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1. Transformations of a random variable

e Let X be arv with support A and let g be a function mapping X to ) with inverse mapping

gl A) ={reXx gx)c A} forall AcC).

e If X is a discrete rv, the rv Y = g(X) is discrete and has pmf given by

_ Yegibx(x) foryed
py(y) = { - ()y fory ¢ V.

e If X has pdf fy then the cdf of Y = g(X) is given by

FW= [ fsl@ds —so<y<oo
{9(z)<y}

e If X has pdf fx which is continuous on X and if g is monotone and ¢g~' has a continuous
derivative then the pdf of Y = g(X) is given by

fx(a Wl ()| foryey
fr(y) = { 0 fory ¢ V.

o If X has mgf Mx(t), the mgf of Y = aX + b is given by My (t) = " M (at).
e If X has continuous cdf Flx, the rv U = Fx(X) has the uniform distribution on (0, 1).
e To generate X ~ Fy, generate U ~ Uniform(0,1) and set X = F;*(U), where

Fil(u) = inf{z : Fx(z) > u}.
If Fx is strictly increasing, Fiy' satisfies
r=Fy'(u) <= u=Fx(z)

foral0 <u<1and —oo < < o0.



2. Transformations of multiple random variables
e Let (X1, Xs) be a pair of continuous random variables with pdf fx, x, having joint support

X = {(21,22) : fx, x(21,22) > 0}

and let Y} = ¢1(X1, X2) and Yy = ¢2(X4, X3), where g; and ¢, form a one-to-one transforma-
tion of X’ onto the set

YV ={(y1,92) 1 y1 = g1(21,72), Y2 = g2(x1, T2), (¥1,72) € X'}
Then the joint pdf fy, y, of rv pair (Y7,Y5) is given by

oy ) = Ix1% (97 (W, 92), 5 (v )| (i, v2) | for (yi, 1) €Y
Y1,Yo Y1,Y2) = 0 fOI' (yl,yQ) ¢ y ’

where g; ! and g, ' are the functions satisfying
_ _ -1
y1 = gi(x1, 72) Ty = gl_l(yl,ya)
Y2 = ga(21, 22) T2 =95 (Y1,92)

and o 1 o 1
20, 91 1(3/17 Y2) %91 1<y17 Y2)
a2 Wi v2) 5202 (1,02)

provided J(y1,y2) is not equal to zero for all (yi,y2) € V.

J(yhyz) =

Y

e For real numbers a, b, ¢, d,

b
d ‘—ad—bc.

a
C

e Let Xy,..., X, be mutually independent rvs such that X; has mgf My, (t) fori =1,...,n.
Then the mgf of Y = Xy +--- 4+ X, is given by

My (t) = H Mx,(t).

It follows that if X7, ..., X,, are independent identically distributed rvs, each with mgf M (),
then the mgf of Y = X +--- + X, is given by

My (t) = [Mx(8)]".

3. Random samples, sums of rvs, and order statistics

e A random sample is a collection of mutually independent rvs all having the same distribution.
This common distribution is called the population distribution and quantities describing the
population distribution are called population parameters. A sample statistic is a function of
the rvs in the random sample and its distribution is called its sampling distribution. What
we can learn about population parameters from sample statistics has everything to do with
their sampling distributions.



e Random samples might be introduced in any of the following ways,

— Let X4,..., X, be arandom sample from a population with such-and-such distribution.

— Let Xy,..., X, be independent copies of the random variable X, where X has such-and-
such distribution.

— Let Xy,..., X, be iid rvs from such-and-such distribution (iid means independent and
identically distributed).

— Let X4,..., X, 2 a distribution.

e Let Xi,..., X, be a random sample from a population with mean p and variance o? < oo
and define the sample mean and sample variance as

- 1

S? = ! D (X - X))

n—14%
=1

Then we have EX,, = u, Var X,, = 02/n, and ES? = o2

e The order statistics of ars Xq,..., X, are the ordered data values

X(l) < X(g) <0 < X(n).

o Let X(j) <--- < X, be the order statistics of a random sample from a population with cdf
Fx and pdf fx. Then the pdf of the kth order statistic X, is given by

_ n! k—1 n—k
for k =1,...,n. In particular, the minimum X;) and the maximum X, have the pdfs
fxo (@) =n[l = Fx(@)]"" fx (@)
Fx (@) = n[Fx (2)]" " fx(2)
o Let X(;) < --- < X(;) be the order statistics of a random sample from a population with

cdf Fx and pdf fx. Then the joint pdf of the jth and kth order statistics (X(;), X(x)), with
1 <j <k <n,is given by

n!

me’X(k)(u"U) - (3 — DNk —=1=)n—k)

1 fx (1) fx (v) [Fx (w)l 7 [Fx (0)=Fx (w)* 1= Fx (v)]" "
for —oo < u < v < 00.

