STAT 512 hw 6

1. Let Y_{1}, \ldots, Y_{n} be a random sample from the distribution with pdf given by

$$
f_{Y}(y)=\frac{\Gamma(2+\beta)}{\Gamma(\beta)} y(1-y)^{\beta-1}, \quad 0<y<1 .
$$

(a) Find $\mathbb{E} \bar{Y}_{n}$. Hint: Try to recognize the pdf.

We recognize the pdf as that of the $\operatorname{Beta}(2, \beta)$ distribution, which has expected value equal to $2 /(2+\beta)$. Since the sample mean has expected value equal to the population mean, we have $\mathbb{E} \bar{Y}_{n}=2 /(2+\beta)$.
(b) Find $\operatorname{Var} \bar{Y}_{n}$.

The variance of the sample mean is equal to the population mean divided by the sample size n, so we have

$$
\operatorname{Var} \bar{Y}_{n}=\frac{2 \beta}{n(2+\beta)^{2}(2+\beta+1)}
$$

(c) Show that \bar{Y}_{n} is a consistent estimator of $2 /(2+\beta)$.

Note that $2 /(2+\beta)$ is the population mean.
If $\operatorname{Bias} \bar{Y}_{n}$ and $\operatorname{Var} \bar{Y}_{n}$ converge to 0 as $n \rightarrow \infty$, then \bar{Y}_{n} is a consistent estimator. This is the case, since $\operatorname{Bias} \bar{Y}_{n}=0$ and $\operatorname{Var} \bar{Y}_{n}$ has n in its denominator, so that it will converge to 0 as $n \rightarrow \infty$.
We could also argue from the WLLN: Since the variance of the population, which is $2 \beta /[(2+$ $\left.\beta)^{2}(2+\beta+1)\right]$, is finite, the sample mean converges in probability to the population mean, i.e. the sample mean is a consistent estimator of the population mean.
(d) Propose a function of \bar{Y}_{n} which is a consistent estimator of β.

We have

$$
\bar{Y}_{n} \xrightarrow{\mathrm{p}} \frac{2}{2+\beta} \Longrightarrow \frac{2-2 \bar{Y}_{n}}{\bar{Y}_{n}} \xrightarrow{\mathrm{p}} \beta,
$$

so that

$$
\hat{\beta}=\frac{2-2 \bar{Y}_{n}}{\bar{Y}_{n}}
$$

is a consistent estimator of β. We can obtain this by setting $\bar{Y}_{n}=2 /(2+\beta)$ and solving for β. Then we note that the function

$$
\bar{Y}_{n} \mapsto \frac{2-2 \bar{Y}_{n}}{\bar{Y}_{n}}
$$

is continuous for $\bar{Y}_{n} \in(0,1)$.
2. Let X_{1}, \ldots, X_{n} be a random sample from the distribution with cdf given by

$$
F_{X}(x)= \begin{cases}1-\left(\frac{c}{x}\right)^{\alpha}, & x \geq c \\ 0, & x<c\end{cases}
$$

(a) Find the population pdf.

Taking the derivative of the cdf, we obtain

$$
f_{X}(x)=\alpha c^{\alpha} x^{-(\alpha+1)}, \quad x \geq c
$$

(b) Find the pdf of $X_{(1)}$.

We have

$$
\begin{aligned}
f_{X_{(1)}}(x) & =n\left[1-\left(1-\left(\frac{c}{x}\right)^{\alpha}\right)\right]^{n-1} \alpha c^{\alpha} x^{-(\alpha+1)} \\
& =n \alpha c^{n \alpha} x^{-(n \alpha+1)}, \quad x \geq c .
\end{aligned}
$$

(c) Show that $X_{(1)}$ is a consistent estimator of c by directly showing that

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{(1)}-c\right|<\varepsilon\right)=1
$$

for every $\varepsilon>0$.
We have

$$
\begin{aligned}
P\left(\left|X_{(1)}-c\right|<\varepsilon\right) & =P\left(c-\varepsilon<X_{(1)}<c+\varepsilon\right) \\
& =P\left(c<X_{(1)}<c+\varepsilon\right) \quad \text { (support begins at } c \text {) } \\
& =\int_{c}^{c+\varepsilon} n \alpha c^{n \alpha} x^{-(n \alpha+1)} d x \\
& =c^{n \alpha}\left[c^{-n \alpha}+(c+\varepsilon)^{-n \alpha}\right] \\
& =1-\left(\frac{c}{c+\varepsilon}\right)^{n \alpha}
\end{aligned}
$$

Since $\varepsilon>0$, the second term goes to zero as $n \rightarrow \infty$, so that the limit is 1 .
3. Suppose $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right)$.
(a) For $n=10$, give the value of a such that $P\left(\bar{X}_{n}-a S_{n} / \sqrt{n}<\mu<\bar{X}_{n}+a S_{n} / \sqrt{n}\right)=0.99$.

