STAT 512 Summary Sheet

Karl B. Gregory

- 1. Transformations of a random variable
 - Let X be a rv with support \mathcal{X} and let g be a function mapping \mathcal{X} to \mathcal{Y} with inverse mapping

$$g^{-1}(A) = \{x \in \mathcal{X} : g(x) \in A\}$$
 for all $A \subset \mathcal{Y}$.

• If X is a discrete rv, the rv Y = g(X) is discrete and has pmf given by

$$p_Y(y) = \begin{cases} \sum_{x \in g^{-1}(y)} p_X(x) & \text{for } y \in \mathcal{Y} \\ 0 & \text{for } y \notin \mathcal{Y}. \end{cases}$$

• If X has pdf f_X then the cdf of Y = g(X) is given by

$$F_Y(y) = \int_{\{g(x) < y\}} f_X(x) dx, \quad -\infty < y < \infty.$$

• If X has pdf f_X which is continuous on \mathcal{X} and if g is monotone and g^{-1} has a continuous derivative then the pdf of Y = g(X) is given by

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) |\frac{d}{dy}g^{-1}(y)| & \text{for } y \in \mathcal{Y} \\ 0 & \text{for } y \notin \mathcal{Y}. \end{cases}$$

- If X has mgf $M_X(t)$, the mgf of Y = aX + b is given by $M_Y(t) = e^{bt}M_X(at)$.
- If X has continuous cdf F_X , the rv $U = F_X(X)$ has the uniform distribution on (0, 1).
- To generate $X \sim F_X$, generate $U \sim \text{Uniform}(0,1)$ and set $X = F_X^{-1}(U)$, where

$$F_X^{-1}(u) = \inf\{x : F_X(x) \ge u\}$$

If F_X is strictly increasing, F_X^{-1} satisfies

$$x = F_X^{-1}(u) \iff u = F_X(x)$$

for all 0 < u < 1 and $-\infty < x < \infty$.

- 2. Transformations of multiple random variables
 - Let (X_1, X_2) be a pair of continuous random variables with pdf f_{X_1, X_2} having joint support

$$\mathcal{X} = \{ (x_1, x_2) : f_{X_1, X_2}(x_1, x_2) > 0 \}$$

and let $Y_1 = g_1(X_1, X_2)$ and $Y_2 = g_2(X_1, X_2)$, where g_1 and g_2 form a one-to-one transformation of \mathcal{X} onto the set

$$\mathcal{Y} = \{ (y_1, y_2) : y_1 = g_1(x_1, x_2), y_2 = g_2(x_1, x_2), (x_1, x_2) \in \mathcal{X} \}.$$

Then the joint pdf f_{Y_1,Y_2} of rv pair (Y_1,Y_2) is given by

$$f_{Y_1,Y_2}(y_1,y_2) = \begin{cases} f_{X_1,X_2}(g_1^{-1}(y_1,y_2),g_2^{-1}(y_1,y_2))|J(y_1,y_2)| & \text{for } (y_1,y_2) \in \mathcal{Y} \\ 0 & \text{for } (y_1,y_2) \notin \mathcal{Y} \end{cases}$$

where g_1^{-1} and g_2^{-1} are the functions satisfying

$$\begin{array}{ccc} y_1 = g_1(x_1, x_2) \\ y_2 = g_2(x_1, x_2) \end{array} \iff \begin{array}{ccc} x_1 = g_1^{-1}(y_1, y_2) \\ x_2 = g_2^{-1}(y_1, y_2) \end{array}$$

and

$$J(y_1, y_2) = \begin{vmatrix} \frac{\partial}{\partial y_1} g_1^{-1}(y_1, y_2) & \frac{\partial}{\partial y_2} g_1^{-1}(y_1, y_2) \\ \frac{\partial}{\partial y_1} g_2^{-1}(y_1, y_2) & \frac{\partial}{\partial y_2} g_2^{-1}(y_1, y_2) \end{vmatrix},$$

provided $J(y_1, y_2)$ is not equal to zero for all $(y_1, y_2) \in \mathcal{Y}$.

• For real numbers a, b, c, d,

$$\left|\begin{array}{cc}a&b\\c&d\end{array}\right| = ad - bc.$$

• Let X_1, \ldots, X_n be mutually independent rvs such that X_i has mgf $M_{X_i}(t)$ for $i = 1, \ldots, n$. Then the mgf of $Y = X_1 + \cdots + X_n$ is given by

$$M_Y(t) = \prod_{i=1}^n M_{X_i}(t)$$

It follows that if X_1, \ldots, X_n are independent identically distributed rvs, each with mgf $M_X(t)$, then the mgf of $Y = X_1 + \cdots + X_n$ is given by

$$M_Y(t) = [M_X(t)]^n.$$

- 3. Random samples, sums of rvs, and order statistics
 - A random sample is a collection of mutually independent rvs all having the same distribution. This common distribution is called the *population distribution* and quantities describing the population distribution are called *population parameters*. A sample statistic is a function of the rvs in the random sample and its distribution is called its *sampling distribution*. What we can learn about population parameters from sample statistics has everything to do with their sampling distributions.