In particular, the joint pdf of the minimum and maximum (X, X(,) is

Fx . x i (U, 0) = n(n = 1) fx (u) fx (0) [Fx (v) — Fx (u)]"

for —co < u < v < o0.



. Pivot quantities and sampling from the Normal distribution

e A pivot quantity is a function of sample statistics and population parameters which has a
known distribution (not depending on unknown parameters).

e A (1—a)100% confidence interval (CI) for an unknown parameter § € R is an interval (L, U)
where L and U are random variables such that P(L < <U) =1 — «, for a € (0,1).

e Important distributions and upper quantile notation:

o Let

The Normal(0, 1) distribution has pdf

o(z) = L6_22/21(—00 <z < 00),

V2T
and for £ € (0,1) we denote by z the value satisfying P(Z > z) = &, where Z ~
Normal(0, 1).
The Chi-square distributions x?, v = 1,2, ... have the pdfs

1

fX(aj, V) = ny/z_le_x/Qﬂ(x > 0),

and for £ € (0,1) we denote by x7 . the value satisfying P(X > x7 ) = £, where X ~ x;.
The parameter v is called the degrees of freedom.
The t distributions ¢, v = 1,2, ... have the pdfs

INE== ] 2\~ /2
é(z>)ﬁ(1+—) 1(—o0 < t < 00),
2

v
and for £ € (0,1) we denote by ¢, the value satisfying P(T" > t,¢) = £, where T' ~ ¢,,.
The parameter v is called the degrees of freedom.

The F' distributions F), ,,, v1,v2 = 1,2, ... have the pdfs

r v1+uo v1/2 —(vi+12)/2
i) = st () ree (14 2) 1> 0),

PEIT(F) \r Vo

frtv) =

and for £ € (0,1) we denote by F, ,, ¢ the value satisfying P(R > F,, ,,¢) = &, where
R ~ F,, ,,. The parameters v, and 1, are called, respectively, the numerator degrees of
freedom and the denominator degrees of freedom.

Z ~ Normal(0,1) and X ~ x? be independent rvs. Then
Z

== ~t,

VX /v

o Let X; ~ x2 and X, ~ x7, be independent rvs. Then

. Xl/yl

R_ Y
XQ/I/Q

FV17V2 :



Let Xq,.... X, d Normal(u, 0?) distribution. Then
— v/n(X,, — p)/o ~ Normal(0, 1), giving P ()_(n — zaQ% <pu<X,+ ZQ/Q%) =1—-a.

—1)52 —1)52
— (n—1)5%/0% ~ x2_,, giving P —(n2 )%, <o?< —(2 )%, =1-a.
Xn—1,a/2 Xn—1,1-a/2

5 - > Sh, Sh,

— (X, — pn)/Sp ~ t,_1, giving P (Xn — b 1a/2\/_ <p< X, +t, 1a/2\/_) =1-oq.
Consider two independent random samples X1, ..., X, nd Normal(py,0%) and Yy, ..., Y, nd
Normal(js, 03) with sample means X,,, and Y,,, and sample variances S? and S, respectively.
Then

St/ot
522/0_3 ~ I'pi—1,n0—1,
giving
S3 o2 S2
P(Ssz 1,na—1,1— a/2< 2 SQ n—lma—la/2 | =1 —a.
5. Parametric estimation and properties of estimators
e Parametric framework: Let Xi,..., X, have a joint distribution which depends on a finite
number of parameters 64,...,0;, the values of which are unknown and lie in the spaces
O4,...,0y4, respectively, where ©, C R, for £k = 1,...,d. To know the joint distribution of
X1,...,X,, it is sufficient to know the values of 6, .. Hd, so we define estimators 91, L0y
of 01,...,04 based on X1,...,X,.
e Nonparametric framework: Let Xi,..., X, have a joint distribution which depends on an
infinite number of parameters. For example, suppose X1, ..., X,, is a random sample from a

distribution with pdf fx, where we do not specify any functional form for fx. Then we may
regard the value of the pdf fy(z) at every point x € R as a parameter, and since there are
an infinite number of values of x € R, there are infinitely many parameters.