The value of a needs to be the upper 0.005 quantile of the t_{9} distribution, which is $\mathrm{qt}(.995,9)=3.249836$.
(b) For $n=10$, find $P\left(\bar{X}_{n}>\mu+2 S_{n} / \sqrt{n}\right)$.

We have

$$
P\left(\bar{X}_{n}>\mu+2 S_{n} / \sqrt{n}\right)=P\left(\sqrt{n}\left(\bar{X}_{n}-\mu\right) / S_{n}>2\right)=P(T>2), \quad T \sim t_{9}
$$

So the answer is $1-\mathrm{pt}(2,9)=0.03827641$.
(c) For $n=10$, find $P\left(\bar{X}_{n}-2 S_{n} / \sqrt{n}<\mu<\bar{X}_{n}+2 S_{n} / \sqrt{n}\right)$.

$$
\begin{aligned}
P\left(\bar{X}_{n}-2 S_{n} / \sqrt{n}<\mu<\bar{X}_{n}+2 S_{n} / \sqrt{n}\right) & =P\left(-2<\frac{\bar{X}_{n}-\mu}{S_{n} / \sqrt{n}}<2\right) \\
& =P(-2<T<2), \quad T \sim t_{9}
\end{aligned}
$$

So the answer is pt $(2,9)-\operatorname{pt}(-2,9)=0.9234472$.
(d) Give $\lim _{n \rightarrow \infty} P\left(\bar{X}_{n}-2 S_{n} / \sqrt{n}<\mu<\bar{X}_{n}+2 S_{n} / \sqrt{n}\right)$.

We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(\bar{X}_{n}-2 S_{n} / \sqrt{n}<\mu<\bar{X}_{n}+2 S_{n} / \sqrt{n}\right) & =\lim _{n \rightarrow \infty} P\left(-2<\frac{\bar{X}_{n}-\mu}{S_{n} / \sqrt{n}}<2\right) \\
& =P(-2<Z<2), \quad Z \sim \operatorname{Normal}(0,1)
\end{aligned}
$$

So the answer is pnorm(2) - pnorm(-2) $=0.9544997$.
4. Suppose $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right)$.
(a) For $n=10$, give values of a and b such that $P\left(a S_{n}^{2}<\sigma^{2}<b S_{n}^{2}\right)=0.90$.

Writing

$$
\begin{aligned}
0.90=P\left(a S_{n}^{2}<\sigma^{2}<b S_{n}^{2}\right) & =P\left(\frac{1}{a S_{n}^{2}}>\frac{1}{\sigma^{2}}>\frac{1}{b S_{n}^{2}}\right) \\
& =P\left(\frac{n-1}{a}>\frac{(n-1) S_{n}^{2}}{\sigma^{2}}>\frac{n-1}{b}\right),
\end{aligned}
$$

we see that we can choose a and b which satisfy

$$
\frac{n-1}{a}=\chi_{n-1,0.05}^{2} \Longleftrightarrow a=\frac{n-1}{\chi_{n-1,0.05}^{2}} \quad \text { and } \quad \frac{n-1}{b}=\chi_{n-1,1-0.05}^{2} \Longleftrightarrow b=\frac{n-1}{\chi_{n-1,1-0.05}^{2}}
$$

For $n=10$ we have

$$
a=9 / \mathrm{qchisq}(.95,9)=0.531947 \quad \text { and } b=9 / \mathrm{qchisq}(.05,9)=2.706675
$$

(b) For $n=10$, find $P\left((0.473) S_{n}^{2}<\sigma^{2}<(3.333) S_{n}^{2}\right)$.

