
STAT 512 su 2021 hw 9

1. Suppose Y1, . . . , Yn
ind∼ Gamma(2, β).

(a) Write down the likelihood function for β based on Y1, . . . , Yn.

We have

L(β;X1, . . . , Xn) =
n∏
i=1

1

Γ(2)β2
Yi exp

[
−Yi
β

]
=

[
1

Γ(2)β2

]n n∏
i=1

Yi · exp

[
−
∑n

i=1 Yi
β

]
.

(b) Write down the log-likelihood function for β based on Y1, . . . , Yn.

We have

`(β,X1, . . . , Xn) = −2n log β +
n∑
i=1

log Yi −
∑n

i=1 Yi
β

.

(c) Find an expression for the MLE of β.

Taking the derivative with respect to β of the log-likelihood and setting this equal to zero
gives

d

dβ
`(β,X1, . . . , Xn) = −2n

β
+

∑n
i=1 Yi
β2

set
= 0 ⇐⇒ β =

Ȳn
2
,

so the MLE for β is β̂ = Ȳn/2.

(d) Give the MoMs estimator of β.

The first population moment of the Gamma(2, β) distribution is 2β, so we set m′1 = 2β,
which gives β = m′1/2, so the MoMs estimator of β is

β̄ =
Ȳn
2
,

which is the same as the MLE.

2. Let X1, . . . , Xn
ind∼ Uniform(µ− θ, µ+ θ).

(a) Give expressions for the MoMs estimators, call them µ̄ and θ̄, of µ and θ.
Hint: Based on a sample of size n = 5 with the values

-0.44 0.27 3.08 0.90 0.51



the MoMs estimator of θ should have the value 2.062598 (to double-check your answer).

To find the MoMs estimators of µ and θ, we set the first two sample moments equal to the
first two population moments. We have

m′1 = µ′1 = µ

m′2 = µ′2 =
[(µ+ θ)− (µ− θ)]2

12
+ µ2 =

θ2

3
+ µ2.

Solving the system of equations for µ and θ gives

µ̄ = m′1

θ̄ =
√

3(m′2 − (m′1)
2).

(b) Now consider the estimators of θ and µ given by

θ̂unbiased =

(
n+ 1

n− 1

)
X(n) −X(1)

2
and µ̂ =

X(1) +X(n)

2
,

where θ̂unbiased is a bias-corrected, or de-biased version of the MLE for θ. Run a simulation in
which 1,000 random samples of size n = 5 are drawn from the Uniform(µ−θ, µ+θ) distribution
with µ = 2.5 and θ = 3, and compute the estimators µ̄, µ̂, θ̄, and θ̂unbiased on each random
sample. Then:

i. Make side-by-side boxplots of the 1,000 values of µ̄ and µ̂. You can take a photo of your
screen to merge into your pdf to upload. Include R code.

The following R code runs the simulation:

mu <- 2.5

theta <- 3

n <- 5

S <- 1000

theta.mle.unbiased <- numeric(S)

mu.mle <- numeric(S)

theta.mom <- numeric(S)

mu.mom <- numeric(S)

for( s in 1:S )

{

X <- runif(n,mu - theta, mu + theta)

X1 <- min(X)
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Xn <- max(X)

theta.mle.unbiased[s] <- (n+1)/(n-1)*(Xn - X1)/2

mu.mle[s] <- (X1 + Xn)/2

theta.mom[s] <- sqrt( 3*(mean(X^2) - mean(X)^2))

mu.mom[s] <- mean(X)

}

boxplot(mu.mle,mu.mom)
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ii. Compare the mean squared error of µ̄ and µ̂ based on the 1,000 simulated data sets and
comment on which estimator you think is a better estimator of µ.

Running

mean((mu.mom - mu)^2)

mean((mu.mle - mu)^2)

shows that the MSE µ̂ is smaller than MSE µ̄, so µ̂ appears to be a better estimator.

iii. Make side-by-side boxplots of the 1,000 values of θ̄ and θ̂unbiased. You can take a photo of
your screen to merge into your pdf to upload. Include R code.

The boxplots of the θ̄ and θ̂unbiased should look like this:
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iv. Compare the mean squared error of θ̄ and θ̂unbiased based on the 1,000 simulated data sets
and comment on which estimator you think is a better estimator of θ.

Running

mean((theta.mom - theta)^2)

mean((theta.mle.unbiased - theta)^2)

shows that MSE θ̂unbiased is smaller than MSE θ̄ so θ̂unbiased appears to be a better
estimator.

Hint: Look at the code from hw 7 for setting up the simulation. To make side-by-side boxplots,
just use boxplot(mu.mle,mu.mom), for example.

