# STAT 512 sp 2020 Final Exam 

Karl B. Gregory

This is a take-home test due to the COVID-19 suspension of face-to-face instruction. Do not communicate with classmates about the exam until after its due date/time. You may

- Use your notes and the lecture notes.
- Use books.
- NOT work together with others.

Write all answers on blank sheets of paper; then take pictures and merge to a PDF. Upload a single PDF to Blackboard.

$$
\begin{aligned}
f_{X_{(k)}}(x) & =\frac{n!}{(k-1)!(n-k)!}\left[F_{X}(x)\right]^{k-1}\left[1-F_{X}(x)\right]^{n-k} f_{X}(x) \\
X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right) & \Longrightarrow\left\{\begin{array}{l}
(n-1) S_{n}^{2} / \sigma^{2} \sim \chi_{n-1}^{2} \\
\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma \sim \operatorname{Normal}(0,1) \\
\sqrt{n}\left(\bar{X}_{n}-\mu\right) / S_{n} \sim t_{n-1}
\end{array}\right. \\
W_{1} \sim \chi_{\nu_{1}}^{2}, \quad W_{2} \sim \chi_{\nu_{2}}^{2}, \quad W_{1}, W_{2} \text { indep. } & \Longrightarrow\left(W_{1} / \nu_{1}\right) /\left(W_{2} / \nu_{2}\right) \sim F_{\nu_{1}, \nu_{2}}
\end{aligned}
$$

The table below gives some values of the function $\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t$ :

| $z$ | 0.841 | 1.282 | 1.645 | 1.96 | 2.326 | 2.576 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Phi(z)$ | 0.80 | 0.90 | 0.95 | 0.975 | .990 | 0.995 |

1. Copy down this sentence on your answer sheet and put your signature underneath: I have not collaborated with any other student on this exam. The work I have presented is my own.
2. Let $X_{1}, \ldots, X_{n}$ be a random sample from a population with pdf given by

$$
f_{X}(x ; \tau)=\sqrt{\frac{\tau}{\pi}} \exp \left(-\tau x^{2}\right), \quad-\infty<x<\infty
$$

for some $\tau>0$, and note that the first two population moments are $\mu_{1}^{\prime}=0$ and $\mu_{2}^{\prime}=1 /(2 \tau)$.
(a) Set $m_{2}^{\prime}=\mu_{2}^{\prime}$, where $m_{2}^{\prime}$ is the second sample moment, to find the MoMs estimator for $\tau$.

Solution: We have

$$
m_{2}^{\prime}=\mu_{2}^{\prime}=\frac{1}{2 \tau} \Longleftrightarrow \bar{\tau}=\frac{1}{2 m_{2}^{\prime}}
$$

so we may write

$$
\bar{\tau}=\frac{n}{2 \sum_{i=1}^{n} X_{i}^{2}} .
$$

(b) Write down the likelihood function for $\tau$ based on $X_{1}, \ldots, X_{n}$.

Solution: The likelihood function is given by

$$
\mathcal{L}\left(\tau ; X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \sqrt{\frac{\tau}{\pi}} \exp \left(-\tau X_{i}^{2}\right)=\left[\frac{\tau}{\pi}\right]^{n / 2} \exp \left[-\tau \sum_{i=1}^{n} X_{i}^{2}\right]
$$

(c) Identify a sufficient statistic for $\tau$.

Solution: By looking at the likelihood function, which is nothing other than the joint pdf of the random variables $X_{1}, \ldots, X_{n}$ in the sample, that $T\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} X_{i}^{2}$ is a sufficient statistic for $\tau$ by the factorization

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n} ; \tau\right)=\underbrace{\left[\frac{\tau}{\pi}\right]^{n / 2} \exp \left[-\tau \sum_{i=1}^{n} X_{i}^{2}\right]}_{g\left(\sum_{i=1}^{n} X_{i}^{2} ; \tau\right)} \cdot \underbrace{1}_{h\left(x_{1}, \ldots, x_{n}\right)}
$$

(d) Give the log-likelihood.

Solution: The log-likelihood is given by

$$
\ell\left(\tau ; X_{1}, \ldots, X_{n}\right)=\frac{n}{2} \log \tau-\frac{n}{2} \log \pi-\tau \sum_{i=1}^{n} X_{i}^{2}
$$

(e) Find the MLE $\hat{\tau}$ for $\tau$.

Solution: Setting the derivative of the log-likelihood with respect to $\theta$ equal to zero and solving for $\tau$ gives

$$
\frac{d}{d \tau} \ell\left(\tau ; X_{1}, \ldots, X_{n}\right)=\frac{n}{2 \tau}-\sum_{i=1}^{n} X_{i}^{2}=0 \Longleftrightarrow \tau=\frac{n}{2 \sum_{i=1}^{n} X_{i}^{2}},
$$

so the MLE is

$$
\hat{\tau}=\frac{n}{2 \sum_{i=1}^{n} X_{i}^{2}}
$$

(f) Let $Y=\sqrt{2 \tau} X$, where $X \sim f_{X}(x ; \tau)$. Use the transformation method to find the pdf of $Y$.

