STAT 512 su 2021 Exam I

Karl B. Gregory

This is a take-home test. Do not communicate with classmates about the exam until after its due date/time. You may

- Use your notes and the lecture notes.
- Use books.
- NOT work together with others.

Write all answers on blank sheets of paper; then take pictures and merge to a PDF. Upload a single PDF to Blackboard.

1. Copy down this sentence on your answer sheet and put your signature underneath: I have not collaborated with any other student on this exam. The work I have presented is my own.
2. Let X be the sum of two rolls of a die and let Y be the remainder when 12 is divided by X.
(a) Give the support \mathcal{X} of X.

Solution: We have $\mathcal{X}=\{2, \ldots, 12\}$.
(b) Give the support \mathcal{Y} of Y.

Solution: We have $\mathcal{Y}=\{0, \ldots, 5\}$.
(c) Letting g represent the transformation from X to Y, give
i. $g^{-1}(0)$

Solution: We have $g^{-1}(0)=\{2,3,4,6,12\}$.
ii. $g^{-1}(1)$.

Solution: We have $g^{-1}(1)=\{11\}$.
(d) Make a table giving the probability distribution of Y of the form

y	
$P(Y=y)$	

Solution:

$$
\begin{array}{c|cccccc}
y & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline P(Y=y) & 12 / 36 & 2 / 36 & 7 / 36 & 4 / 36 & 5 / 36 & 6 / 36
\end{array}
$$

We get this from

y	0	1	2	3	4	5
$g^{-1}(y)$	$\{2,3,4,6,12\}$	$\{11\}$	$\{5,10\}$	$\{9\}$	$\{8\}$	$\{7\}$
$P(Y=y)=P\left(X \in g^{-1}(y)\right)$	$12 / 36$	$2 / 36$	$7 / 36$	$4 / 36$	$5 / 36$	$6 / 36$

We get the probabilities $P\left(X \in g^{-1}(y)\right)$ from the probability distribution of X, which we can write as

$$
\begin{array}{c|ccccccccccc}
x & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline P(X=x) & 1 / 36 & 2 / 36 & 3 / 36 & 4 / 36 & 5 / 36 & 6 / 36 & 5 / 36 & 4 / 36 & 3 / 36 & 2 / 36 & 1 / 36
\end{array}
$$

3. Let $X \sim \operatorname{Beta}(\alpha, \beta)$ and let $Y=\tan (\pi(X-1 / 2))$.
(a) Give the support \mathcal{X} of X.

Solution: We have $\mathcal{X}=(0,1)$.
(b) Give the support \mathcal{Y} of Y.

Solution: We have $\mathcal{Y}=(-\infty, \infty)$
(c) Give the pdf of Y.

Solution: We have

$$
g^{-1}(y)=\frac{\tan ^{-1}(y)}{\pi}+\frac{1}{2} \quad \text { and } \quad \frac{d}{d y} g^{-1}(y)=\frac{1}{\pi} \frac{1}{1+y^{2}},
$$

so that

$$
f_{Y}(y)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}\left[\frac{\tan ^{-1}(y)}{\pi}+\frac{1}{2}\right]^{\alpha-1}\left[1-\left(\frac{\tan ^{-1}(y)}{\pi}+\frac{1}{2}\right)\right]^{\beta-1} \frac{1}{\pi} \frac{1}{1+y^{2}}
$$

(d) Give the pdf of Y when $\alpha=\beta=1$.

Solution: We have

$$
f_{Y}(y)=\frac{1}{\pi} \frac{1}{1+y^{2}}
$$

4. Consider the pdf $f_{Y}(y)=\pi^{-1}\left(1+y^{2}\right)^{-1}$ for $y \in \mathbb{R}$.
(a) Find the cdf F_{Y} corresponding to the pdf f_{Y}.

Solution: We have

$$
F_{Y}(y)=\int_{-\infty}^{y} \frac{1}{\pi} \frac{1}{1+t^{2}} d t=\frac{1}{\pi} \tan ^{-1}(y)+\frac{1}{2}
$$

(b) Find the transformation $g:(0,1) \rightarrow \mathbb{R}$ such that the random variable $g(U)$ has density f_{Y}, where $U \sim \operatorname{Uniform}(0,1)$.

Solution: The transformation is $g(U)=\tan (\pi(U-1 / 2))$, which is the inverse of the cdf.
(c) Let Y_{1}, \ldots, Y_{n} be a random sample from the distribution with density f_{Y}. Find the pdf of the k th order statistic $Y_{(k)}$ of Y_{1}, \ldots, Y_{n}.