- Random samples might be introduced in any of the following ways,
 - Let X_1, \ldots, X_n be a random sample from a population with such-and-such distribution.
 - Let X_1, \ldots, X_n be independent copies of the random variable X, where X has such-andsuch distribution.
 - Let X_1, \ldots, X_n be iid rvs from such-and-such distribution (iid means *independent and identically distributed*).
 - Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim}$ a distribution.
- Let X_1, \ldots, X_n be a random sample from a population with mean μ and variance $\sigma^2 < \infty$ and define the sample mean and sample variance as

$$\bar{X}_n = \frac{1}{n} (X_1 + \dots + X_n)$$
$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

Then we have $\mathbb{E}\bar{X}_n = \mu$, $\operatorname{Var}\bar{X}_n = \sigma^2/n$, and $\mathbb{E}S_n^2 = \sigma^2$.

• The order statistics of a rs X_1, \ldots, X_n are the ordered data values

$$X_{(1)} < X_{(2)} < \dots < X_{(n)}.$$

• Let $X_{(1)} < \cdots < X_{(n)}$ be the order statistics of a random sample from a population with cdf F_X and pdf f_X . Then the pdf of the kth order statistic $X_{(k)}$ is given by

$$f_{X_{(k)}}(x) = \frac{n!}{(k-1)!(n-k)!} [F_X(x)]^{k-1} [1 - F_X(x)]^{n-k} f_X(x)$$

for k = 1, ..., n. In particular, the minimum $X_{(1)}$ and the maximum $X_{(n)}$ have the pdfs

$$f_{X_{(1)}}(x) = n[1 - F_X(x)]^{n-1} f_X(x)$$

$$f_{X_{(n)}}(x) = n[F_X(x)]^{n-1} f_X(x)$$

• Let $X_{(1)} < \cdots < X_{(n)}$ be the order statistics of a random sample from a population with cdf F_X and pdf f_X . Then the joint pdf of the *j*th and *k*th order statistics $(X_{(j)}, X_{(k)})$, with $1 \le j < k \le n$, is given by

$$f_{X_{(j)},X_{(k)}}(u,v) = \frac{n!}{(j-1)!(k-1-j)!(n-k)!} f_X(u) f_X(v) [F_X(u)]^{j-1} [F_X(v) - F_X(u)]^{k-1-j} [1 - F_X(v)]^{n-k}$$

for $-\infty < u < v < \infty$.

In particular, the joint pdf of the minimum and maximum $(X_{(1)}, X_{(n)})$ is

$$f_{X_{(1)},X_{(n)}}(u,v) = n(n-1)f_X(u)f_X(v)[F_X(v) - F_X(u)]^{n-2}$$

for $-\infty < u < v < \infty$.

- 4. Pivot quantities and sampling from the Normal distribution
 - A *pivot quantity* is a function of sample statistics and population parameters which has a known distribution (not depending on unknown parameters).
 - A $(1-\alpha)100\%$ confidence interval (CI) for an unknown parameter $\theta \in \mathbb{R}$ is an interval (L, U) where L and U are random variables such that $P(L < \theta < U) = 1 \alpha$, for $\alpha \in (0, 1)$.
 - Important distributions and upper quantile notation:
 - The Normal(0,1) distribution has pdf

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \mathbb{1}(-\infty < z < \infty),$$

and for $\xi \in (0,1)$ we denote by z_{ξ} the value satisfying $P(Z > z_{\xi}) = \xi$, where $Z \sim Normal(0,1)$.

- The Chi-square distributions χ^2_{ν} , $\nu = 1, 2, \ldots$ have the pdfs

$$f_X(x;\nu) = \frac{1}{\Gamma(\nu/2)2^{\nu/2}} x^{\nu/2-1} e^{-x/2} \mathbb{1}(x>0),$$

and for $\xi \in (0, 1)$ we denote by $\chi^2_{\nu,\xi}$ the value satisfying $P(X > \chi^2_{\nu,\xi}) = \xi$, where $X \sim \chi^2_{\nu}$. The parameter ν is called the *degrees of freedom*.

