obtain quantiles of the Gamma distribution.

6. Let X1, . . . , Xn
iid∼ Bernoulli(p), and let p̂n = n−1(X1 + · · ·+Xn).

(a) Give an exact expression for P (1/2 < p̂n).
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We have

P (1/2 < p̂n) = P (1/2 < Y/n), Y ∼ Binomial(n, p)

= P (n/2 < Y )

=
n∑

y=dn/2e

(
n

y

)
py(1− p)n−y.

(b) Evaluate your expression from part (a) for n = 200 and p = 4/9.

We can write

P (1/2 < p̂n) = 1−
bn/2c∑
y=0

(
n

y

)
py(1− p)n−y

and evaluate it with n = 200 and p = 4/9 with

1 - pbinom(100,200,4/9) = 0.04957838.

(c) Find an approximation to P (1/2 < p̂n) when n = 200 and p = 4/9 using the fact that

p̂n − p√
p(1−p)
n

→D Z,

as n→∞, where Z ∼ Normal(0, 1).

We have

P (1/2 < p̂n) = P

(
1/2− 4/9√

4/9(1− 4/9)/200
<

p̂n − 4/9√
4/9(1− 4/9)/200

)
→ P (1.581139 < Z) , Z ∼ Normal(0, 1).

as n→∞. And P (1.581139 < Z) = 1 - pnorm(1.581139) = 0.05692313.

(d) Suppose that for n = 200, p̂ = 0.64. Give an approximate 95% CI for p based on this data.

According to the formula in the notes, an approximate 95% confidence interval for p would
be

0.64± 1.959964
√

0.64(1− 0.64)/200 = (0.5069532, 0.7730468).
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7. Consider drawing a random sample X1, . . . , Xn
ind∼ Exponential(λ) and computing the interval

X̄n ± zα/2Sn/
√
n.

(a) Give limn→∞ P
(
X̄n − Sn/

√
n < λ < X̄n + Sn/

√
n
)
.

We have

lim
n→∞

P
(
X̄n − Sn/

√
n < λ < X̄n + Sn/

√
n
)

= lim
n→∞

P

(
−1 <

X̄n − λ
Sn/
√
n
< 1

)
= P (−1 < Z < 1),

where Z ∼ Normal(0, 1), so the answer is pnorm(1) - pnorm(-1) = 0.6826895.

(b) For small values of n, the interval X̄n±zα/2Sn/
√
n will not contain λ with the desired probability

of 1 − α. For large n, however, by the central limit theorem and an application of Slutzky’s
theorem, the probability that X̄n ± zα/2Sn/

√
n contains λ should be close to 1− α.

The coverage of a confidence interval is the probability that it contains its target. The nominal
coverage 1− α is the stated and desired coverage, which may differ from the actual coverage.

Conduct some simulations to estimate the coverage of the confidence interval X̄n± zα/2Sn/
√
n

for α = 0.05 when λ = 20 for the sample sizes n = 5, 10, 15, 25, 50, 100. For each value of n,
generate 1000 realizations of the interval. Here is partial code:

covered <- logical(S) # vector to store TRUE/FALSE values

for(s in 1:S)

{

# generate random sample from Exp(lambda)

X <- rexp(n,1/lambda)

X.bar <- mean(X)

S.n <- sd(X)

L <- X.bar - qnorm(1-alpha/2) * S.n / sqrt(n)

U <- X.bar + qnorm(1-alpha/2) * S.n / sqrt(n)

# check whether interval contained lambda

covered[s] <- ( L < lambda ) & ( U > lambda )

}

# compute proportion of TRUE values

coverage <- mean(covered)

coverage

What coverages do you get for the sample sizes n = 5, 10, 15, 25, 50, 100? For what sample
sizes do you advise using this confidence interval (for what sample sizes is the coverage close
to 0.95)?
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Coverages should be similar to

0.841 0.861 0.888 0.922 0.929 0.948

so they approach 95% as n increases.

Optional (do not turn in) problems for additional study from Wackerly, Mendenhall, Scheaffer, 7th Ed.:

• 8.60, 8.63

• 9.17, 9.20, 9.25 (about consistency)
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