Solution: We have

$$
f_{Y_{(k)}}(y)=\frac{n!}{(k-1)!(n-k)!}\left[\frac{1}{\pi} \tan ^{-1}(y)+\frac{1}{2}\right]^{k-1}\left[1-\left(\frac{1}{\pi} \tan ^{-1}(y)+\frac{1}{2}\right)\right]^{n-k} \frac{1}{\pi} \frac{1}{1+y^{2}}
$$

which we can write (cf. Question 3) as

$$
f_{Y_{(k)}}(y)=\frac{\Gamma(k+(n-k+1))}{\Gamma(k) \Gamma(n-k+1)}\left[\frac{1}{\pi} \tan ^{-1}(y)+\frac{1}{2}\right]^{k-1}\left[1-\left(\frac{1}{\pi} \tan ^{-1}(y)+\frac{1}{2}\right)\right]^{(n-k+1)-1} \frac{1}{\pi} \frac{1}{1+y^{2}} .
$$

Interestingly, this means that the k th order statistic of a Cauchy random sample of size n has the same distribution as the random variable $\tan (\pi(U-1 / 2))$, where $U \sim \operatorname{Beta}(k, n-k+1)$.
5. Let $X_{1} \sim \operatorname{Exponential}\left(\lambda_{1}\right)$ and $X_{2} \sim \operatorname{Exponential}\left(\lambda_{2}\right)$ be independent rvs for some $\lambda_{1}, \lambda_{2}>0$. Define new random variables $Y_{1}=X_{1} / X_{2}$ and $Y_{2}=X_{2}$.
(a) Write down the joint pdf of X_{1} and X_{2}.

Solution: We have

$$
f_{X_{1}, X_{1}}\left(x_{1}, x_{2}\right)=\frac{1}{\lambda_{1}} e^{-x_{1} / \lambda_{1}} \frac{1}{\lambda_{2}} e^{-x_{2} / \lambda_{2}} \cdot \mathbf{1}\left(x_{1}>0, x_{2}>0\right) .
$$

(b) Give the joint support of the rv pair $\left(Y_{1}, Y_{2}\right)$.

Solution: The rv pair $\left(Y_{1}, Y_{2}\right)$ can take any values in the set $\mathcal{Y}=(0, \infty) \times(0, \infty)$.
(c) Give the Jacobian of the transformation from $\left(X_{1}, X_{2}\right)$ to $\left(Y_{1}, Y_{2}\right)$.

Solution:

We have

$$
\begin{aligned}
& y_{1}=x_{1} / x_{2}=: g_{1}\left(x_{1}, x_{2}\right) \\
& y_{2}=x_{2}=: g_{2}\left(x_{1}, x_{2}\right)
\end{aligned} \Longleftrightarrow \begin{aligned}
& x_{1}=y_{1} y_{2}=: g_{1}^{-1}\left(y_{1}, y_{2}\right) \\
& x_{2}=y_{2}=: g_{2}^{-1}\left(y_{1}, y_{2}\right),
\end{aligned}
$$

so the Jacobian is

$$
J(x, y)=\left|\begin{array}{ll}
\frac{\partial}{\partial y_{1}} y_{1} y_{2} & \frac{\partial}{\partial y_{2}} y_{1} y_{2} \\
\frac{\partial}{\partial y_{1}} y_{2} & \frac{\partial}{\partial y_{2}} y_{2}
\end{array}\right|=\left|\begin{array}{cc}
y_{2} & y_{1} \\
0 & 1
\end{array}\right|=y_{2} .
$$

(d) Give the joint pdf of Y_{1} and Y_{2}.

Solution: For $\left(y_{1}, y_{2}\right) \in(0, \infty) \times(0, \infty)$ we have

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\frac{1}{\lambda_{1}} e^{-y_{1} y_{2} / \lambda_{1}} \frac{1}{\lambda_{2}} e^{-y_{2} / \lambda_{2}}\left|y_{2}\right|=\frac{1}{\lambda_{1} \lambda_{2}} y_{2} \exp \left[-y_{2}\left(\frac{y_{1}}{\lambda_{1}}+\frac{1}{\lambda_{2}}\right)\right] .
$$

(e) Find the cdf of Y_{1} by evaluating $P\left(Y_{1} \leq y_{1}\right)=P\left(X_{1} / X_{2} \leq y_{1}\right)$ as a double integral.