3. Let X1, . . . , Xn
ind∼ Beta(θ, θ), θ > 0. The Beta(θ, θ) pdf is plotted below for all θ ∈ {.2, .4, .6, . . . , 5}:
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(a) Find the MoMs estimator of θ by setting m′2 = µ′2 (note that µ′1 = 1/2 for all θ).

Writing

m′2 =
θ2

(2θ)2(2θ + 1)
+

(
θ

θ + θ

)2

=
1 + θ

2 + 4θ

and solving for θ gives

θ̄ =
2m′2 − 1

1− 4m′2
.

(b) Write down the likelihood function L(θ;X1, . . . , Xn).

The likelihood function is given by

L(θ,X1, . . . , Xn) =
n∏
i=1

Γ(2θ)

Γ(θ)Γ(θ)
Xθ−1
i (1−Xi)

θ−1

=

[
Γ(2θ)

Γ(θ)Γ(θ)

]n [ n∏
i=1

Xi(1−Xi)

]θ−1
for all 0 < X1, . . . , Xn < 1.

(c) Argue that
∏n

i=1Xi(1−Xi) is a sufficient statistic for θ.

Since we can write down the joint pdf of X1, . . . , Xn, whic is the same as the likelihood
function, as the product of a function of

∏n
i=1Xi(1 − Xi) and θ and a function of only

the data, we can claim, by the factorization theorem, that
∏n

i=1Xi(1 − Xi) is a suficient
statistic for θ.

(d) Write down the log-likelihood function `(θ;X1, . . . , Xn).
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The log-likelihood is given by

`(θ;X1, . . . , Xn) = n log Γ(2θ)− 2n log Γ(θ) + (θ − 1)
n∑
i=1

[logXi + log(1−Xi)]

for 0 < X1, . . . , Xn < 1.

(e) Use the following code to plot the log-likelihood function based an observed random sample:

X <- c(0.39, 0.48, 0.78, 0.49, 0.52, 0.66, 0.44, 0.43, 0.08, 0.25)

n <- length(X)

theta.seq <- seq(1,6,length=201)

ll <- n*log(gamma(2*theta.seq))-2*n*log(gamma(theta.seq))+(theta.seq-1)*sum(log(X)+log(1-X))

plot(ll ~ theta.seq,type="l")

Give your best guess of the value of the MLE θ̂ of θ by looking at the plot.

The plot looks like

1 2 3 4 5 6
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ll

The value in theta.seq at which the log-likelihood is the largest is the value 2.625. An
acceptable answer is “around 2.6”.

(f) Compute the value of the MoMs estimator on the same data.

The MoMs estimator has the value −11.31315, given by

m2 <- mean(X^2)

theta.mom <- (2 * m2 - 1) / ( 1 - 4 * m2)

(g) What is wrong with the value of the MoMs estimator?
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The value of θ should be positive. That is, the parameter space is Θ = (0,∞), and this
value fall outside of the parameter space!

(h) A simulation was run in which 1,000 random samples of size 100 were drawn from the Beta(3, 3)
distribution, and the MLE and MoMs estimator were computed on each data set. The figure
below shows boxplots of the 1,000 values of the MLE and the MoMs estimator as well as a plot
of the values of the MLE versus the value of log (

∏n
i=1Xi(1−Xi)) over the 1,000 simulations.
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i. Which estimator, the MLE or the MoMs estimator, appears more reliable?

It appears that the MoMs estimator often takes negative values and sometimes values
which are very extreme. It looks like a very unstable estimator. In contrast, the MLE
takes values which are centered around the true value θ = 3 and which are always
contained inside the parameter space (0,∞).

ii. What is the significance of the plot on the far right? Why would I show it?

We learned that the MLE is always a function of a sufficient statistic, which is a point
in their favor. Though we could not write down the MLE in closed form, we can see
from this plot that the MLE for θ really is a function of the sufficient statistic

n∏
i=1

Xi(1−Xi) = exp

[
n∑
i=1

(logXi + log(1−Xi))

]
,

because the points fall on a curve. We cannot write down the formula for this curve in
a nice way, but it nevertheless represents the function relating θ̂ to

∏n
i=1Xi(1−Xi).
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4. Suppose you observe the following independent realizations of a random variable X:

0.46 0.64 0.59 0.93 1.63 0.61 1.75 0.61 0.78 0.81

1.00 0.59 0.77 1.36 1.79 1.15 0.44 0.81 0.71 0.34

(a) Assuming that X follows a Gamma distribution, find the MoMs and the MLEs of (α, β). Use
R as in the Lec 11 R code to find the MLEs.

