STAT 512 sp 2018 Exam III

Karl B. Gregory

Tuesday, Apr 10th

Do not open this test until told to do so; no calculators allowed; no notes allowed; no books allowed; show your work so that partial credit may be given.

$$f_{Y}(y) = \begin{cases} f_{X}(g^{-1}(y)) | \frac{d}{dy} g^{-1}(y)| & \text{for } y \in \mathcal{Y} \\ 0 & \text{for } y \notin \mathcal{Y} \end{cases}$$

$$f_{X_{(k)}}(x) = \frac{n!}{(k-1)!(n-k)!} [F_{X}(x)]^{k-1} [1 - F_{X}(x)]^{n-k} f_{X}(x)$$

$$X_{1}, \dots, X_{n} \overset{\text{iid}}{\sim} \text{Normal}(\mu, \sigma^{2}) \implies \begin{cases} (n-1)S_{n}^{2}/\sigma^{2} \sim \chi_{n-1}^{2} \\ \sqrt{n}(\bar{X}_{n} - \mu)/\sigma \sim \text{Normal}(0, 1) \\ \sqrt{n}(\bar{X}_{n} - \mu)/S_{n} \sim t_{n-1} \end{cases}$$

$$W_{1} \sim \chi_{\nu_{1}}^{2}, \quad W_{2} \sim \chi_{\nu_{2}}^{2}, \quad W_{1}, W_{2} \text{ indep.} \implies (W_{1}/\nu_{1})/(W_{2}/\nu_{2}) \sim F_{\nu_{1},\nu_{2}}$$

pmf/pdf	\mathcal{X}	$M_X(t)$	$\mathbb{E} X$	$\operatorname{Var} X$
$p_X(x;p) = p^x (1-p)^{1-x},$	x = 0, 1	$pe^t + (1-p)$	p	p(1-p)
$p_X(x; n, p) = \binom{n}{x} p^x (1-p)^{n-x},$	$x = 0, 1, \dots, n$	$[pe^t + (1-p)]^n$	np	np(1-p)
$p_X(x;p) = (1-p)^{x-1}p,$	$x = 1, 2, \dots$	$\frac{pe^t}{1-(1-p)e^t}$	p^{-1}	$(1-p)p^{-2}$
$p_X(x; p, r) = {x-1 \choose r-1} (1-p)^{x-r} p^r,$	$x = r, r + 1, \dots$	$\left \frac{pe^t}{1 - (1 - p)e^t} \right '$	rp^{-1}	$r(1-p)p^{-2}$
$p_X(x;\lambda) = e^{-\lambda} \lambda^x / x!$	$x = 0, 1, \dots$	$e^{\lambda(e^t-1)}$	λ	λ
$p_X(x; N, M, K) = {M \choose x} {N-M \choose K-x} / {N \choose K}$	$x = 0, 1, \dots, K$	¡complicadísimo!	$\frac{KM}{N}$	$\frac{KM}{N} \frac{(N-K)(N-M)}{N(N-1)}$
$p_X(x;K) = \frac{1}{K}$	$x = 1, \dots, K$	$\frac{1}{K} \sum_{x=1}^{K} e^{tx}$	$\frac{K+1}{2}$	$\frac{(K+1)(K-1)}{12}$
$p_X(x;x_1,\ldots,x_n) = \frac{1}{n}$	$x = x_1, \ldots, x_n$	$\frac{1}{n}\sum_{i=1}^{n}e^{tx_{i}}$	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\frac{1}{n}\sum_{i=1}^{n}(\bar{x}_{i}-\bar{x})^{2}$
$f_X(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$-\infty < x < \infty$	$e^{\mu t + \sigma^2 t^2/2}$	μ	σ^2
$f_X(x;\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} \exp\left(-\frac{x}{\beta}\right)$	$0 < x < \infty$	$(1-\beta t)^{-\alpha}$	lphaeta	$lphaeta^2$
$f_X(x;\lambda) = \frac{1}{\lambda} \exp\left(-\frac{x}{\lambda}\right)$	$0 < x < \infty$	$(1 - \lambda t)^{-1}$	λ	λ^2
$f_X(x;\nu) = \frac{1}{\Gamma(\nu/2)2^{\nu/2}} x^{\nu/2-1} \exp\left(-\frac{x}{2}\right)$	$0 < x < \infty$	$(1-2t)^{-\nu/2}$	ν	2ν
$f_X(x;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	0 < x < 1	$1 + \sum_{k=1}^{\infty} \frac{t^k}{k!} \left(\prod_{r=0}^k \frac{\alpha + r}{\alpha + \beta + r} \right)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

The table below gives some values of the function $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$:

- 1. Let X_1, \ldots, X_n be a random sample from the Uniform $(-\theta, \theta)$ distribution for some $\theta > 0$.
 - (a) Find the cdf of the Uniform $(-\theta, \theta)$ distribution.
 - (b) Find the pdf of the largest order statistic $X_{(n)}$.
 - (c) Show that $X_{(n)}$ is a consistent estimator of θ . Recall that there are two ways to show consistency: You can show that the MSE goes to zero as $n \to \infty$ or you can show that $P(|X_{(n)} - \theta| < \epsilon)$ approaches a certain limit for every $\epsilon > 0$ as $n \to \infty$.
 - (d) The statistic $X_{(n)}$ is not a sufficient statistic for θ in this example. Give a heuristic argument for why this is so (A heuristic argument is an appeal to intuition without rigorous proof).
- 2. Let Y_n be a sequence of random variables such that the cdf of Y_n is given by

$$F_{Y_n}(y) = \begin{cases} (1 - e^{-y}/n)^n, & y > -\log n \\ 0, & y \le -\log n \end{cases}$$

for all $n \geq 1$.

- (a) Write an expression for $P(-1 < Y_n < 1)$ using the cdf F_{Y_n} .
- (b) The sequence of random variables Y_n converges in distribution to a random variable Y. What is the cdf of Y? Recall that $\lim_{n\to\infty} (1+a/n)^n = e^a$ for any $a \in \mathbb{R}$.
- (c) Write an expression for $\lim_{n\to\infty} P(-1 < Y_n < 1)$.
- 3. Let X_1, \ldots, X_n be a random sample from a distribution with pdf

$$f_X(x;\lambda) = \lambda^{-1} \exp(-x\lambda^{-1}) \mathbb{1}(x>0)$$

for some $\lambda > 0$ and let $\bar{X}_n = n^{-1}(X_1 + \dots + X_n)$ and $S_n^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$.

- (a) Use mgfs to identify the distribution of \bar{X}_n .
- (b) Write down the probability

$$P\left(\bar{X}_n - 1.96 \frac{\lambda}{\sqrt{n}} < \lambda < \bar{X}_n + 1.96 \frac{\lambda}{\sqrt{n}}\right)$$

as an integral over the pdf of \bar{X}_n .

Hint: First rearrange the probability statement so that \bar{X}_n is "in the middle".

- (c) Give the limit as $n \to \infty$ of your integral in part (b).
- (d) Does $(n-1)S_n^2/\lambda^2$ have the χ_{n-1}^2 distribution? Explain why it does or does not.
- 4. Let X_1, \ldots, X_n be a random sample from the Gamma(4, 2) distribution and let $\bar{X}_n = n^{-1}(X_1 + \cdots + X_n)$ and $S_n^2 = (n-1)^{-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$.
 - (a) Give a function of \bar{X}_n which converges in distribution to a standard Normal random variable.
 - (b) Give $\lim_{n \to \infty} P(15 < S_n^2 < 17)$.
 - (c) Give $\lim_{n\to\infty} P(4 < \bar{X}_n < 5)$.