STAT 512 hw 8

1. Let $X_{1}, X_{2}, X_{3} \stackrel{\text { iid }}{\sim}$ Exponential (λ).
(a) Show that $T\left(X_{1}, X_{2}, X_{3}\right)=X_{1}+X_{2}+X_{3}$ is a sufficient statistic for λ.

We have

$$
\begin{aligned}
f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right) & =\frac{1}{\lambda} e^{-x_{1} / \lambda} \mathbf{1}\left(x_{1}>0\right) \cdot \frac{1}{\lambda} e^{-x_{2} / \lambda} \mathbf{1}\left(x_{2}>0\right) \cdot \frac{1}{\lambda} e^{-x_{3} / \lambda} \mathbf{1}\left(x_{3}>0\right) \\
& =\underbrace{\left(\frac{1}{\lambda}\right)^{3} e^{-\left(x_{1}+x_{2}+x_{3}\right) / \lambda}}_{g\left(x_{1}+x_{2}+x_{3} ; \lambda\right)} \cdot \underbrace{\mathbf{1}\left(x_{1}>0\right) \mathbf{1}\left(x_{2}>0\right) \mathbf{1}\left(x_{3}>0\right)}_{h\left(x_{1}, x_{2}, x_{3}\right)} .
\end{aligned}
$$

Since we can factor the joint density $f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right)$ of X_{1}, X_{2}, X_{3} into the product of a function of $x_{1}+x_{2}+x_{3}$ and the parameter λ and a function of x_{1}, x_{2}, x_{3}, we can say, by the factorization theorem, that $X_{1}+X_{2}+X_{3}$ is a sufficient statistic for λ.
(b) Find the MVUE for λ.

To find the MVUE, we find a function of the statistic $X_{1}+X_{2}+X_{3}$, which is a sufficient statistic for λ, which is unbiased for λ. The MVUE is

$$
\hat{\lambda}=\frac{X_{1}+X_{2}+X_{3}}{3}
$$

since $\mathbb{E} \hat{\lambda}=\lambda$ and since $\hat{\lambda}$ is a function of $X_{1}+X_{2}+X_{3}$.
(c) Show that $X_{(1)}$ is not a sufficient statistic for λ.

We can use the factorization theorem or we can check whether λ cancels out of the ratio of the joint density of X_{1}, X_{2}, X_{3} and the pdf of $X_{(1)}$. For the factorization approach, we have, for $x_{1}, x_{2}, x_{3}>0$,

$$
\begin{aligned}
f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right) & =\left(\frac{1}{\lambda}\right)^{3} e^{-\left(x_{1}+x_{2}+x_{3}\right) / \lambda} \\
& =\left(\frac{1}{\lambda}\right)^{3} e^{-\left(x_{(1)}+x_{(2)}+x_{(3)}\right) / \lambda}, \quad x_{(1)}<x_{(2)}<x_{(3)} \\
& =\left(\frac{1}{\lambda}\right)^{3} e^{-x_{(1)} / \lambda} e^{-\left(x_{(2)}+x_{(3)}\right) / \lambda} .
\end{aligned}
$$

At this point we see that there is no way to factorize $f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right)$ as the product of a function of $x_{(1)}$ and λ and a function of x_{1}, x_{2}, x_{3}. For the second approach we must find the pdf of $X_{(1)}$, which is

$$
f_{X_{(1)}}\left(x_{(1)}\right)=3\left[1-\left(1-e^{-x_{(1)} / \lambda}\right)\right]^{2} \frac{1}{\lambda} e^{-x_{(1)} / \lambda}=\frac{1}{\lambda / 3} e^{-x_{(1)} /(\lambda / 3)} .
$$

Now we check whether λ cancels out of the ratio

$$
\frac{f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right)}{f_{X_{(1)}}\left(x_{(1)}\right)}=\frac{\left(\frac{1}{\lambda}\right)^{3} e^{-\left(x_{(1)}+x_{(2)}+x_{(3)}\right) / \lambda}}{\frac{1}{\lambda / 3} e^{-x_{(1)} /(\lambda / 3)}} .
$$

We see that λ does not cancel out of the above ratio, so $X_{(1)}$ is not a sufficient statistic for λ.
(d) Let $\tilde{\lambda}=3 X_{(1)}$ and find $\mathbb{E} \tilde{\lambda}$. Give an argument for why $\tilde{\lambda}$ is not the best estimator of λ.