- The t distributions t_{ν} , $\nu = 1, 2, \ldots$ have the pdfs

$$f_T(t;\nu) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \frac{1}{\sqrt{\nu\pi}} \left(1 + \frac{t^2}{\nu}\right)^{-(\nu+1)/2} \mathbb{1}(-\infty < t < \infty),$$

and for $\xi \in (0, 1)$ we denote by $t_{\nu,\xi}$ the value satisfying $P(T > t_{\nu,\xi}) = \xi$, where $T \sim t_{\nu}$. The parameter ν is called the *degrees of freedom*.

- The F distributions F_{ν_1,ν_2} , $\nu_1,\nu_2 = 1, 2, \ldots$ have the pdfs

$$f_R(r;\nu_1,\nu_2) = \frac{\Gamma(\frac{\nu_1+\nu_2}{2})}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \left(\frac{\nu_1}{\nu_2}\right)^{\nu_1/2} r^{(\nu_1-2)/2} \left(1+\frac{\nu_1}{\nu_2}r\right)^{-(\nu_1+\nu_2)/2} \mathbb{1}(r>0),$$

and for $\xi \in (0,1)$ we denote by $F_{\nu_1,\nu_2,\xi}$ the value satisfying $P(R > F_{\nu_1,\nu_2,\xi}) = \xi$, where $R \sim F_{\nu_1,\nu_2}$. The parameters ν_1 and ν_2 are called, respectively, the numerator degrees of freedom and the denominator degrees of freedom.

• Let $Z \sim \text{Normal}(0,1)$ and $X \sim \chi^2_{\nu}$ be independent rvs. Then

$$T = \frac{Z}{\sqrt{X/\nu}} \sim t_{\nu}$$

• Let $X_1 \sim \chi^2_{\nu_1}$ and $X_2 \sim \chi^2_{\nu_2}$ be independent rvs. Then

$$R = \frac{X_1/\nu_1}{X_2/\nu_2} \sim F_{\nu_1,\nu_2}.$$

• Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \operatorname{Normal}(\mu, \sigma^2)$ distribution. Then

$$-\sqrt{n}(\bar{X}_{n}-\mu)/\sigma \sim \text{Normal}(0,1), \text{ giving } P\left(\bar{X}_{n}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \mu < \bar{X}_{n}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = 1-\alpha.$$

$$-(n-1)S_{n}^{2}/\sigma^{2} \sim \chi_{n-1}^{2}, \text{ giving } P\left(\frac{(n-1)S_{n}^{2}}{\chi_{n-1,\alpha/2}^{2}} < \sigma^{2} < \frac{(n-1)S_{n}^{2}}{\chi_{n-1,1-\alpha/2}^{2}}\right) = 1-\alpha.$$

$$-\sqrt{n}(\bar{X}_{n}-\mu)/S_{n} \sim t_{n-1}, \text{ giving } P\left(\bar{X}_{n}-t_{n-1,\alpha/2}\frac{S_{n}}{\sqrt{n}} < \mu < \bar{X}_{n}+t_{n-1,\alpha/2}\frac{S_{n}}{\sqrt{n}}\right) = 1-\alpha.$$

• Consider two independent random samples $X_1, \ldots, X_{n_1} \stackrel{\text{ind}}{\sim} \operatorname{Normal}(\mu_1, \sigma_1^2)$ and $Y_1, \ldots, Y_{n_2} \stackrel{\text{ind}}{\sim} \operatorname{Normal}(\mu_2, \sigma_2^2)$ with sample means \bar{X}_{n_1} and \bar{Y}_{n_2} and sample variances S_1^2 and S_2^2 , respectively. Then

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F_{n_1-1,n_2-1},$$

giving

$$P\left(\frac{S_2^2}{S_1^2}F_{n_1-1,n_2-1,1-\alpha/2} < \frac{\sigma_2^2}{\sigma_1^2} < \frac{S_2^2}{S_1^2}F_{n_1-1,n_2-1,\alpha/2}\right) = 1 - \alpha.$$