The bias of an estimator 6 of a parameter 0 is defined as
Biasf = E0 — 6.

And estimator is called unbiased if Biasf = 0, that is if Ef = 6.

The standard error of an estimator 6 of a parameter 0 is defined as

SEf = \/Varé,

so the standard error of an estimator is simply its standard deviation.

The mean squared error (MSE) of an estimator 0 of a parameter 6 is defined as
MSE ) = E(0 — 6)?,

so the MSE of 6 is the expected squared distance between 6 and 6.



e MSE @ = Var 0 + (Bias /)2,
e If § is an unbiased estimator of 0, it is not generally true that T(é) will be an unbiased
estimator of 7(0).

6. Large-sample properties of estimators, consistency and WLLN

e A sequence of estimators {0, },> of a parameter § € © C R is called consistent if for every
e > 0 and every 0 € O, A
lim P(]0, — 0| <¢€) = 1.

n—0o0

Note: When we write én, with n in the subscript, it is understood that we are considering a
sequence of estimators for all sample sizes n > 1.

e We often express that 6 is a consistent estimator of 6 by writing
0, — 0,
where —- denotes something called convergence in probability. Saying “6,, converges in

probability to 0” is equivalent to saying “f is a consistent estimator of 6.

e The weak law of large numbers (WLLN): Let Xi,..., X, be a rs from a distribution with
mean g and variance 02 < co. Then X,, = n~}(X; +---+ X,,) is a consistent estimator of p.

e The estimator én is a consistent estimator for # if

(a) lim,_,o Var 0, =0

(b) lim,,_, Bias#, =0

So we can show that 6, is a consistent estimator of 6 by showing MSE 0, — 0 as n — oo.
o Let {él,n}nZI and {égm}nZl be sequences of estimators for 6; and 6, respectively. Then
(a) él,n =+ ég’n is consistent for 6, &£ 0s.
(b) él,n . égm is consistent for 0 - 05.
(c) él,n/égvn is consistent for 6, /0,, so long as 05 # 0.
(d) For any continuous function 7 : R — R, T(élm) is consistent for 7(6).

)

For any sequences {a,}n>1 and {b,},>1 such that lim,_,,, a, = 1 and lim,,_, b, = 0,
anbh , + by, is consistent for 0.

o If X;,..., X, is a random sample from a distribution with mean p and variance 0 < oo and
4th moment py < oo, the sample variance S? is consistent for o2.

o If Xi,..., X, is a random sample from the Bernoulli(p) distribution and p =n="'(X; +--- +
X,,), then p(1 — p) is a consistent estimator of p(1 — p).

7. Large-sample pivot quantities and central limit theorem

e A sequence of random variables Y7,Ys, ... with cdfs Fy,, Fy,,... is said to converge in dis-
tribution to the random variable Y ~ Fy if

lim Fy, (y) = Fy(y)

n—o0

6



for all y € R at which Fy is continuous. We express convergence in distribution with the
notation Y, P4 ¥ and we refer to the distribution with cdf Fy as the asymptotic distribution
of the sequence of random variables Y7, Y5, ...

Convergence in distribution is a sense in which a random variable (we can think of a quantity
computed on larger and larger samples) behaves more and more like another random variable
(as the sample size grows).

A large-sample pivot quantity is a function of sample statistics and population parameters for
which the asymptotic distribution is fully known (not depending on unknown parameters).

The Central Limit Theorem (CLT): Let X1, ..., X}, be arandom sample from any distribution
and suppose the distribution has mean p and variance 02 < oo. Then

X —
278 b, Z, Z ~ Normal(0,1).

a/v/n

Application to ClIs: The above means that for any « € (0,1),

n—o0

X —p
Im P —z40 < ——= < 2z, =1-aq,
i P (i < G <son) =10

giving that
- o
Xn £ 20—
V4 /2 \/ﬁ
is an approximate (1 — «)100% CI for p as long as n is large. A rule of thumb says n > 30
is “large”.

Slutzky’s Theorem: If X, Ly X and Y, 2 a, then

Xo+ Yy 2 X +a.
XY, =+ Xa
X,/ Y, 2 X/a, provided a # 0.