We determined in the solution to the previous part that $X_{(1)} \sim \operatorname{Exponential}(\lambda / 3)$, so that $\mathbb{E} X_{(1)}=\lambda / 3$. Therefore $\mathbb{E} \tilde{\lambda}=3(\lambda / 3)=\lambda$, so that $\tilde{\lambda}$ is unbiased. However, $\tilde{\lambda}$ is not the MVUE because it is not a function of a sufficient statistic for λ.
2. Let X_{1}, \ldots, X_{n} be a random sample from the distribution with pdf given by

$$
f_{X}(x ; \beta)=\frac{\beta}{x^{\beta+1}} \mathbf{1}(x \geq 1) .
$$

(a) Show that $T=\sum_{i=1}^{n} \log X_{i}$ is a sufficient statistic for β. Hint: Use

$$
\prod_{i=1}^{n} \frac{1}{x_{i}}=\exp \left[\log \prod_{i=1}^{n} \frac{1}{x_{i}}\right]=\exp \left[-\sum_{i=1}^{n} \log x_{i}\right]
$$

We have

$$
\begin{aligned}
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) & =\prod_{i=1}^{n} \frac{\beta}{x_{i}^{\beta+1}} \mathbf{1}\left(x_{i} \geq 1\right) \\
& =\beta^{n}\left[\prod_{i=1}^{n} \frac{1}{x_{i}}\right]^{\beta+1} \prod_{i=1}^{n} \mathbf{1}\left(x_{i} \geq 1\right) \\
& =\underbrace{\beta^{n}\left[\exp \left(-\sum_{i=1}^{n} \log x_{i}\right)\right]^{\beta+1}}_{g\left(\sum_{i=1}^{n} \log x_{i} ; \beta\right)} \underbrace{\prod_{i=1}^{n} \mathbf{1}\left(x_{i} \geq 1\right)}_{h\left(x_{1}, \ldots, x_{n}\right)}
\end{aligned}
$$

By the factorization theorem, $T=\sum_{i=1}^{n} \log X_{i}$ is a sufficient statistic for β.
(b) Find the pdf of $Y=\log X$, where $X \sim f_{X}(x ; \beta)$.

We have

$$
y=\log x=: g(x) \Longleftrightarrow x=e^{y}=: g^{-1}(y), \quad \frac{d}{d y} g^{-1}(y)=e^{y}
$$

and $X \in[1, \infty) \Longrightarrow Y \in[0, \infty)$. So by the transformation method the pdf of Y is given by

$$
f_{Y}(y)=\frac{\beta}{e^{y(\beta+1)}} e^{y} \mathbf{1}(y \geq 0)=\beta e^{-y \beta} \mathbf{1}(y \geq 0)
$$

so that $Y \sim \operatorname{Exponential}(1 / \beta)$.
(c) Find the distribution of T. Hint: Identify the distribution of Y and use mgfs.

The moment generating function of T is given by

$$
M_{T}(t)=M_{\sum_{i=1}^{n} \log X_{i}}(t)=M_{\sum_{i=1}^{n} Y_{i}}(t)=\left[M_{Y}(t)\right]^{n}=\left[(1-(1 / \beta) t)^{-1}\right]^{n}=(1-(1 / \beta))^{-n} .
$$

We recognize this as the mgf of the $\operatorname{Gamma}(n, 1 / \beta)$ distribution, so $T \sim \operatorname{Gamma}(n, 1 / \beta)$.
(d) Find $\mathbb{E}[1 / T]$.

We have

$$
\begin{aligned}
\mathbb{E}[1 / T] & =\int_{0}^{\infty} \frac{1}{t} \frac{1}{\Gamma(n)(1 / \beta)^{n}} t^{n-1} e^{-t /(1 / \beta)} d t \\
& =\frac{\Gamma(n-1)(1 / \beta)^{n-1}}{\Gamma(n)(1 / \beta)^{n}} \underbrace{\int_{0}^{\infty} \frac{1}{\Gamma(n-1)(1 / \beta)^{n-1}} t^{(n-1)-1} e^{-t /(1 / \beta)} d t}_{=1, \text { since integral over Gamma }(n-1,1 / \beta) \text { pdf }} \\
& =\frac{\beta}{n-1}
\end{aligned}
$$

(e) Use your answer to the previous part to propose an unbiased estimator of β based on T.

