STAT 512 sp 2020 Exam I

Karl B. Gregory

Do not open this test until told to do so; no calculators allowed; no notes allowed; no books allowed; show your work so that partial credit may be given.

1. Let X be a rv with cdf given by $F_{X}(x)=x^{2} / \pi^{2}$ for $x \in(0, \pi)$ and let $Y=-\log (X / \pi)$.
(a) Give the pdf of X.

Solution: Taking the derivative of the cdf, we see that the pdf of X is given by

$$
f_{X}(x)=2 x / \pi^{2} \quad \text { for } 0<x<\pi .
$$

(b) Give a transformation of X which will have the $\operatorname{Uniform}(0,1)$ distribution.

Solution: Passing X through its own cdf will result in a $\operatorname{Uniform}(0,1)$ random variable. That is,

$$
U=X^{2} / \pi^{2} \sim \operatorname{Uniform}(0,1) .
$$

(c) Give the transformation of a Uniform $(0,1)$ random variable which can be used to generate a realization of the random variable X.

Solution: Setting $U=X^{2} / \pi^{2}$ and solving for X gives

$$
X=\pi \sqrt{U}
$$

So we can generate a realization of X from $U \sim \operatorname{Uniform}(0,1)$ with the transformation $X=$ $\pi \sqrt{U}$.
(d) Let X_{1}, \ldots, X_{5} be independent rvs with the same distribution as X. Give the pdf of $X_{(3)}$.

Solution: We have

$$
f_{X_{(3)}}(x)=\frac{5!}{(3-1)!(5-3)!}\left[\frac{x^{2}}{\pi^{2}}\right]^{3-1}\left[1-\frac{x^{2}}{\pi^{2}}\right]^{5-3} \frac{2 x}{\pi^{2}}=\frac{60 x}{\pi^{2}}\left[\frac{x^{2}}{\pi^{2}}\right]^{2}\left[1-\frac{x^{2}}{\pi^{2}}\right]^{2}
$$

for $0<x<\pi$.
(e) Give the support of Y.

Solution: We have $\mathcal{Y}=(0, \infty)$.
(f) Find the pdf of Y.

Solution: We have

$$
y=-\log (x / \pi)=: g(x) \Longleftrightarrow x=\pi e^{-y}=: g^{-1}(y), \quad \text { and } \quad \frac{d}{d y} g^{-1}(y)=-\pi e^{-y}
$$

By the transformation method we have

$$
f_{Y}(y)=\frac{2}{\pi^{2}} \pi e^{-y}\left|-\pi e^{-y}\right|=2 e^{-2 y} \quad \text { for } y>0
$$

2. Let X and Y be independent rvs such that $X \sim \operatorname{Poisson(3)~and~} Y \sim \operatorname{Poisson(5)~and~let~} U=X+Y$.
(a) Give the support of U.

Solution: The support of U is $\{0,1,2 \ldots\}$.
(b) Give the mgf of U.

Solution: The mgf of U is given by

$$
M_{U}(t)=M_{X}(t) M_{Y}(t)=e^{3\left(e^{t}-1\right)} e^{5\left(e^{t}-1\right)}=e^{8\left(e^{t}-1\right)}
$$

(c) Write down the pmf of U.

Solution: The pmf of U is given by

$$
p_{U}(u)=\frac{e^{-8} 8^{u}}{u!} \quad \text { for } u=0,1,2, \ldots
$$

3. The order statistics $U=X_{(k)}$ and $V=X_{(k+1)}$ of a random sample $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Uniform}(0,1)$ have joint pdf given by

$$
f_{U, V}(u, v)=\frac{\Gamma(n+1)}{\Gamma(k) \Gamma(n-k)} u^{k-1}(1-v)^{(n-k)-1} \quad \text { for } 0<u<v<1
$$

for each $k=1, \ldots, n-1$. Let $R=U / V$ and $M=V$.
(a) State whether U and V are independent and explain how you determined your answer.

