STAT 512 su 2021 hw 7

- 1. In a study of offspring sex-ratios in the Swedish-born population in [3], it is reported that among the 2,059,372 first-born children during the time period from 1932 until 2013, 1,058,701 were males, and among the 1,699,793 second-born children during the same time period, 874,369 were males.
 - (a) Build a 95% confidence interval for the difference $p_1 p_2$, where p_1 is the proportion of first-born children who are males and p_2 is the proportion of second-born children who are males.
 - (b) Report the margin of error for the confidence interval.
 - (c) Do you believe there is a difference between the proportion of males among first-born children and among second-born children? Base your answer on the data.
- 2. In [2], continuing with the Swedish theme, a data set was analyzed in which the number of traffic accidents in a day on Swedish roads was measured when a speed limit was and was not enforced. The measurements were taken on several days during the years 1961 and 1962. Read in the data by installing the R package MASS and executing the following commands:

```
library(MASS)
X <- Traffic$y[Traffic$limit=="no"]
Y <- Traffic$y[Traffic$limit=="yes"]</pre>
```

- (a) Now construct a 95% confidence interval for the difference in the mean number of traffic accidents under enforcement and non-enforcement of a speed limit (non-enforcement minus enforcement). Assume non-Normality of the population distributions.
- (b) Give an interpretation of your confidence interval. What is your recommendation about speed limits?
- 3. The number of insects on the leaves of some plants were counted after the application of different pesticides. The data for pesticides "A" and "B", taken from [1], can be read into R with:

```
data("InsectSprays")
X <- InsectSprays$count[InsectSprays$spray=="A"]
Y <- InsectSprays$count[InsectSprays$spray=="B"]</pre>
```

- (a) We know that these random samples were *not* drawn from Normal distributions. Explain why we know this without having to do any analysis.
- (b) Treating the random samples as though they were drawn from Normal populations, give a 95% confidence interval for the ratio σ_2^2/σ_1^2 , where σ_2^2 is the variance for pesticide "B" and σ_1^2 is the variance for pesticide "A".
- (c) Comment on whether there is evidence to conclude that the two variances are unequal.
- (d) Construct a 95% confidence interval for the difference $\mu_1 \mu_2$, where μ_1 and μ_2 are the mean numbers of insects after the application of pesticides "A" and "B", respectively.
- (e) Give an interpretation of the confidence interval.
- 4. Let $X_1, \ldots, X_{n_1} \stackrel{\text{iid}}{\sim} \operatorname{Normal}(\mu_1, \sigma^2)$ and $Y_1, \ldots, Y_{n_2} \stackrel{\text{iid}}{\sim} \operatorname{Normal}(\mu_2, \sigma^2)$ be independent random samples (note that the population variances are both equal to σ^2) with sample variances S_1^2 and S_2^2 , respectively.

(a) Show that

$$S_{\text{pooled}}^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

is an unbiased estimator of σ^2 .

(b) Use the fact that

$$\frac{(n_1 + n_2 - 2)S_{\text{pooled}}^2}{\sigma^2} \sim \chi_{n_1 + n_2 - 2}^2$$

to derive the upper and lower bounds of a $(1 - \alpha)100\%$ confidence interval for σ^2 .

- 5. Consider estimating a population proportion p.
 - (a) What is the most conservative sample size (erring on the large size) required in order to build a 95% confidence interval for a population proportion p with a margin of error of at most 2%?
 - (b) What about with a margin of error of at most 1%?
 - (c) What about with a margin of error of at most 0.5%?
 - (d) If you quadruple the sample size, what happens to the width of the confidence interval?
- 6. Researchers are interested in comparing the means μ_1 and μ_2 of two populations. A pilot study has suggested that the standard deviation σ_1 of the first population is three times larger than the standard deviation σ_2 of the second population.
 - (a) The researchers have the resources to sample a total of 1,000 observations from the two populations. Find the number of observations n_1 which should be drawn from population 1 and the number of observations n_2 which should be drawn from population 2 such that the width of a confidence interval for $\mu_1 \mu_2$ is minimized.
 - (b) Suppose that the pilot study suggested $\sigma_1 \approx 1$. Recommend sample sizes n_1 and n_2 under which the margin of error of a 98% confidence interval for $\mu_1 \mu_2$ will be less than 0.10.

Optional (do not turn in) problems for additional study from Wackerly, Mendenhall, Scheaffer, 7th Ed.:

- 8.61, 8.62, 8.64
- 8.70, 8.71, 8.74, 8.76
- 8.82, 8.83

References

- [1] Geoffrey Beall. The transformation of data from entomological field experiments so that the analysis of variance becomes applicable. *Biometrika*, 32(3/4):243-262, 1942.
- [2] Åke Svensson. On a goodness-of-fit test for multiplicative poisson models. The Annals of Statistics, pages 697–704, 1981.
- [3] Brendan P Zietsch, Hasse Walum, Paul Lichtenstein, Karin JH Verweij, and Ralf Kuja-Halkola. No genetic contribution to variation in human offspring sex ratio: a total population study of 4.7 million births. *Proceedings of the Royal Society B*, 287(1921):20192849, 2020.