An unbiased estimator for β is

$$
\hat{\beta}=\frac{(n-1)}{T}=\frac{n-1}{\sum_{i=1}^{n} \log X_{i}},
$$

since $\mathbb{E} \hat{\beta}=\mathbb{E}(n-1) / T=(n-1) \beta /(n-1)=\beta$.
(f) Argue that your answer to part (c) is the MVUE of β.

Since the estimator $\hat{\beta}$ is unbiased for β and since it is a function of a sufficient statistic for β, it is the MVUE, by the Rao-Blackwell theorem.
3. Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Beta}(\alpha, \beta)$. Show that $\left(\prod_{i=1}^{n} X_{i}, \prod_{i=1}^{n}\left(1-X_{i}\right)\right)$ is a sufficient statistic for (α, β).

The joint density of X_{1}, \ldots, X_{n} is given by

$$
\begin{aligned}
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) & =\prod_{i=1}^{n} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x_{i}^{\alpha-1}\left(1-x_{i}\right)^{\beta_{1}} \mathbf{1}\left(0<x_{i}<1\right) \\
& =\underbrace{\left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}\right]^{n}\left[\prod_{i=1}^{n} x_{i}\right]^{\alpha-1}\left[\prod_{i=1}^{n}\left(1-x_{i}\right)\right]^{\beta_{1}}}_{g\left(\prod_{i=1}^{n} x_{i}, \prod_{i=1}^{n}\left(1-x_{i}\right) ; \alpha, \beta\right)} \cdot \underbrace{\prod_{i=1}^{n} \mathbf{1}\left(0<x_{i}<1\right)}_{h\left(x_{1}, \ldots, x_{n}\right)} .
\end{aligned}
$$

Since the joint density $f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)$ of X_{1}, \ldots, X_{n} can be factored into a function of $\prod_{i=1}^{n} x_{i}$ and $\prod_{i=1}^{n}\left(1-x_{i}\right)$ and α and β and a function of x_{1}, \ldots, x_{n}, as shown above, we can say by the factorization theorem that $\left(\prod_{i=1}^{n} X_{i}, \prod_{i=1}^{n}\left(1-X_{i}\right)\right)$ is a sufficient statistic for (α, β).
4. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Uniform}(\mu-\theta, \mu+\theta)$.
(a) Give the pdf of the Uniform $(\mu-\theta, \mu+\theta)$ distribution.

The pdf of the Uniform $(\mu-\theta, \mu+\theta)$ distribution is given by

$$
f_{X}(x)=\frac{1}{2 \theta} \mathbf{1}(\mu-\theta<x<\mu+\theta)
$$

(b) Show that $\left(X_{(1)}, X_{(n)}\right)$ is a sufficient statistic for (μ, θ) using the factorization theorem. Hint: $\prod_{i=1}^{n} \mathbf{1}\left(\mu-\theta<x_{i}<\mu+\theta\right)=\mathbf{1}\left(\mu-\theta<x_{1}, \ldots, x_{n}<\mu+\theta\right)$.

The joint pdf of $\left(X_{1}, \ldots, X_{n}\right)$ is given by

$$
\begin{aligned}
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) & =\prod_{i=1}^{n} \frac{1}{2 \theta} \mathbf{1}\left(\mu-\theta<x_{i}<\mu+\theta\right) \\
& =\left(\frac{1}{2 \theta}\right)^{n} \mathbf{1}\left(\mu-\theta<x_{i}, \ldots, x_{n}<\mu+\theta\right) \\
& =\underbrace{\left(\frac{1}{2 \theta}\right)^{n} \mathbf{1}\left(\mu-\theta<x_{(1)}<x_{(n)}<\mu+\theta\right)}_{g\left(x_{(1)}, x_{(n)} ; \mu, \theta\right)} \\
& =\underbrace{\left(\frac{1}{2 \theta}\right)^{n} \mathbf{1}\left(\mu-\theta<x_{(1)}<x_{(n)}<\mu+\theta\right)}_{h\left(x_{1}, \ldots, x_{n}\right)}
\end{aligned}
$$

