STAT 512 su 2021 Exam I

Karl B. Gregory

This is a take-home test. Do not communicate with classmates about the exam until after its due date/time. You may

- Use your notes and the lecture notes.
- Use books.
- NOT work together with others.

Write all answers on blank sheets of paper; then take pictures and merge to a PDF. Upload a single PDF to Blackboard.

1. Copy down this sentence on your answer sheet and put your signature underneath: I have not collaborated with any other student on this exam. The work I have presented is my own.
2. Let X be the sum of two rolls of a die and let Y be the remainder when 12 is divided by X.
(a) Give the support \mathcal{X} of X.
(b) Give the support \mathcal{Y} of Y.
(c) Letting g represent the transformation from X to Y, give
i. $g^{-1}(0)$
ii. $g^{-1}(1)$.
(d) Make a table giving the probability distribution of Y of the form

y
$P(Y=y)$

3. Let $X \sim \operatorname{Beta}(\alpha, \beta)$ and let $Y=\tan (\pi(X-1 / 2))$.
(a) Give the support \mathcal{X} of X.
(b) Give the support \mathcal{Y} of Y.
(c) Give the pdf of Y.
(d) Give the pdf of Y when $\alpha=\beta=1$.
4. Consider the pdf $f_{Y}(y)=\pi^{-1}\left(1+y^{2}\right)^{-1}$ for $y \in \mathbb{R}$.
(a) Find the cdf F_{Y} corresponding to the pdf f_{Y}.
(b) Find the transformation $g:(0,1) \rightarrow \mathbb{R}$ such that the random variable $g(U)$ has density f_{Y}, where $U \sim \operatorname{Uniform}(0,1)$.
(c) Let Y_{1}, \ldots, Y_{n} be a random sample from the distribution with density f_{Y}. Find the pdf of the k th order statistic $Y_{(k)}$ of Y_{1}, \ldots, Y_{n}.
5. Let $X_{1} \sim \operatorname{Exponential}\left(\lambda_{1}\right)$ and $X_{2} \sim \operatorname{Exponential}\left(\lambda_{2}\right)$ be independent rvs for some $\lambda_{1}, \lambda_{2}>0$. Define new random variables $Y_{1}=X_{1} / X_{2}$ and $Y_{2}=X_{2}$.
(a) Write down the joint pdf of X_{1} and X_{2}.
(b) Give the joint support of the rv pair $\left(Y_{1}, Y_{2}\right)$.
(c) Give the Jacobian of the transformation from $\left(X_{1}, X_{2}\right)$ to $\left(Y_{1}, Y_{2}\right)$.
(d) Give the joint pdf of Y_{1} and Y_{2}.
(e) Find the cdf of Y_{1} by evaluating $P\left(Y_{1} \leq y_{1}\right)=P\left(X_{1} / X_{2} \leq y_{1}\right)$ as a double integral.
(f) Give the pdf of Y_{1}.
6. Let $Z_{1}, \ldots, Z_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}(0,1 / n)$ and let $h_{1}, \ldots, h_{n} \in \mathbb{R}$. Find the distribution of $S_{n}=\sum_{i=1}^{n} h_{i} \cdot Z_{i}$.
7. Let $X_{1} \sim \operatorname{Binomial}\left(n_{1}, p\right)$ and $X_{2} \sim \operatorname{Binomial}\left(n_{2}, p\right)$ be independent rvs. Let $Y=X_{1}+X_{2}$. Give the $\operatorname{cdf} F_{Y}(y)$ of Y.