Solution: For $y_{1}>0$, we have

$$
\begin{aligned}
F_{Y_{1}}\left(y_{1}\right) & =P\left(Y_{1} \leq y_{1}\right) \\
& =P\left(X_{1} / X_{2} \leq y_{1}\right) \\
& =P\left(X_{2} \geq X_{1} / y_{1}\right) \\
& =\int_{0}^{\infty} \int_{x_{1} / y}^{\infty} \frac{1}{\lambda_{1}} e^{-x_{1} / \lambda_{1}} \frac{1}{\lambda_{2}} e^{-x_{2} / \lambda_{2}} d x_{2} d x_{1} \\
& =\int_{0}^{\infty} \frac{1}{\lambda_{1}} e^{-x_{1} / \lambda_{1}} e^{-x_{1} /\left(y_{1} \lambda_{2}\right)} d x_{2} d x_{1} \\
& =\frac{1}{\lambda_{1}} \int_{0}^{\infty} \exp \left[-\frac{x_{1}}{\left(\frac{1}{\lambda_{1}}+\frac{1}{y_{1} \lambda_{2}}\right)^{-1}}\right] d x_{1} \\
& =\frac{1}{\lambda_{1}}\left(\frac{1}{\lambda_{1}}+\frac{1}{y_{1} \lambda_{2}}\right)^{-1} \\
& =\frac{y_{1}}{y_{1}+\lambda_{1} / \lambda_{2}} .
\end{aligned}
$$

So we have

$$
F_{Y 1}\left(y_{1}\right)=\left\{\begin{array}{cc}
\frac{y_{1}}{y_{1}+\lambda_{1} / \lambda_{2}}, & y>0 \\
0, & y \leq 0
\end{array}\right.
$$

(f) Give the pdf of Y_{1}.

Solution: We can either integrate the joint pdf of Y_{1} and Y_{2} obtained in the answer to part (d) with respect to y_{2} or we can take the derivative with respect to y_{1} of the cdf of Y_{1} obtained in the answer to part (e). Both approaches give us

$$
f_{Y_{1}}\left(y_{1}\right)=\frac{\lambda_{1} / \lambda_{2}}{\left(y_{1}+\lambda_{1} / \lambda_{2}\right)^{2}} \cdot \mathbf{1}\left(y_{1}>0\right)
$$

6. Let $Z_{1}, \ldots, Z_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}(0,1 / n)$ and let $h_{1}, \ldots, h_{n} \in \mathbb{R}$. Find the distribution of $S_{n}=\sum_{i=1}^{n} h_{i} \cdot Z_{i}$.

Solution: Useing moment generating functions, we have

$$
\begin{aligned}
M_{Y}(t) & =M_{\sum_{i=1}^{n} h_{i} \cdot Z_{i}}(t) \\
& =\prod_{i=1}^{n} M_{h_{i} \cdot Z_{i}}(t) \\
& =\prod_{i=1}^{n} M_{Z_{i}}\left(h_{i} \cdot t\right) \\
& =\prod_{i=1}^{n} \exp \left[(1 / n)\left(h_{i} \cdot t\right)^{2} / 2\right] \\
& =\exp \left[\frac{\sum_{i=1}^{n} h_{i}^{2}}{n} \cdot \frac{t^{2}}{2}\right],
\end{aligned}
$$

which we recognize as the mgf of the $\operatorname{Normal}\left(0, n^{-1} \sum_{i=1}^{n} h_{i}^{2}\right)$ distribution. So

$$
S_{n} \sim \operatorname{Normal}\left(0, n^{-1} \sum_{i=1}^{n} h_{i}^{2}\right)
$$

7. Let $X_{1} \sim \operatorname{Binomial}\left(n_{1}, p\right)$ and $X_{2} \sim \operatorname{Binomial}\left(n_{2}, p\right)$ be independent rvs. Let $Y=X_{1}+X_{2}$. Give the cdf $F_{Y}(y)$ of Y.

Solution: We can find the distribution of of Y using moment generating functions. We have

$$
\begin{aligned}
M_{Y}(t) & =M_{X_{1}+X_{2}}(t) \\
& =M_{X_{1}}(t) M_{X_{2}}(t) \\
& =\left[p e^{t}+(1-p)\right]^{n_{1}} \cdot\left[p e^{t}+(1-p)\right]^{n_{2}} \\
& =\left[p e^{t}+(1-p)\right]^{n_{1}+n_{2}},
\end{aligned}
$$

which is the $m g f$ of the $\operatorname{Binomial}\left(n_{1}+n_{2}, p\right)$ distribution. So $Y \sim \operatorname{Binomial}\left(n_{1}+n_{2}, p\right)$ and has cdf given by

$$
F_{Y}(y)= \begin{cases}\sum_{t \leq y}\binom{n_{1}+n_{2}}{t} p^{y}(1-p)^{n_{1}+n_{2}-t}, & y \geq 0 \\ 0, & y<0\end{cases}
$$