Corollary of Slutzky’s Theorem: Let Xy,..., X, be a rs from any distribution and suppose
the distribution has mean u and variance o0? < oo. Moreover, let 6, be a consistent estimator
of 0. Then _
Xn — M
on/ v/

Application to Cls: The above means that for any o € (0, 1),

L. Z, Z ~ Normal(0,1).

X —p
Hm P —2ap < " < 2o ) =1—a,
Favd (“2 ENG Z”) “

giving that

= g

Xn + Za/g\/—%



is an approximate (1 — a)100% CI for u as long as n is large.

A rather arbitrary rule of thumb says n > 30 is “large”.

Let Xi,..., X, be a random sample from any distribution and suppose the distribution has
mean 4 and variance 0? < oo and 4th moment py < co. Then

n

Sn/

=

D, Z, Z ~ Normal(0,1),

B

so that for large n,
_ S,
XTL :|: (0%
a2

is an approximate (1 — «)100% CI for p.

Let X1,...,X, be a random sample from the Bernoulli(p) distribution and let p, = X,,.
Then .
Pn—D

n

L. Z, Z ~ Normal(0, 1),

so that for large n (a rule of thumb is to require min{np,,n(1 — p,)} > 15),

ﬁn + Zaf2
n

is an approximate (1 — a)100% CI for p.

Summary of (1 — «)100% CIs for u: Let Xi,..., X, be independent rvs with the same
distribution as the rv X, where EX = p, Var X = o2



()_( el Za/g\/iﬁ (exact)}

(exact)]

[X + Zaj2 = (approx)]

()_( + za/gi—% (approx)]

72
TL?O

[Beyond the scope of this course}

8. Classical two-sample results comparing means, proportions, and variances

e Summary of (1 —«)100% CIs for p; — po: Let X, ..., X, be independent rvs with the same
distribution as the rv X, where EX = p; and Var X = 0% and let Y7, ...,Y},, be independent
rvs with the same distribution as the rv Y, where EY = yuy and Var o2,



Case (i): 0% # 03:

In the above

Case (ii): o} = 03:

{Xl = XQ + tn1+n2—2,a/2\/sgooled (nil + %2)}

[Beyond the scope of this course.]

{Xl — X, + Za/Q\/Sgooled (nil + n%)}

10



e A (1—a)100% CI for p;—po: Let Xy, ..., X, xd Bernoulli(p;) and Yy, ..., Y, £ Bernoulli(p,)
and let p; = n; (X1 4+ -+ X,,,) and py = ny (Y7 + -+ +Y,,,). Then for large n; and ny
(Rule of thumb is min{n;py,n1(1 — p1)} > 15 and min{nsps, no(1 — po)} > 15)

. . p1(1—p Do(1 —p
p1—p2i2a/z\/p1( p1) +p2( p2)
nq N9

is an approximate (1 — a)100% CI for p; — ps.
e A (1 —a)100% CI for 03/c%: Consider two independent random samples X, ..., X, nd

Normal (i, 02) and Y1, ..., Y, * Normal(us, 02) with sample variances S? and S2, respec-
tively. Then

S3 S3
_Fn —1na—1,1-a/2> _Fnl— n2—1,a
(S% 1 17 171 /2 S% 17 17 /2
is a (1 — «)100% CI for o3 /of.
9. Sample size calculations

e Let 0 be an estimator of a parameter 6 and let § + 1 be a CI for #. Then the quantity 7 is
called the margin of error (ME) of the CI.

e Let Xi,..., X, be arandom sample from a population with mean p and variance 0. The
smallest sample size n such that the ME of the CI

= g

Xn + Za/2ﬁ

Zoz/Q)2 2

n = o,

[Soke

where [z] is the smallest integer greater than or equal to x. Plug in an estimate &
from a previous study to make the calculation.

is at most M* is

2 of o2

o Let Xy,.... X, x Bernoulli(p) distribution. The smallest sample size n such that the ME of
the CI

. 1-

bt 2y PP

is at most M™ is

Plug in an estimate p of p from a previous study to make the calculation or use p = 1/2 to
err on the side of larger n.

o Let Xi,...,X,, beiid rvs with mean p; and variance o7 and let Y3,...,Y,, be iid rvs with
mean i, and variance 3. To find the smallest n = n; + ny such that the ME of the CI

