STAT 512 sp 2020 Exam II

Karl B. Gregory

This is a take-home test due to the COVID-19 suspension of face-to-face instruction. Do not communicate with classmates about the exam until after its due date/time. You may

- Use your notes and the lecture notes.
- Use books.
- NOT work together with others.

Write all answers on blank sheets of paper; then take pictures and merge to a PDF. Upload a single PDF to Blackboard.

pmf/pdf	\mathcal{X}	$M_{X}(t)$	$\mathbb{E} X$	$\operatorname{Var} X$
$p_{X}(x ; p)=p^{x}(1-p)^{1-x}$,	$x=0,1$	$p e^{t}+(1-p)$	p	$p(1-p)$
$p_{X}(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}$,	$x=0,1, \ldots, n$	$\left[p e^{t}+(1-p)\right]^{n}$	$n p$	$n p(1-p)$
$p_{X}(x ; p)=(1-p)^{x-1} p$,	$x=1,2, \ldots$	$\frac{p^{t}}{1-(1-p) e^{t}}$	p^{-1}	$(1-p) p^{-2}$
$p_{X}(x ; p, r)=\binom{x-1}{r-1}(1-p)^{x-r} p^{r}$,	$x=r, r+1,$.	$\left.\dagger \frac{p e^{t}}{1-(1-p) e^{t}}\right\rceil$	$r p^{-1}$	$r(1-p) p^{-2}$
$p_{X}(x ; \lambda)=e^{-\lambda} \lambda^{x} / x!$	$x=0,1$,	$e^{\lambda\left(e^{t}-1\right)}$	λ	λ
$p_{X}(x ; N, M, K)=\binom{M}{x}\binom{N-M}{K-x} /\binom{N}{K}$	$x=0,1, \ldots, K$	¡complicadísimo!	$\frac{K M}{N}$	$\frac{K M}{N} \frac{(N-K)(N-M)}{N(N-1)}$
$p_{X}(x ; K)=\frac{1}{K}$	$x=1, \ldots, K$	$\frac{1}{K} \sum_{x=1}^{K} e^{t x}$	$\frac{K+1}{2}$	$\frac{(K+1)(K-1)}{12}$
$p_{X}\left(x ; x_{1}, \ldots, x_{n}\right)=\frac{1}{n}$	$x=1, \ldots, K$ $x=x_{1}, \ldots, x_{n}$		$\bar{x}=\frac{1}{n} \sum_{i=1}^{2} x_{i}$	$\frac{1}{n} \sum_{i=1}^{n}{ }^{12}\left(x_{i}-\bar{x}\right)^{2}$
$f_{X}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$	$-\infty<x<\infty$	$e^{\mu t+\sigma^{2} t^{2} / 2}$	μ	σ^{2}
$f_{X}(x ; \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} \exp \left(-\frac{x}{\beta}\right)$	$0<x<\infty$	$(1-\beta t)^{-\alpha}$	$\alpha \beta$	$\alpha \beta^{2}$
$f_{X}(x ; \lambda)=\frac{1}{\lambda} \exp \left(-\frac{x}{\lambda}\right)$	$0<x<\infty$	$(1-\lambda t)^{-1}$	λ	λ^{2}
$f_{X}(x ; \nu)=\frac{1}{\Gamma(\nu / 2) 2^{\nu / 2}} x^{\nu / 2-1} \exp \left(-\frac{x}{2}\right)$	$0<x<\infty$	$(1-2 t)^{-\nu / 2}$	ν	2ν
$f_{X}(x ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$0<x<1$	$1+\sum_{k=1}^{\infty} \frac{t^{k}}{k!}\left(\prod_{r=0}^{k} \frac{\alpha+r}{\alpha+\beta+r}\right)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$
$f_{X_{(k)}}(x)=$	$\frac{n!}{k-1)!(n-k)!}[$	$(x)]^{k-1}\left[1-F_{X}(x)\right]^{n-k} f_{X}$		