The following code computes the maximum likelihood estimators:

X <- c( 0.46, 0.64, 0.59, 0.93, 1.63, 0.61, 1.75,

0.61, 0.78, 0.81, 1.00, 0.59, 0.77, 1.36,

1.79, 1.15, 0.44, 0.81, 0.71, 0.34)

n <- length(X)

negll <- function(x,data)

{

alpha <- x[1]

beta <- x[2]

negll <- - sum( dgamma(data, shape = alpha, scale = beta, log = TRUE ))

return(negll)

}

# Use the optim() function to find the MLEs of alpha and beta

mle <- optim(par=c(1.4,2),fn = negll, data = X)$par

alpha.hat <- mle[1]

beta.hat <- mle[2]

The values of the MLEs are α̂ = 4.989399 and β̂ = 0.1780829. The MoMs estimators are
given by

ᾱ = (m′1)
2/(m′2 − (m′1)

2)

β̄ = m′2 − (m′1)
2/m′1.

The R code

m1 <- mean(X)

m2 <- mean(X^2)

alpha.bar <- m1^2 / (m2 - m1^2)

beta.bar <- (m2 - m1^2) / m1

gives that the values of the MoMs estimators are ᾱ = 4.434695 and β̄ = 0.200352.

(b) Make a histogram of the realizations of X and overlay the pdfs of the Gamma distributions
under the MoMs estimators and the MLEs of (α, β). Refer to the Lec 11 R code.
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The following code produces the plot:

x.seq <- seq(0,3,length=300)

hist(X,freq=FALSE,ylim=c(0,1.5),main="")

lines(dgamma(x.seq,shape=alpha.hat,scale=beta.hat)~x.seq,col="blue",lwd=2)

lines(dgamma(x.seq,shape=alpha.bar,scale=beta.bar)~x.seq,col="red",lwd=2)

x.pos <- grconvertX(.5,from="nfc",to="user")

y.pos <- grconvertY(.8,from="nfc",to="user")

legend(x = x.pos, y = y.pos, legend = c("MLE","MoMs") ,

col = c("blue","red"), lty=c(1,1), lwd=c(2,2), bty="n")

X
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ty

0.5 1.0 1.5

0.
0
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0

1.
5

MLE
MoMs

(c) Comment on the difference between the MoMs estimator and the MLE.

The MoMs estimators and the MLEs were quite similar for these data.

(d) Find the MLE for P (X < 1).

To find the MLE for P (X < 1), we compute the cdf of the Gamma(α̂, β̂) distribuiton at 1,
where α̂ and β̂ are the MLEs of α and β. We get

pgamma(1,shape=alpha.hat,scale=beta.hat) = 0.6619232.
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5. Suppose you observe the following independent realizations of a random variable X:

8.33 8.20 11.35 3.05 12.62 9.20 15.68 12.52 4.98 10.44

9.21 8.49 5.14 3.55 5.78 3.97 15.75 7.92 5.02 6.75

Assume that X follows a distribution with the density

fX(x; a, b) =
a

b

(x
b

)a−1
exp

[
−
(x
b

)a]
1(x > 0).

(a) Write down the likelihood function for a and b based on X1, . . . , Xn.

We have

L(a, b;X1, . . . , Xn) =
n∏
i=1

a

b

(
Xi

b

)a−1
exp

[
−
(
Xi

b

)a]

=
an

bna

(
n∏
i=1

Xi

)a−1

exp

[
− 1

ba

n∑
i=1

Xa
i

]
.

(b) Write down the log-likelihood function for a and b based on X1, . . . , Xn.

We have

`(a, b;X1, . . . , Xn) = n log a− an log b+ (a− 1)
n∑
i=1

logXi −
1

ba

n∑
i=1

Xa
i .

(c) Find the MLEs of (a, b). Use R as in the Lec 11 R code to find the MLEs.

The following code computes the MLEs based on the data:

X <- c(8.33, 8.20, 11.35, 3.05, 12.62, 9.20,

15.68, 12.52, 4.98, 10.44, 9.21, 8.49,

5.14, 3.55, 5.78, 3.97, 15.75, 7.92,

5.02, 6.75)

n <- length(X)

negll <- function(x,data)

{

a <- x[1]

b <- x[2]
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ll <- n * log(a) - n*a*log(b) + (a - 1) * sum(log(X)) - (1/b^a) * sum(X^a)

negll <- -ll

return(negll)

}

# Use the optim() function to find the MLEs of alpha and beta

mle <- optim(par=c(1,2),fn = negll, data = X)$par

a.hat <- mle[1]

b.hat <- mle[2]

We get the values â = 2.465044 and b̂ = 9.50044.

(d) Find the MLE of b2.

The MLE of b2 is simply b̂2 = (9.50044)2 = 90.25836.

Optional (do not turn in) problems for additional study from Wackerly, Mendenhall, Scheaffer, 7th Ed.:

• 9.74, 9.75, 9.78

• 9.80, 9.81, 9.82, 9.92
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