
STAT 512 sp 2020 Exam I

Karl B. Gregory

Do not open this test until told to do so; no calculators allowed; no notes allowed; no books allowed; show
your work so that partial credit may be given.
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1. Let X be a rv with cdf given by FX(x) = x2/π2 for x ∈ (0, π) and let Y = − log(X/π).

(a) Give the pdf of X.

Solution: Taking the derivative of the cdf, we see that the pdf of X is given by

fX(x) = 2x/π2 for 0 < x < π.

(b) Give a transformation of X which will have the Uniform(0, 1) distribution.

Solution: Passing X through its own cdf will result in a Uniform(0, 1) random variable. That
is,

U = X2/π2 ∼ Uniform(0, 1).

(c) Give the transformation of a Uniform(0, 1) random variable which can be used to generate a real-
ization of the random variable X.

Solution: Setting U = X2/π2 and solving for X gives

X = π
√
U.

So we can generate a realization of X from U ∼ Uniform(0, 1) with the transformation X =
π
√
U .

(d) Let X1, . . . , X5 be independent rvs with the same distribution as X. Give the pdf of X(3).

Solution: We have
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for 0 < x < π.

(e) Give the support of Y .

Solution: We have Y = (0,∞).

(f) Find the pdf of Y .

Solution: We have

y = − log(x/π) =: g(x) ⇐⇒ x = πe−y =: g−1(y), and
d

dy
g−1(y) = −πe−y.
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By the transformation method we have

fY (y) =
2

π2
πe−y| − πe−y| = 2e−2y for y > 0.

2. Let X and Y be independent rvs such that X ∼ Poisson(3) and Y ∼ Poisson(5) and let U = X + Y .

(a) Give the support of U .

Solution: The support of U is {0, 1, 2 . . . }.

(b) Give the mgf of U .

Solution: The mgf of U is given by

MU(t) = MX(t)MY (t) = e3(et−1)e5(et−1) = e8(et−1).

(c) Write down the pmf of U .

Solution: The pmf of U is given by

pU(u) =
e−88u

u!
for u = 0, 1, 2, . . .

3. The order statistics U = X(k) and V = X(k+1) of a random sample X1, . . . , Xn
ind∼ Uniform(0, 1) have

joint pdf given by

fU,V (u, v) =
Γ(n+ 1)

Γ(k)Γ(n− k)
uk−1(1− v)(n−k)−1 for 0 < u < v < 1

for each k = 1, . . . , n− 1. Let R = U/V and M = V .

(a) State whether U and V are independent and explain how you determined your answer.

Solution: They are not independent, since the support of one variable depends on the value
of the other. As a result, there is no way to write the joint pdf as the product of the marginal
pdfs. Although the expression looks like it may be factorable into the product of a function of
only u and a function of only v, it is not possible if the joint pdf is written for all (u, v) ∈ R×R.
Writing

fU,V (u, v) =
Γ(n+ 1)

Γ(k)Γ(n− k)
uk−1(1− v)(n−k)−11(0 < u < v < 1) for (u, v) ∈ R× R,

where 1(·) is the indicator function, we see that we cannot find the factorization required to
show independence of U and V .
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(b) Give the support of the random variable pair (R,M).

Solution: We have (R,M) ∈ (0, 1)× (0, 1).

(c) Give the Jacobian of the transformation.

Solution: We have

r = u/v =: g1(u, v)
m = v =: g2(u, v)

⇐⇒ u = rm =: g−1
1 (r,m)

v = m =: g−1
2 (r,m)

with Jacobian

J(x, y) =

∣∣∣∣ d
dr
rm d

dm
rm

d
dr
m d

dm
m

∣∣∣∣ =

∣∣∣∣ m r
0 1

∣∣∣∣ = m.

(d) Find the joint pdf of R and M .

Solution: The joint pdf of R and M is given by

fR,M(r,m) =
Γ(n+ 1)

Γ(k)Γ(n− k)
(rm)k−1(1−m)(n−k)−1 · |m|

=
Γ(n+ 1)

Γ(k)Γ(n− k)
rk−1m(k+1)−1(1−m)(n−k)−1 for 0 < m < 1, 0 < r < 1.

(e) State whether R and M are independent and explain how you determined your answer.

Solution: They are independent, since we can factor the joint pdf into the product of a function
of only r and a function of only m.

(f) Describe in words how you would obtain the marginal pdf of R.

Solution: We could find the marginal pdf of R by taking the integral
∫ 1

0
fR,M(r,m)dm. The

result would be the marginal pdf of R. Another way we could find the marginal pdf of R is to
play with factorizations of the joint pdf of R and M until we have found a way to write it as
the product of two marginal pdfs that we recognize. We find that we may write

fR,M(r,m) =
Γ(k + 1)

Γ(k)Γ(1)
rk−1(1− r)1−1 Γ(k + 1 + n− k)

Γ(k + 1)Γ(n− k)
m(k+1)−1(1−m)(n−k)−1

for 0 < m < 1 and 0 < r < 1, by which we see that R ∼ Beta(k, 1) and M ∼ Beta(k+ 1, n−k).

4. Let W1,W2,W3 and Z1, Z2, Z3, Z4 be independent rvs such that Zi ∼ Normal(0, 1) for i = 1, . . . , 4 and
Wi ∼ χ2

1 for i = 1, 2, 3. Let Z̄ = (1/4)
∑4

i=1 Zi. Determine the distributions of the following:
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(a) 2Z̄

Solution: This has the Normal(0, 1) distribution.

(b) W1 +W2 +W3

Solution: This has the χ2
3 distribution.

(c) (1/3)(Z2
1 + Z2

2 + Z2
3)/W1

Solution: This has the F3,1 distribution.

(d)
∑4

i=1(Zi − Z̄)2

Solution: This has the χ2
3 distribution.

(e)
√

4Z̄/
√

(W1 +W2)/2

Solution: This has the t2 distribution.
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