STAT 512 su 2021 Exam I

Karl B. Gregory

This is a take-home test. Do not communicate with classmates about the exam until after its due date/time. You may

- Use your notes and the lecture notes.
- Use books.
- NOT work together with others.

Write all answers on blank sheets of paper; then take pictures and merge to a PDF. Upload a single PDF to Blackboard.

- 1. Copy down this sentence on your answer sheet and put your signature underneath: I have not collaborated with any other student on this exam. The work I have presented is my own.
- 2. Let X be the sum of two rolls of a die and let Y be the remainder when 12 is divided by X.
 - (a) Give the support \mathcal{X} of X.
 - (b) Give the support \mathcal{Y} of Y.
 - (c) Letting g represent the transformation from X to Y, give
 i. g⁻¹(0)
 - ii. $g^{-1}(1)$.
 - (d) Make a table giving the probability distribution of Y of the form

$$\begin{array}{c|c} y \\ \hline P(Y=y) \end{array}$$

- 3. Let $X \sim \text{Beta}(\alpha, \beta)$ and let $Y = \tan(\pi(X 1/2))$.
 - (a) Give the support \mathcal{X} of X.
 - (b) Give the support \mathcal{Y} of Y.
 - (c) Give the pdf of Y.
 - (d) Give the pdf of Y when $\alpha = \beta = 1$.
- 4. Consider the pdf $f_Y(y) = \pi^{-1}(1+y^2)^{-1}$ for $y \in \mathbb{R}$.
 - (a) Find the cdf F_Y corresponding to the pdf f_Y .
 - (b) Find the transformation $g: (0,1) \to \mathbb{R}$ such that the random variable g(U) has density f_Y , where $U \sim \text{Uniform}(0,1)$.
 - (c) Let Y_1, \ldots, Y_n be a random sample from the distribution with density f_Y . Find the pdf of the kth order statistic $Y_{(k)}$ of Y_1, \ldots, Y_n .
- 5. Let $X_1 \sim \text{Exponential}(\lambda_1)$ and $X_2 \sim \text{Exponential}(\lambda_2)$ be independent rvs for some $\lambda_1, \lambda_2 > 0$. Define new random variables $Y_1 = X_1/X_2$ and $Y_2 = X_2$.
 - (a) Write down the joint pdf of X_1 and X_2 .
 - (b) Give the joint support of the rv pair (Y_1, Y_2) .
 - (c) Give the Jacobian of the transformation from (X_1, X_2) to (Y_1, Y_2) .
 - (d) Give the joint pdf of Y_1 and Y_2 .
 - (e) Find the cdf of Y_1 by evaluating $P(Y_1 \le y_1) = P(X_1/X_2 \le y_1)$ as a double integral.
 - (f) Give the pdf of Y_1 .

6. Let $Z_1, \ldots, Z_n \stackrel{\text{ind}}{\sim} \text{Normal}(0, 1/n)$ and let $h_1, \ldots, h_n \in \mathbb{R}$. Find the distribution of $S_n = \sum_{i=1}^n h_i \cdot Z_i$.

7. Let $X_1 \sim \text{Binomial}(n_1, p)$ and $X_2 \sim \text{Binomial}(n_2, p)$ be independent rvs. Let $Y = X_1 + X_2$. Give the cdf $F_Y(y)$ of Y.