STAT 512 sp 2018 Exam III

Karl B.

Gregory

Tuesday, Apr 10th

Do not open this test until told to do so; no calculators allowed; no notes allowed; no books allowed; show
your work so that partial credit may be given.
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The table below gives some values of the function ®(z) = f_zoo
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1. Let Xi,..., X, be a random sample from the Uniform(—6, 6) distribution for some 6 > 0.

(a) Find the cdf of the Uniform(—6, ) distribution.
(b) Find the pdf of the largest order statistic X,).

(c) Show that X, is a consistent estimator of 6.
Recall that there are two ways to show consistency: You can show that the MSE goes to zero as
n — oo or you can show that P(| X,y — 0| < €) approaches a certain limit for every € > 0 as
n — oQ.

(d) The statistic X, is not a sufficient statistic for @ in this example. Give a heuristic argument for
why this is so (A heuristic argument is an appeal to intuition without rigorous proof).

2. Let Y,, be a sequence of random variables such that the cdf of Y,, is given by

[ (Q=-eY/n)", y>—logn
FY”(y>_{ 0, y < —logn

for all n > 1.

(a) Write an expression for P(—1 < Y,, < 1) using the cdf Fy,.

(b) The sequence of random variables Y,, converges in distribution to a random variable Y. What is
the cdf of Y7 Recall that lim,, (1 + a/n)" = e* for any a € R.

(c) Write an expression for lim, ., P(—1 <Y, < 1).
3. Let Xq,..., X, be arandom sample from a distribution with pdf
fx(x;A) = A texp(—2zA 1) 1(z > 0)
for some A > 0 and let X,, = n ' (X; +---+ X,,) and S? = (n — 1)7' >0 (X; — X,,)%

(a) Use mgfs to identify the distribution of X,.
(b) Write down the probability

_ A - A
PlX,—196— <A< X, +1.96—
< 96\/5 <A< + 96\/5)

as an integral over the pdf of X,,. B
Hint: First rearrange the probability statement so that X, is “in the middle”.

(¢) Give the limit as n — oo of your integral in part (b).
(d) Does (n —1)5%/A? have the x2_, distribution? Explain why it does or does not.

4. Let X1, ..., X, be arandom sample from the Gammal(4, 2) distribution and let X,, = n= (X +---+X,,)
and S2=(n—1)"1>" (X; — X,)*

(a) Give a function of X,, which converges in distribution to a standard Normal random variable.
(b) Give lim,, ;o P(15 < 5% < 17).
(c) Give lim,_. P(4 < X,, <5).