1. Copy down this sentence on your answer sheet and put your signature underneath: I have not collaborated with any other student on this exam. The work I have presented is my own.
2. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Gamma}(2, \beta)$.
(a) Write down the pdf of the Gamma $(2, \beta)$ distribution.
(b) Give $\mathbb{E} S_{n}^{2}$.
(c) Give $\mathbb{E} \bar{X}_{n}$.
(d) Give $\operatorname{Var} \bar{X}_{n}$.
(e) Propose an unbiased estimator $\hat{\beta}$ of β which is based on \bar{X}_{n}.
(f) Find the variance of your estimator $\hat{\beta}$.
(g) Find MSE $\hat{\beta}$.
(h) Argue whether your estimator $\hat{\beta}$ is consistent for β.
3. Let $\hat{\theta}_{n}$ be an estimator of a parameter θ.
(a) Explain in your own words what it means if $\hat{\theta}_{n}$ is a consistent estimator for θ.
(b) Explain how you would go about checking whether $\hat{\theta}_{n}$ is a consistent estimator for θ.
(c) Explain in your own words what it means if $\hat{\theta}_{n}$ is a biased estimator of θ.
(d) Suppose the variance of $\hat{\theta}_{n}$ does not get smaller as n is increased. What does this mean in terms of whether the estimator is consistent?
4. Let X_{1}, \ldots, X_{n} be a random sample from some distribution with mean μ and variance $\sigma^{2}<\infty$.
(a) Find $\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|<2 \sigma / \sqrt{n}\right)$. You may use R to compute any probabilities (just write by hand any R code you used).
(b) What theorem did you invoke in order to get your answer to the previous question?
(c) Find $\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|<0.001 \cdot \sigma\right)$.
(d) Is the probability $P\left(\mu-1<\bar{X}_{n}<\mu+1\right)$ an increasing or a decreasing function of n ? Explain your answer.
(e) Give the form of a large-sample 98% confidence interval for μ.
5. Let X_{1}, X_{2}, X_{3} be independent rvs with the $\operatorname{Uniform}(\theta-1, \theta+1)$ distribution, with density given by

$$
f_{X}(x)=\frac{1}{2} \mathbf{1}(\theta-1<x<\theta+1) .
$$

Consider the three estimators of θ given by

$$
\begin{aligned}
& \hat{\theta}=\left(X_{1}+X_{2}+X_{3}\right) / 3 \\
& \tilde{\theta}=X_{(2)} \\
& \check{\theta}=\left(X_{(1)}+X_{(3)}\right) / 2,
\end{aligned}
$$

where $X_{(1)}<X_{(2)}<X_{(3)}$ are the ordered values of X_{1}, X_{2}, X_{3}.
(a) Give $\mathbb{E} \hat{\theta}$.
(b) Using the fact that the variance of the $\operatorname{Uniform}(a, b)$ distribution is $(b-a)^{2} / 12$, give $\operatorname{Var} \hat{\theta}$.
(c) Give MSE $\hat{\theta}$.
(d) Find the pdf of $X_{(2)}$.
(e) It turns out that $\operatorname{Var} \tilde{\theta}=1 / 5$ and $\operatorname{Var} \check{\theta}=1 / 10$. A simulation was run in which 1,000 random samples of size 3 were drawn from the Uniform $(\theta-1, \theta+1)$ distribution under $\theta=0$. The left panel of the figure shows boxplots of the 1,000 values of $\tilde{\theta}$ and $\tilde{\theta}$ and the right panel shows plots of the pdfs of these estimators under $\theta=0$.

i. Comment on whether you think the estimators $\tilde{\theta}$ and $\check{\theta}$ are biased or unbiased.
ii. Of the three estimators $\hat{\theta}, \tilde{\theta}$, and $\check{\theta}$, choose the one you think is the best. Explain why you think it is the best.

