STAT_512_sp_2018_Lec_06_R_supplement

Karl Gregory
2/26/2018

A simulation to illustrate consistency

Consider drawing independent realizations X_{1}, X_{2}, \ldots from the $\operatorname{Bernoulli}(p)$ distribution, one by one, and computing the value of $\hat{p}_{n}=\left(X_{1}+X_{2}+\cdots+X_{n}\right)$ for every $n \geq 1$, so that the sequence $\left\{\hat{p}_{n}\right\}_{n \geq 1}$ is given by $\hat{p}_{1}=X_{1} / 1, \hat{p}_{2}=\left(X_{1}+X_{2}\right) / 2, \hat{p}_{3}=\left(X_{1}+X_{2}+X_{3}\right) / 3$, and so on. By the weak law of large numbers, the sequence of estimators $\left\{\hat{p}_{n}\right\}_{n \geq 1}$ is consistent for p, meaning that for any $\epsilon>0, P\left(\left|\hat{p}_{n}-p\right|<\epsilon\right)$ can be made arbitrarily close to 1 by choosing a large enough n.

The following R code simulates $S=100$ sequences of estimators $\left\{\hat{p}_{n}\right\}_{n=1}^{2000}$, so that the largest sample size is $n=2000$. Each of the blue and red lines traces a single realization of the sequence of estimators $\left\{\hat{p}_{n}\right\}_{n=1}^{2000}$. The sequences traced by blue lines are those for which \hat{p}_{2000} was within

$$
\epsilon=z_{.025} \sqrt{\frac{0.5(1-0.5)}{2000}}
$$

of the true value $p=0.5$; the remaining sequences are traced by red lines. The black line traces the simulated value of $P\left(\left|\hat{p}_{n}-p\right|<\epsilon\right)$, for $n=1, \ldots, 2000$; that is, for each $n=1, \ldots, 2000$, the height of the black line is the proportion of the $S=100$ sequences for which $\left|\hat{p}_{n}-p\right|<\epsilon$. We see that he height of the black line tends to 1 as n increases, illustrating the consistency of the sequence of estimators $\left\{\hat{p}_{n}\right\}_{n=1}^{2000}$ for p.

```
# make bernoulli draws and compute values of \hat p_n sequences
p <- . }
max_n <- 2000
S <- 100
bern_mat <- matrix(rbinom(max_n*S,1,prob=p),max_n,S)
p_hat_mat <- apply(bern_mat,2,cumsum)/row(bern_mat) # each column a sequence of estimators
# choose some lepsilon
alpha <- . }0
epsilon <- qnorm(1-alpha/2)*sqrt(p*(1-p)/max_n)
# compute the proportion of sequences for which \hat p_n is within epsilon of p at each n
prop_within_epsilon <- function(x,epsilon,p){ mean(abs(x-p) < epsilon) }
p_within <- apply(p_hat_mat,1,FUN=prop_within_epsilon,epsilon,p)
# make plots
plot(NA,yaxs="i",xaxs="i",xlim=c(1,max_n),ylim=c(0,1),
    xlab="Sample size",ylab="Sample proportion of successes")
lines(p_within~c(1:max_n))
abline(h=.5,lty=2)
abline(h=.5+epsilon,lty=3)
abline(h=.5-epsilon,lty=3)
for(s in 1:S){
    within_epsilon <- abs(p_hat_mat[max_n,s]-p) < epsilon
    lines(p_hat_mat[,s]~c(1:max_n),col=ifelse(within_epsilon,rgb (0,0,1,.25),rgb (1,0,0,.9)))
}
```