We have

$$
P\left((0.473) S_{n}^{2}<\sigma^{2}<(3.333) S_{n}^{2}\right)=P\left(\frac{n-1}{0.473}>\frac{(n-1) S_{n}^{2}}{\sigma^{2}}>\frac{n-1}{3.333}\right) .
$$

For $n=10$ this becomes

$$
P\left(\frac{9}{0.473}>\frac{9 S_{9}^{2}}{\sigma^{2}}<\frac{9}{3.333}\right)=P\left(\frac{9}{0.473}>W>\frac{9}{3.333}\right), \quad W \sim \chi_{9}^{2} .
$$

So the answer is pchisq(9/0.473,9) - pchisq $(9 / 3.333,9)=0.9500436$.
(c) Give $\lim _{n \rightarrow \infty} P\left(-0.01<S_{n}^{2}-\sigma^{2}<0.01\right)$.

Since under these settings S_{n}^{2} is a consistent estimator of σ^{2} (shown in the notes), the limit is 1 .
5. Suppose $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim}$ Exponential (λ). Then according to the central limit theorem

$$
\frac{\bar{X}_{n}-\lambda}{\lambda / \sqrt{n}} \rightarrow^{D} Z
$$

as $n \rightarrow \infty$, where $Z \sim \operatorname{Normal}(0,1)$.
(a) Use the above result to find

$$
\lim _{n \rightarrow \infty} P\left(1<\frac{\bar{X}_{n}-\lambda}{\lambda / \sqrt{n}}\right) .
$$

Since the mean and variance of the Exponential (λ) distribution are λ and λ^{2}, respectively, we have

$$
\lim _{n \rightarrow \infty} P\left(1<\frac{\bar{X}_{n}-\lambda}{\lambda / \sqrt{n}}\right)=P(1<Z), \quad Z \sim \operatorname{Normal}(0,1)
$$

so the answer is $1-\operatorname{pnorm}(1)=0.1586553$.
(b) Use mgfs to show that $\sqrt{n} \bar{X}_{n} / \lambda \sim \operatorname{Gamma}(n, 1 / \sqrt{n})$.

We have

$$
\begin{aligned}
M_{\sqrt{n} \bar{X}_{n} / \lambda}(t) & =M_{\bar{X}_{n}}(\sqrt{n} t / \lambda) \\
& =M_{\left(X_{1}+\cdots+X_{n}\right) / n}(\sqrt{n} t / \lambda) \\
& =M_{X_{1}+\cdots+X_{n}}(t /(\sqrt{n} \lambda)) \\
& =\left[M_{X_{1}}(t /(\sqrt{n} \lambda))\right]^{n} \\
& =\left[(1-\lambda(t /(\sqrt{n} \lambda)))^{-1}\right]^{n} \\
& =(1-(1 / \sqrt{n}) t)^{-n},
\end{aligned}
$$

which we recognize as the mgf of the $\operatorname{Gamma}(n, 1 / \sqrt{n})$ distribution.
(c) Use the previous result to compute the probability

$$
P\left(1<\frac{\bar{X}_{n}-\lambda}{\lambda / \sqrt{n}}\right)
$$

for $\lambda=10$ and $n=10,20,30,100,500,1000,10000$. The numbers should approach your answer from part (a). Hint: Use the pgamma function.

We have

$$
\begin{aligned}
P\left(1<\frac{\bar{X}_{n}-\lambda}{\lambda / \sqrt{n}}\right) & =P\left(1+1 / \sqrt{n}<\sqrt{n} \bar{X}_{n} / \lambda\right) \\
& =P(1+\sqrt{n}<G), \quad G \sim \operatorname{Gamma}(n, 1 / \sqrt{n})
\end{aligned}
$$

The following R code computes the probabilities:
lambda <- 10
$\mathrm{n}<-\mathrm{c}(10,20,30,100,500,1000,10000)$
1 - pgamma(1 + sqrt(n), shape $=n, \operatorname{scale}=1 / \operatorname{sqrt}(n))$
The probabilities are
0.15535840 .15691410 .15746480 .15827870 .15857710 .15861580 .1586512

We note that these approach the value of $1-\Phi(1)=0.1586553$, where Φ is the standard Normal cdf.
(d) Suppose we observe $\bar{X}_{n}=20.2$ on a sample of size $n=50$. Give a 95% CI for λ based on i. the exact pivot quantity result $\sqrt{n} \bar{X}_{n} / \lambda \sim \operatorname{Gamma}(n, 1 / \sqrt{n})$.