2 2
X oV kg 24+ 2
nq N9

11



is at most M™, compute

Za/2\ 2
n* = (Mf) (01 + 02)?

o1 " 02 *
ny = n and ng = n*|.
KUHFUZ‘) W KUHF@) W

Plug in estimates 61 and 65 for o; and o9 from a previous study to make the calculation.

and set

o Let X1,...,X,, £ Bernoulli(p;) and Y3,...,Y,, X Bernoulli(ps) be independent random
samples. To find the smallest n = n; + ny such that the ME of the CI

1-— 1—
D1 —ﬁzizaﬂ\/pl( ) +p2( P2)
nq N9

is at most M*, compute

2

n' = (MY <\/p1(1 —p1) + \/pZ(l _p2)> .

M*

Then set

o T = o T
p1(1—p1) + /p2(l — p2) Vo1(1—p1) + /p2(1 — p2) '

Plug in estimates p; and po for p; and py from a previous study to make the calculation.

10. First principles of estimation, sufficiency and Rao—Blackwell theorem

o Let X1,..., X, have a joint distribution depending on the parameter § € © C R%. A statistic
T(Xy,...,X,)is a sufficient statistic for 0 if it carries all the information about ¢ contained
in Xl; R 7Xn'

e Precisely, T(Xy,...,X,) is a sufficient statistic for 0 if the joint distribution of Xi,..., X,
conditional on the value of T'(X7, ..., X,,) does not depend on 6.
We can establish sufficiency using the following results:
— For discrete rvs (X1,...,X,) ~ px,..x,(®1,...,xn;0), T(Xy,...,X,) is a sufficient
statistic for @ if for all (z1,...,x,) in the support of (X7, ..., X,), the ratio

Pxy,..., Xn)(ﬂﬂl, R 9)
pr(T(xy, ..., x,);0)

is free of 0, where pr(t;0) is the pmf of T'(Xy,..., X,).
— For continuous rvs (Xi,...,X,,) ~ fx, . x.(21,...,2,;0), T(X1,...,X,) is a sufficient
statistic for @ if for all (z1,...,x,) in the support of (X7, ..., X,), the ratio

is free of 6, where fr(t;0) is the pdf of T'(X;,..., X,).

12



e The factorization theorem gives another way to see whether a statistic is sufficient for 6:
— For discrete 1vs (Xi1,...,X,) ~ px,.x,(T1,...,2n;0), T(Xy,...,X,) is a sufficient
statistic for € if and only if there exist functions ¢(7';0) and h(zy,...,z,) such that
Pxy X0 (1,0 0) = g(T (2, .. x);0)h(xy, ..o 2p)
for all (xy,...,2,) in the support of (Xi,...,X,) and all § € ©.

— For continuous rvs (Xi,...,X,,) ~ fx, . x.(21,...,2,;0), T(X1,...,X,) is a sufficient
statistic for @ if and only if there exist functions ¢(7';0) and h(zy,...,x,) such that

fxo xo (@1, 0) = g(T(21, ..oy x0); 0) (21, . ., 20)
for all (xy,...,2,) in the support of (X1,...,X,,) and all § € ©.

We also consider statistics with multiple components which take the form
T(Xy,.... X)) =(Th1(Xy,..., X)), .., T (Xyq,..., X,))

for some K > 1. For example, T(X,..., X,) = (X@),..., X(n) is the set of order statistics
(which is always sufficient); here K = n.

Minimum-variance unbiased estimator (MVUE): Let 0 be an unbiased estimator of § € © C
R. If Var 6 < Var @ for every unbiased estimator 6 of 0, then 6 is a MVUE.

Rao-Blackwell Theorem: Let 0 beAan estimator of 0 € © C R such that Ef = 0 and let T be
a sufficient statistic for §. Define § = E[f|T]. Then 6 is an estimator of € such that

Ef =6 and Varég\/aré.

Interpretation: An unbiased estimator of # can always be improved by taking into account
the value of a sufficient statistic for §. We conclude that a MVUE must be a function of a
sufficient statistic.

The MVUE for a parameter 6 is (essentially) unique (for all situations considered in this
course); to find it, do the following:

(a) Find a sufficient statistic for 6.

(b) Find a function of the sufficient statistic which is unbiased for #. This is the MVUE.
This also works for finding the MVUE of a function 7(6) of 6. In step (b), just find a function
of the sufficient statistic which is unbiased for 7(0).