where $x_{(1)}=\min \left\{x_{1}, \ldots, x_{n}\right\}$ and $x_{(n)}=\max \left\{x_{1}, \ldots, x_{n}\right\}$. So by the factorization theorem, we can say that $\left(X_{(1)}, X_{(n)}\right)$ is a sufficient statistic for (μ, θ).
(c) Give the cdf of the Uniform $(\mu-\theta, \mu+\theta)$ distribution.

The cdf of the Uniform $(\mu-\theta, \mu+\theta)$ distribution is given by

$$
F_{X}(x)= \begin{cases}0, & x<\mu-\theta \\ \frac{x-(\mu-\theta)}{2 \theta}, & \mu-\theta \leq x<\mu+\theta \\ 1, & \mu+\theta \leq x\end{cases}
$$

(d) Consider the order statistic $X_{(1)}$:
i. Find the pdf of $X_{(1)}$.

We have

$$
f_{X_{(1)}}(x)=n\left[1-\frac{x-(\mu-\theta)}{2 \theta}\right]^{n-1} \frac{1}{2 \theta}, \quad \mu-\theta<x<\mu+\theta .
$$

ii. Find the pdf of

$$
Y_{(1)}=\frac{X_{(1)}-(\mu-\theta)}{2 \theta}
$$

and identify its distribution.
We have

$$
y_{(1)}=\frac{x_{(1)}-(\mu-\theta)}{2 \theta}=: g\left(x_{(1)}\right) \Longleftrightarrow x_{(1)}=2 \theta y_{(1)}+(\mu-\theta)=: g^{-1}\left(y_{(1)}\right)
$$

with

$$
\frac{d}{d y_{(1)}} g^{-1}\left(y_{(1)}\right)=2 \theta,
$$

and the support of $Y_{(1)}$ is $(0,1)$. So by the transformation method we have

$$
f_{Y_{(1)}}(y)=n(1-y)^{n-1}, \quad 0<y<1
$$

which is the pdf of the $\operatorname{Beta}(1, n)$ distribution.
iii. Find $\mathbb{E} X_{(1)}$. Hint: Use the fact that $X_{(1)}=2 \theta Y_{(1)}+(\mu-\theta)$.

We have

$$
\begin{aligned}
\mathbb{E} X_{(1)} & =\mathbb{E} 2 \theta Y_{(1)}+(\mu-\theta) \\
& =2 \theta\left(\frac{1}{n+1}\right)+(\mu-\theta) \\
& =\mu-\left(\frac{n-1}{n+1}\right) \theta,
\end{aligned}
$$

where we used the fact that the mean of the $\operatorname{Beta}(1, n)$ distribution is $1 /(n+1)$.
(e) Consider the order statistic $X_{(n)}$:
i. Find the pdf of $X_{(n)}$.

$$
f_{X_{(n)}}(x)=n\left[\frac{x-(\mu-\theta)}{2 \theta}\right]^{n-1} \frac{1}{2 \theta}, \quad \mu-\theta<x<\mu+\theta .
$$

ii. Find the pdf of

$$
Y_{(n)}=\frac{X_{(n)}-(\mu-\theta)}{2 \theta}
$$

and identify its distribution.
By similar steps to those with which we found the pdf of $Y_{(1)}$, we can show that the pdf of $Y_{(n)}$ is

$$
f_{Y_{(n)}}(y)=n y^{n-1}, \quad 0<y<1
$$

which is the pdf of the $\operatorname{Beta}(n, 1)$ distribution.
iii. Find $\mathbb{E} X_{(n)}$. Hint: Use the fact that $X_{(n)}=2 \theta Y_{(n)}+(\mu-\theta)$.