To construct a $(1-\alpha) 100 \%$ confidence interval for λ based on the pivot quantity

$$
\sqrt{n} \bar{X}_{n} / \lambda, \text { we write }
$$

$$
P\left(G_{n, 1 / \sqrt{n}, 1-\alpha / 2}<\frac{\sqrt{n} \bar{X}_{n}}{\lambda}<G_{n, 1 / \sqrt{n}, \alpha / 2}\right)=1-\alpha
$$

where $G_{n, 1 / \sqrt{n}, \xi}$ is the upper ξ quantile of the $\operatorname{Gamma}(n, 1 / \sqrt{n})$ distribution for $\xi \in$ $(0,1)$. Rearranging this until λ appears alone in the middle results in

$$
P\left(\frac{\sqrt{n} \bar{X}_{n}}{G_{n, 1 / \sqrt{n}, \alpha / 2}}<\lambda<\frac{\sqrt{n} \bar{X}_{n}}{G_{n, 1 / \sqrt{n}, 1-\alpha / 2}}\right)=1-\alpha
$$

For $\alpha=0.05, n=50$ and $\bar{X}_{n}=20.2$, the confidence interval is given by

$$
\left(\frac{\sqrt{50}(20.2)}{9.16136}, \frac{\sqrt{50}(20.2)}{5.248283}\right)=(15.59109,27.21568)
$$

where

$$
\begin{aligned}
9.16136 & =\operatorname{qgamma}(.975, \text { shape }=\mathrm{n}, \text { scale }=1 / \text { sqrt }(\mathrm{n})) \\
5.248283 & =\operatorname{qgamma}(.025, \text { shape }=\text { n, scale }=1 / \operatorname{sqrt}(\mathrm{n})) .
\end{aligned}
$$

ii. the asymptotic pivot quantity result $\sqrt{n}\left(\bar{X}_{n}-\lambda\right) / \lambda \xrightarrow{\mathrm{D}} Z, Z \sim \operatorname{Normal}(0,1)$.

Because of the central limit theorem we can write

$$
\lim _{n \rightarrow \infty} P\left(-z_{\alpha / 2}<\sqrt{n}\left(\bar{X}_{n}-\lambda\right) / \lambda<z_{\alpha / 2}\right)=1-\alpha
$$

which we can by rearrangement write as

$$
\lim _{n \rightarrow \infty} P\left(\frac{\sqrt{n} \bar{X}_{n}}{\sqrt{n}-z_{\alpha / 2}}<\lambda<\frac{\sqrt{n} \bar{X}_{n}}{\sqrt{n}+z_{\alpha / 2}}\right)=1-\alpha
$$

So an approximate 95% confidence interval for λ based on $n=50$ and $\bar{X}_{n}=20.2$ is given by

It is quite similar to the exact one!
Hint: Use qgamma(.,shape = ., scale = .) to obtain quantiles of the Gamma distribution.
6. Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Bernoulli}(p)$, and let $\hat{p}_{n}=n^{-1}\left(X_{1}+\cdots+X_{n}\right)$.
(a) Give an exact expression for $P\left(1 / 2<\hat{p}_{n}\right)$.

We have

$$
\begin{aligned}
P\left(1 / 2<\hat{p}_{n}\right) & =P(1 / 2<Y / n), \quad Y \sim \operatorname{Binomial}(n, p) \\
& =P(n / 2<Y) \\
& =\sum_{y=\lceil n / 2\rceil}^{n}\binom{n}{y} p^{y}(1-p)^{n-y} .
\end{aligned}
$$

(b) Evaluate your expression from part (a) for $n=200$ and $p=4 / 9$.