Solution: They are not independent, since the support of one variable depends on the value of the other. As a result, there is no way to write the joint pdf as the product of the marginal pdfs. Although the expression looks like it may be factorable into the product of a function of only u and a function of only v, it is not possible if the joint pdf is written for all $(u, v) \in \mathbb{R} \times \mathbb{R}$. Writing

$$
f_{U, V}(u, v)=\frac{\Gamma(n+1)}{\Gamma(k) \Gamma(n-k)} u^{k-1}(1-v)^{(n-k)-1} \mathbf{1}(0<u<v<1) \quad \text { for }(u, v) \in \mathbb{R} \times \mathbb{R}
$$

where $\mathbf{1}(\cdot)$ is the indicator function, we see that we cannot find the factorization required to show independence of U and V.
(b) Give the support of the random variable pair (R, M).

Solution: We have $(R, M) \in(0,1) \times(0,1)$.
(c) Give the Jacobian of the transformation.

Solution: We have

$$
\begin{aligned}
& r=u / v=: g_{1}(u, v) \\
& m=v=: g_{2}(u, v)
\end{aligned} \Longleftrightarrow \quad \begin{aligned}
& u=r m=: g_{1}^{-1}(r, m) \\
& v=m=: g_{2}^{-1}(r, m)
\end{aligned}
$$

with Jacobian

$$
J(x, y)=\left|\begin{array}{cc}
\frac{d}{d r} r m & \frac{d}{d m} r m \\
\frac{d}{d r} m & \frac{d}{d m} m
\end{array}\right|=\left|\begin{array}{cc}
m & r \\
0 & 1
\end{array}\right|=m
$$

(d) Find the joint pdf of R and M.

Solution: The joint pdf of R and M is given by

$$
\begin{aligned}
f_{R, M}(r, m) & =\frac{\Gamma(n+1)}{\Gamma(k) \Gamma(n-k)}(r m)^{k-1}(1-m)^{(n-k)-1} \cdot|m| \\
& =\frac{\Gamma(n+1)}{\Gamma(k) \Gamma(n-k)} r^{k-1} m^{(k+1)-1}(1-m)^{(n-k)-1} \quad \text { for } 0<m<1,0<r<1
\end{aligned}
$$

(e) State whether R and M are independent and explain how you determined your answer.

Solution: They are independent, since we can factor the joint pdf into the product of a function of only r and a function of only m.
(f) Describe in words how you would obtain the marginal pdf of R.

Solution: We could find the marginal pdf of R by taking the integral $\int_{0}^{1} f_{R, M}(r, m) d m$. The result would be the marginal pdf of R. Another way we could find the marginal pdf of R is to play with factorizations of the joint pdf of R and M until we have found a way to write it as the product of two marginal pdfs that we recognize. We find that we may write

$$
f_{R, M}(r, m)=\frac{\Gamma(k+1)}{\Gamma(k) \Gamma(1)} r^{k-1}(1-r)^{1-1} \frac{\Gamma(k+1+n-k)}{\Gamma(k+1) \Gamma(n-k)} m^{(k+1)-1}(1-m)^{(n-k)-1}
$$

for $0<m<1$ and $0<r<1$, by which we see that $R \sim \operatorname{Beta}(k, 1)$ and $M \sim \operatorname{Beta}(k+1, n-k)$.
4. Let W_{1}, W_{2}, W_{3} and $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ be independent rvs such that $Z_{i} \sim \operatorname{Normal}(0,1)$ for $i=1, \ldots, 4$ and $W_{i} \sim \chi_{1}^{2}$ for $i=1,2,3$. Let $\bar{Z}=(1 / 4) \sum_{i=1}^{4} Z_{i}$. Determine the distributions of the following:
(a) $2 \bar{Z}$

Solution: This has the Normal $(0,1)$ distribution.
(b) $W_{1}+W_{2}+W_{3}$

Solution: This has the χ_{3}^{2} distribution.
(c) $(1 / 3)\left(Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2}\right) / W_{1}$

Solution: This has the $F_{3,1}$ distribution.
(d) $\sum_{i=1}^{4}\left(Z_{i}-\bar{Z}\right)^{2}$

Solution: This has the χ_{3}^{2} distribution.
(e) $\sqrt{4} \bar{Z} / \sqrt{\left(W_{1}+W_{2}\right) / 2}$

Solution: This has the t_{2} distribution.