Solution: We have

$$
y=\sqrt{2 \tau} x=g(x) \Longleftrightarrow x=y / \sqrt{2 \tau}, \quad \text { and } \quad \frac{d}{d y} g^{-1}(y)=1 / \sqrt{2 \tau}
$$

and $-\infty<Y<\infty$. So by the transformation method we have

$$
f_{Y}(y)=\sqrt{\frac{\tau}{\pi}} \exp \left[-\tau(y / \sqrt{2 \tau})^{2}\right] \cdot 1 / \sqrt{2 \tau}=\frac{1}{\sqrt{2 \pi}} \exp \left(-y^{2} / 2\right)
$$

(g) Identify the distribution of $Y$ and give the distribution of $W=Y^{2}$.

Solution: By the answer to the previous part, $Y \sim \operatorname{Normal}(0,1)$, so $W=Y^{2} \sim \chi_{1}^{2}$.
(h) Give the distribution of the random variable $S=\sum_{i=1}^{n}\left(\sqrt{2 \tau} X_{i}\right)^{2}$.

Solution: Since $\left(\sqrt{2 \tau} X_{i}\right)^{2} \sim \chi_{1}^{2}$ for each $i=1, \ldots, n$, and since $X_{1}, \ldots, X_{n}$ are independent, we have

$$
S \sim \chi_{n}^{2}
$$

(i) Show that $\hat{\tau}=n \tau / S$.

Solution: We have

$$
\hat{\tau}=\frac{n}{2 \sum_{i=1}^{n} X_{i}^{2}}=\frac{n 2 \tau}{2 \sum_{i=1}^{n}\left(\sqrt{2 \tau} X_{i}\right)^{2}}=\frac{n \tau}{S}
$$

(j) We find that $\mathbb{E}[1 / S]=1 /(n-2)$. Use this to find $\mathbb{E} \hat{\tau}$.

Solution: We have

$$
\mathbb{E} \hat{\tau}=\mathbb{E}\left[\frac{n \tau}{S}\right]=n \tau \mathbb{E}\left[\frac{1}{S}\right]=\left(\frac{n}{n-2}\right) \tau
$$

As an added note, we find $\mathbb{E}[1 / S]$ as follows:

$$
\begin{aligned}
\mathbb{E}\left[\frac{1}{S}\right] & =\int_{0}^{\infty} \frac{1}{s} \frac{1}{\Gamma(n / 2) 2^{n / 2}} s^{n / 2-1} e^{-s / 2} d s \\
& =\int_{0}^{\infty} \frac{1}{\Gamma(n / 2) 2^{n / 2}} s^{(n / 2-1)-1} e^{-s / 2} d s \\
& =\frac{\Gamma(n / 2-1) 2^{n / 2-1}}{\Gamma(n / 2) 2^{n / 2}} \underbrace{\int_{0}^{\infty} \frac{1}{\Gamma(n / 2-1) 2^{n / 2-1}} s^{(n / 2-1)-1} e^{-s / 2} d s}_{=1, \text { integral over Gamma }(n / 2-1,2) \text { pdf }} \\
& =\frac{\Gamma(n / 2-1)}{2(n / 2-1) \Gamma(n / 2-1)} \\
& =1 /(n-2) .
\end{aligned}
$$

(k) Propose an estimator $\hat{\tau}_{\text {unbiased }}$ based on $\hat{\tau}$ that is unbiased for $\tau$.

Solution: An unbiased estimator for $\tau$ is

$$
\hat{\tau}_{\text {unbiased }}=\left(\frac{n-2}{n}\right) \hat{\tau}=\frac{n-2}{2 \sum_{i=1}^{n} X_{i}^{2}}
$$

(l) Comment on whether there could exist an unbiased estimator besides $\hat{\tau}_{\text {unbiased }}$ with smaller variance.

Solution: Since the estimator $\hat{\tau}_{\text {unbiased }}$ is unbiased and is a function of the sufficient statistic $\sum_{i=1}^{n} X_{i}^{2}$, it is the MVUE, so there does not exist any other unbiased estimator with smaller variance.
3. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}(p)$.
(a) Give the MoMs estimator $\bar{p}$ for $p$.

Solution: Setting $m_{1}^{\prime}=\mu_{1}^{\prime}$ gives $\bar{X}_{n}=p$, so we have

$$
\bar{p}=\bar{X}_{n} .
$$

(b) Give the variance of $\bar{p}$.

Solution: We have

$$
\operatorname{Var} \bar{p}=\frac{p(1-p)}{n}
$$

(c) Give the MSE of $\bar{p}$.

Solution: Since $\bar{p}$ is an unbiased estimator for $p$, we have

$$
\operatorname{MSE} \bar{p}=\operatorname{Var} \bar{p}=\frac{p(1-p)}{n}
$$

(d) Is the MoMs estimator a consistent estimator for $p$ ? Explain your answer.

Solution: Since MSE $\bar{p}$ goes to zero as $n$ goes to infinity, $\bar{p}$ is a consistent estimator of $p$.
(e) Write down the joint pmf of $X_{1}, \ldots, X_{n}$.