We can write

$$
P\left(1 / 2<\hat{p}_{n}\right)=1-\sum_{y=0}^{\lfloor n / 2\rfloor}\binom{n}{y} p^{y}(1-p)^{n-y}
$$

and evaluate it with $n=200$ and $p=4 / 9$ with

$$
1-\operatorname{pbinom}(100,200,4 / 9)=0.04957838 .
$$

(c) Find an approximation to $P\left(1 / 2<\hat{p}_{n}\right)$ when $n=200$ and $p=4 / 9$ using the fact that

$$
\frac{\hat{p}_{n}-p}{\sqrt{\frac{p(1-p)}{n}}} \rightarrow^{D} Z
$$

as $n \rightarrow \infty$, where $Z \sim \operatorname{Normal}(0,1)$.
We have

$$
\begin{aligned}
P\left(1 / 2<\hat{p}_{n}\right) & =P\left(\frac{1 / 2-4 / 9}{\sqrt{4 / 9(1-4 / 9) / 200}}<\frac{\hat{p}_{n}-4 / 9}{\sqrt{4 / 9(1-4 / 9) / 200}}\right) \\
& \rightarrow P(1.581139<Z), \quad Z \sim \operatorname{Normal}(0,1) .
\end{aligned}
$$

as $n \rightarrow \infty$. And $P(1.581139<Z)=1-\operatorname{pnorm}(1.581139)=0.05692313$.
(d) Suppose that for $n=200, \hat{p}=0.64$. Give an approximate 95% CI for p based on this data.

According to the formula in the notes, an approximate 95% confidence interval for p would be

$$
0.64 \pm 1.959964 \sqrt{0.64(1-0.64) / 200}=(0.5069532,0.7730468) .
$$

7. Consider drawing a random sample $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Exponential (λ) and computing the interval

$$
\bar{X}_{n} \pm z_{\alpha / 2} S_{n} / \sqrt{n}
$$

(a) Give $\lim _{n \rightarrow \infty} P\left(\bar{X}_{n}-S_{n} / \sqrt{n}<\lambda<\bar{X}_{n}+S_{n} / \sqrt{n}\right)$.

We have

$$
\lim _{n \rightarrow \infty} P\left(\bar{X}_{n}-S_{n} / \sqrt{n}<\lambda<\bar{X}_{n}+S_{n} / \sqrt{n}\right)=\lim _{n \rightarrow \infty} P\left(-1<\frac{\bar{X}_{n}-\lambda}{S_{n} / \sqrt{n}}<1\right)=P(-1<Z<1)
$$

where $Z \sim \operatorname{Normal}(0,1)$, so the answer is pnorm(1) $-\operatorname{pnorm}(-1)=0.6826895$.
(b) For small values of n, the interval $\bar{X}_{n} \pm z_{\alpha / 2} S_{n} / \sqrt{n}$ will not contain λ with the desired probability of $1-\alpha$. For large n, however, by the central limit theorem and an application of Slutzky's theorem, the probability that $\bar{X}_{n} \pm z_{\alpha / 2} S_{n} / \sqrt{n}$ contains λ should be close to $1-\alpha$.
The coverage of a confidence interval is the probability that it contains its target. The nominal coverage $1-\alpha$ is the stated and desired coverage, which may differ from the actual coverage. Conduct some simulations to estimate the coverage of the confidence interval $\bar{X}_{n} \pm z_{\alpha / 2} S_{n} / \sqrt{n}$ for $\alpha=0.05$ when $\lambda=20$ for the sample sizes $n=5,10,15,25,50,100$. For each value of n, generate 1000 realizations of the interval. Here is partial code:

```
covered <- logical(S) # vector to store TRUE/FALSE values
for(s in 1:S)
{
    # generate random sample from Exp(lambda)
    X <- rexp(n,1/lambda)
    X.bar <- mean(X)
    S.n <- sd(X)
    L <- X.bar - qnorm(1-alpha/2) * S.n / sqrt(n)
    U <- X.bar + qnorm(1-alpha/2) * S.n / sqrt(n)
    # check whether interval contained lambda
    covered[s] <- ( L < lambda ) & ( U > lambda )
}
# compute proportion of TRUE values
coverage <- mean(covered)
coverage
```

What coverages do you get for the sample sizes $n=5,10,15,25,50,100$? For what sample sizes do you advise using this confidence interval (for what sample sizes is the coverage close to 0.95)?

Coverages should be similar to

$$
\begin{array}{llllll}
0.841 & 0.861 & 0.888 & 0.922 & 0.929 & 0.948
\end{array}
$$

so they approach 95% as n increases.

Optional (do not turn in) problems for additional study from Wackerly, Mendenhall, Scheaffer, 7th Ed.:

- 8.60, 8.63
- 9.17, 9.20, 9.25 (about consistency)

