STAT 512 sp 2020 Exam I

Karl B. Gregory

Do not open this test until told to do so; no calculators allowed; no notes allowed; no books allowed; show

your work so that partial credit may be given.
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1. Let X be a rv with cdf given by Fx(x) = 2?/7% for x € (0,7) and let Y = —log(X /7).

(a)

()

Give the pdf of X.

Solution: Taking the derivative of the cdf, we see that the pdf of X is given by

fx(z) =2z/7* for0<az<m.

Give a transformation of X which will have the Uniform(0, 1) distribution.

Solution: Passing X through its own cdf will result in a Uniform(0, 1) random variable. That
is,
U = X?/7* ~ Uniform(0, 1).

Give the transformation of a Uniform(0, 1) random variable which can be used to generate a real-
ization of the random variable X.

Solution: Setting U = X? /7% and solving for X gives
X =7mVU.

So we can generate a realization of X from U ~ Uniform(0,1) with the transformation X =

m™U.

Let Xi,..., X5 be independent rvs with the same distribution as X. Give the pdf of X3).

Solution: We have
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for 0 <z <.

Give the support of Y.

Solution: We have ) = (0, 00).

Find the pdf of Y.

Solution: We have

_ - d _ _
y = —log(z/7) = g(r) <= x=me ¥ =:g"(y), and d_yg Yy) = —me V.
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By the transformation method we have

2
fy(y) = —27T6_y| —me Y| = 2¢=%  for y > 0.
T

2. Let X and Y be independent rvs such that X ~ Poisson(3) and Y ~ Poisson(5) and let U = X + Y.
(a) Give the support of U.

Solution: The support of U is {0,1,2...}.

(b) Give the mgf of U.

Solution: The mgf of U is given by

My (t) = Mx(t) My (t) = e3¢ =D =1 — 8(e=1),

(c) Write down the pmf of U.

Solution: The pmf of U is given by

pu(u) = foru=20,1,2,...

3. The order statistics U = Xy and V' = X(;41) of a random sample X,..., X, x Uniform(0, 1) have
joint pdf given by
I'(n+1)
L(k)C(n—k)
foreach k=1,...,n—1. Let R=U/V and M = V.

(a) State whether U and V' are independent and explain how you determined your answer.

fov(u,v) = w1 =o)L for0<u<ov <1

Solution: They are not independent, since the support of one variable depends on the value
of the other. As a result, there is no way to write the joint pdf as the product of the marginal
pdfs. Although the expression looks like it may be factorable into the product of a function of
only u and a function of only v, it is not possible if the joint pdf is written for all (u,v) € R x R.
Writing
I'(n+1)
o) = =1

where 1(-) is the indicator function, we see that we cannot find the factorization required to
show independence of U and V.

W1 =)0 <u<v< 1) for (u,v) € R xR,
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(b)

(d)

(e)

(f)

4. Let

Give the support of the random variable pair (R, M).

Solution: We have (R, M) € (0,1) x (0,1).

Give the Jacobian of the transformation.

Solution: We have

r=u/v=:g(u,v) u=rm=: gfl(r,m)

m =1 = go(u,) v=m = g3\ (r,m)
with Jacobian . .
| rmogorme | | mor |
J(x,y) d%m %m 0 1 m.

Find the joint pdf of R and M.

Solution: The joint pdf of R and M is given by

I(n+1) k1 —k)—
S S N/ 1 — m)=k)-1,
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F(n+1) 1 -1 —k)—
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State whether R and M are independent and explain how you determined your answer.

Solution: They are independent, since we can factor the joint pdf into the product of a function
of only r and a function of only m.

Describe in words how you would obtain the marginal pdf of R.

Solution: We could find the marginal pdf of R by taking the integral fol fra(r,m)dm. The
result would be the marginal pdf of R. Another way we could find the marginal pdf of R is to
play with factorizations of the joint pdf of R and M until we have found a way to write it as
the product of two marginal pdfs that we recognize. We find that we may write

L(k+1) 4y
Trau(rm) = F5Em)”

r 1 —
(k+1+n—k) m(k+l)—l(1 _ m)(n—k)—l

(1= T)Hr(k Y 1)C(n— k)

for 0 <m < 1and 0 < r < 1, by which we see that R ~ Beta(k,1) and M ~ Beta(k+1,n—k).

Wy, Wy, W3 and Zy, Z5, Z3, Z4 be independent rvs such that Z; ~ Normal(0,1) for i = 1,...,4 and

Wi~ x3 fori=1,2,3. Let Z = (1/4)3.\_, Z;. Determine the distributions of the following;:
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(a)

(c)

(e)

27

Solution: This has the Normal(0, 1) distribution.

Wi+ Wy + Ws

Solution: This has the x2 distribution.

(1/3)(Z3 + Z3 + Z3) /W

Solution: This has the F3; distribution.

Z?:l(zi - 2)2

Solution: This has the x2 distribution.

VAZ [\ (W + Wa) /2

Solution: This has the ¢5 distribution.
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