Solution: The joint pmf of $X_{1}, \ldots, X_{n}$ is given by

$$
p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n} ; p\right)=\prod_{i=1}^{n} p^{x_{i}}(1-p)^{1-x_{i}}=p^{\sum_{i=1}^{n} x_{i}}(1-p)^{n-\sum_{i=1}^{n} x_{i}}
$$

(f) Find a sufficient statistic for $p$.

Solution: By the factorization

$$
p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n} ; p\right)=\underbrace{p^{\sum_{i=1}^{n} x_{i}}(1-p)^{n-\sum_{i=1}^{n} x_{i}}}_{g\left(\sum_{i=1}^{n} x_{i} ; p\right)} \cdot \underbrace{1}_{h\left(x_{1}, \ldots, x_{n}\right)}
$$

we see that $\sum_{i=1}^{n} X_{i}$ is a sufficient statistic for $p$.
(g) Is the MoMs estimator of $p$ the MVUE? Explain your answer.

Solution: Since the MoMs estimator $\bar{p}$ is unbiased for $p$ and since it is a function of $\sum_{i=1}^{n} X_{i}$, which is a sufficient statistic for $p$, it is the MVUE for $p$.
4. Let $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5} \stackrel{\text { ind }}{\sim} \operatorname{Normal}(0,1)$. Identify the distributions of the following.
(a) $Z_{1}^{2}+Z_{2}^{2}$

Solution: This has the $\chi_{2}^{2}$ distribution.
(b) $\frac{\left(Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2}\right) / 3}{\left(Z_{4}^{2}+Z_{5}^{2}\right) / 2}$

Solution: This has the $F_{3,2}$ distribution.
(c) $\frac{1}{\sqrt{3}}\left(Z_{1}+Z_{2}+Z_{3}\right)$

Solution: This has the $\operatorname{Normal}(0,1)$ distribution.
(d) $\frac{1}{2}\left(Z_{1}+Z_{2}\right) / \sqrt{\frac{1}{2}\left[\left(Z_{1}-\left(\frac{Z_{1}+Z_{2}}{2}\right)\right)^{2}+\left(Z_{2}-\left(\frac{Z_{1}+Z_{2}}{2}\right)\right)^{2}\right]}$

Solution: This has the $t_{1}$ distribution.
5. Let $X_{1}, \ldots, X_{n}$ be a random sample from the distribution with cdf given by

$$
F_{X}(x ; B, M, \nu)=\frac{1}{[1+\exp (-B(x-M))]^{1 / \nu}}, \quad-\infty<x<\infty,
$$

for some parameters $B>0,-\infty<M<\infty, \nu>0$.
(a) Find the function $F_{X}^{-1}$ such that the random variable $F_{X}^{-1}(U)$ has the $\operatorname{cdf} F_{X}$ if $U \sim \operatorname{Uniform}(0,1)$.

Solution: We have

$$
u=\frac{1}{[1+\exp (-B(x-M))]^{1 / \nu}} \Longleftrightarrow M-\frac{1}{B} \log \left(\frac{1-u^{\nu}}{u^{\nu}}\right)=x
$$

so

$$
F_{X}^{-1}(U)=M-\frac{1}{B} \log \left(\frac{1-U^{\nu}}{U^{\nu}}\right) \sim F_{X}
$$

(b) Give the pdf $f_{X}$ corresponding to the $\operatorname{cdf} F_{X}$.

Solution: Taking the first derivative with respect to $x$ of $F_{X}(x)$ gives

$$
f_{X}(x)=\frac{B}{\nu} \frac{\exp (-B(x-M))}{[1+\exp (-B(x-M))]^{1 / \nu+1}},-\infty<x<\infty .
$$

(c) Write down the joint pdf of $X_{1}, \ldots, X_{n}$.

Solution: The joint pdf of $X_{1}, \ldots, X_{n}$ is

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n} ; B, M, \nu\right)=\prod_{i=1}^{n} \frac{B}{\nu} \frac{\exp \left(-B\left(x_{i}-M\right)\right)}{\left[1+\exp \left(-B\left(x_{i}-M\right)\right)\right]^{1 / \nu+1}} .
$$

(d) Check whether $\sum_{i=1}^{n} X_{i}$ is a sufficient statistic for the parameter $M$. Explain your answer.

Solution: We cannot find any factorization of the joint pdf $f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n} ; B, M, \nu\right)$ into a function of $\sum_{i=1}^{n} x_{i}$ and the parameter $M$ and a function of $x_{1}, \ldots, x_{n}$ which does not involve the parameters, so $\sum_{i=1}^{n} X_{i}$ is not a sufficient statistic for $M$.
(e) Give an interval based on $X_{1}, \ldots, X_{n}$ which will contain the first population moment with probability approaching 0.99 as $n \rightarrow \infty$.

Solution: The first population moment is the population mean; a large- $n$ approximate $99 \%$ confidence interval for the mean is given by

$$
\bar{X}_{n} \pm 2.576 \cdot S_{n} / \sqrt{n} .
$$