11. MoMs and MLEs

e Let Xi,..., X, be independent rvs with the same distribution as the rv X, where X has
a distribution depending on the parameters 6, ...,0,. If the first d moments EX, ... EX¢
of X are finite, then the method of moments (MoMs) estimators 0y, ..., 04 are the values of
01, ...,0,4 which solve the following system of equations:

1 n
my = EZX"':EX =: uy(6y,...,60q)

i=1

1 n
mly = EZX? = EX? =: (64, ...,64)

i=1

13



o Let Xi,..., X, be a random sample from a distribution with pdf fx(x;6,...,6;) or pmf
px(x;01,...,04) which depends on some parameters (6, ...,60;) € © C R%. Then the likeli-
hood function is defined as

T, fx (X, 00),  if X0, X ™ f (2364, ..., 00)

5(91,...,9d;X1,...,Xn): n . ind
Hi:le(Xi;Hla"'yed)v it le"'aXn ~ pX(wa 017"'a0d)'

Moreover, the log-likelihood function is defined as

6(01,...,0d;X1,...,Xn) = logE(Ql,...,Hd;Xl,...,Xn).

o Let Xy,..., X, bervs with likelihood function L(6,,...,604 X1, ..., X,) for some parameters
(61,...,04) € © C R% Then the mazimum likelihood estimators (MLEs) of 6y, ..., 6, are the
values 01, ..., 0; which maximize the likelihood function over all (0y,...,6;) € ©. That is

~

(él, ooy 0q) = argmax L(0y,...,045 Xq,...,X,)

(91 ..... Gd)€®
= argmax ((0q,...,00; X1,...,X,)
(91 ,,,,, Gd)€®
o If U(6h,...,00;X1,...,X,) is differentiable and has a single maximum in the interior of ©,
then we can find the MLEs 6, ..., 6, by solving the following system of equations:
iﬁ(e Oq; X X,) =0
891 1y« Vdy Aly---y An) —
iﬁ(@ Oq; X X,) =0
86(1 1y---5VUdy Aly.ooy An) — U

e The MLE is always a function of a sufficient statistic.
e If 0 is the MLE for 6, then 7() is the MLE for 7(6), for any function .

14



pmf/pdf X Mx(t) EX Var X
px(x;p) =p"(1 —p)'™7, r=0,1 pe' + (1= p) p p(1—p)
px(zin,p) = (0)p"(1 —p)"~*, r=0,1,...,n [pe! + (1 —p)]” np np(1 —p)
px(z;p) = (1 —p)*'p, r=1,2,... 1,{1’?;)6,5 p! (L—p)p~°
px(wipr) = ()AL —=p) 0", w=rr4l [I_(Q'%p)] rp! r(l—p)p~
px(T;\) = e A\ /! r=0,1,... eNe' 1) A A
px(z; N, M, K) ( )(1}7( Af)/(g) xr=0,1,..., K jcomplicadisimo! % %%
px(z; K) = r=1,.... K = Zle el® £l —(KﬂigK_l)
px (T2, .. ,xn) =1 T=1a0,...,T, Ly et T=L5" a3 (v — x)?
Ix(z;p,0?) = \/wai exp (—(xz_oﬁ)2> —00 < x < 00 prtto’t?/2 n o?
fx(x, B) = r(al)ﬁa % Lexp <—%> 0<z<oo (1—pt)@ aff af?
fx(z;N) = fexp (%) 0<z<o0 (1—Xt)~! A A2
fx(z;v) = V/ZI)QV/Q:E”/Q Yexp (—%) 0 <z <o (1 —2t)~v/? v 2v
frwmonf) = fgigper - o<e <1 TR (Moasi)| a5 | woee

Table 1: Commonly encountered pmfs and pdfs along with their mgfs, expected values, and variances.

LUK

.....

D, Yk

f(X,Y)(xv Ys hx, Ly, 0—_%(, 0—12/7 p) =

yP1y - - -

,PK) = P’

)(y17"‘7yK;n7p17"'7pK> = <ﬁ

1

2 oxoy

1
1—p2

PR {(ml,

)

ex

s 1{<

b | (5

) -

vx) € 0.1} T e =1

--,yK' € {0,1,”.

2

SOREDY

)+

T—pX
oxX

Y—Hy
oy

)

Table 2: The “multinoulli” and multinomial pmfs and the bivariate Normal pdf.
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