We have

$$
\begin{aligned}
\mathbb{E} X_{(n)} & =\mathbb{E} 2 \theta Y_{(n)}+(\mu-\theta) \\
& =2 \theta\left(\frac{n}{n+1}\right)+(\mu-\theta) \\
& =\mu+\left(\frac{n-1}{n+1}\right) \theta,
\end{aligned}
$$

where we used the fact that the mean of the $\operatorname{Beta}(n, 1)$ distribution is $n /(n+1)$.
(f) Consider the estimators of θ and μ given by

$$
\hat{\theta}=\frac{X_{(n)}-X_{(1)}}{2} \quad \text { and } \quad \hat{\mu}=\frac{X_{(1)}+X_{(n)}}{2} .
$$

i. Find $\mathbb{E} \hat{\theta}$ and state whether the estimator is biased or unbiased.

We have

$$
\begin{aligned}
\mathbb{E} \hat{\theta} & =\mathbb{E}\left[\frac{X_{(n)}-X_{(1)}}{2}\right] \\
& =\frac{1}{2}\left[\mu+\left(\frac{n-1}{n+1}\right) \theta-\left(\mu-\left(\frac{n-1}{n+1}\right) \theta\right)\right] \\
& =\left(\frac{n-1}{n+1}\right) \theta
\end{aligned}
$$

Since $\mathbb{E} \hat{\theta} \neq \theta, \hat{\theta}$ is a biased estimator of θ.
ii. Find $\mathbb{E} \hat{\mu}$ and state whether the estimator is biased or unbiased.

We have

$$
\begin{aligned}
\mathbb{E} \hat{\mu} & =\mathbb{E}\left[\frac{X_{(1)}+X_{(n)}}{2}\right] \\
& =\frac{1}{2}\left[\mu-\left(\frac{n-1}{n+1}\right) \theta+\mu+\left(\frac{n-1}{n+1}\right) \theta\right] \\
& =\mu .
\end{aligned}
$$

Since $\mathbb{E} \hat{\mu}=\mu, \hat{\mu}$ is an unbiased estimator of μ.
iii. Propose an unbiased estimator of θ.

The estimator

$$
\tilde{\theta}=\left(\frac{n+1}{n-1}\right) \frac{X_{(n)}-X_{(1)}}{2}
$$

is unbiased for θ, since

$$
\mathbb{E} \tilde{\theta}=\left(\frac{n+1}{n-1}\right) \mathbb{E}\left[\frac{X_{(n)}-X_{(1)}}{2}\right]=\left(\frac{n+1}{n-1}\right)\left(\frac{n-1}{n+1}\right) \theta=\theta
$$

iv. Argue whether there might exist another unbiased estimator of θ with smaller variance.

Since $\tilde{\theta}$ is a function of $\left(X_{(1)}, X_{(n)}\right)$, which is a sufficient statistic for (μ, θ), and since $\tilde{\theta}$ is unbiased, we can say, because of the Rao-Blackwell theorem, that there exists no other unbiased estimator with a smaller variance. This is the one and only precious jewel!
(g) The following code stores values in the vectors theta.hat, mu.hat, and theta.hat.unbiased.

```
mu <- 2.5
```

theta <- 3

```
n <- 5
S <- 1000
```

```
theta.hat <- numeric(S)
theta.hat.unbiased <- numeric(S)
mu.hat <- numeric(S)
for( s in 1:S ){
    X <- runif(n,mu - theta, mu + theta)
    X1 <- min(X)
    Xn <- max(X)
    theta.hat[s] <- (Xn - X1)/2
    mu.hat[s] <- (X1 + Xn)/2
    theta.hat.unbiased[s] <- (n+1)/(n-1) * (Xn - X1)/2
}
```

The figure shows boxplots of the values of theta.hat, mu.hat, and theta.hat. unbiased from the simulation. Study the code and identify which boxplot corresponds to theta.hat, mu.hat, and theta.hat.unbiased.

The right-most boxplot is of the values of mu.hat, since $\hat{\mu}$ is an unbiased estimator of μ, which is set equal to 2.5 , and the boxplot is centered at 2.5 .
The boxplot in the middle is of the values of theta.hat. unbiased, since this is an unbiased estimator of θ, which is set equal to 3 , and the boxplot is centered at 3 .
The other boxplot must be of the values of theta.hat.

Optional (do not turn in) problems for additional study from Wackerly, Mendenhall, Scheaffer, 7th Ed.:

- $9.50,9.59$
- $9.74,9.75,9.78$