- 5. Parametric estimation and properties of estimators
 - Parametric framework: Let X_1, \ldots, X_n have a joint distribution which depends on a finite number of parameters $\theta_1, \ldots, \theta_d$, the values of which are unknown and lie in the spaces $\Theta_1, \ldots, \Theta_d$, respectively, where $\Theta_k \subset \mathbb{R}$, for $k = 1, \ldots, d$. To know the joint distribution of X_1, \ldots, X_n , it is sufficient to know the values of $\theta_1, \ldots, \theta_d$, so we define estimators $\hat{\theta}_1, \ldots, \hat{\theta}_d$ of $\theta_1, \ldots, \theta_d$ based on X_1, \ldots, X_n .
 - Nonparametric framework: Let X_1, \ldots, X_n have a joint distribution which depends on an infinite number of parameters. For example, suppose X_1, \ldots, X_n is a random sample from a distribution with pdf f_X , where we do not specify any functional form for f_X . Then we may regard the value of the pdf $f_X(x)$ at every point $x \in \mathbb{R}$ as a parameter, and since there are an infinite number of values of $x \in \mathbb{R}$, there are infinitely many parameters.
 - The *bias* of an estimator $\hat{\theta}$ of a parameter θ is defined as

$$\operatorname{Bias}\hat{\theta} = \mathbb{E}\hat{\theta} - \theta.$$

And estimator is called *unbiased* if Bias $\hat{\theta} = 0$, that is if $\mathbb{E}\hat{\theta} = \theta$.

• The standard error of an estimator $\hat{\theta}$ of a parameter θ is defined as

$$\operatorname{SE}\hat{\theta} = \sqrt{\operatorname{Var}\hat{\theta}},$$

so the standard error of an estimator is simply its standard deviation.

• The mean squared error (MSE) of an estimator $\hat{\theta}$ of a parameter θ is defined as

$$MSE \hat{\theta} = \mathbb{E}(\hat{\theta} - \theta)^2$$

so the MSE of $\hat{\theta}$ is the expected squared distance between $\hat{\theta}$ and θ .

- MSE $\hat{\theta} = \operatorname{Var} \hat{\theta} + (\operatorname{Bias} \hat{\theta})^2$.
- If $\hat{\theta}$ is an unbiased estimator of θ , it is *not* generally true that $\tau(\hat{\theta})$ will be an unbiased estimator of $\tau(\theta)$.
- 6. Large-sample properties of estimators, consistency and WLLN
 - A sequence of estimators $\{\hat{\theta}_n\}_{n\geq 1}$ of a parameter $\theta \in \Theta \subset \mathbb{R}$ is called *consistent* if for every $\epsilon > 0$ and every $\theta \in \Theta$,

$$\lim_{n \to \infty} P(|\theta_n - \theta| < \epsilon) = 1.$$

Note: When we write $\hat{\theta}_n$, with n in the subscript, it is understood that we are considering a sequence of estimators for all sample sizes $n \ge 1$.

• We often express that $\hat{\theta}$ is a consistent estimator of θ by writing

$$\hat{\theta}_n \xrightarrow{\mathrm{p}} \theta,$$

where $\xrightarrow{\mathbf{p}}$ denotes something called *convergence in probability*. Saying " $\hat{\theta}_n$ converges in probability to θ " is equivalent to saying " $\hat{\theta}$ is a consistent estimator of θ ".

- The weak law of large numbers (WLLN): Let X_1, \ldots, X_n be a rs from a distribution with mean μ and variance $\sigma^2 < \infty$. Then $\bar{X}_n = n^{-1}(X_1 + \cdots + X_n)$ is a consistent estimator of μ .
- The estimator $\hat{\theta}_n$ is a consistent estimator for θ if
 - (a) $\lim_{n\to\infty} \operatorname{Var} \hat{\theta}_n = 0$
 - (b) $\lim_{n\to\infty} \operatorname{Bias} \hat{\theta}_n = 0$

So we can show that $\hat{\theta}_n$ is a consistent estimator of θ by showing MSE $\hat{\theta}_n \to 0$ as $n \to \infty$.

- Let $\{\hat{\theta}_{1,n}\}_{n\geq 1}$ and $\{\hat{\theta}_{2,n}\}_{n\geq 1}$ be sequences of estimators for θ_1 and θ_2 , respectively. Then
 - (a) $\hat{\theta}_{1,n} \pm \hat{\theta}_{2,n}$ is consistent for $\theta_1 \pm \theta_2$.
 - (b) $\hat{\theta}_{1,n} \cdot \hat{\theta}_{2,n}$ is consistent for $\theta_1 \cdot \theta_2$.
 - (c) $\hat{\theta}_{1,n}/\hat{\theta}_{2,n}$ is consistent for θ_1/θ_2 , so long as $\theta_2 \neq 0$.
 - (d) For any continuous function $\tau : \mathbb{R} \to \mathbb{R}, \tau(\hat{\theta}_{1,n})$ is consistent for $\tau(\theta_1)$.
 - (e) For any sequences $\{a_n\}_{n\geq 1}$ and $\{b_n\}_{n\geq 1}$ such that $\lim_{n\to\infty} a_n = 1$ and $\lim_{n\to\infty} b_n = 0$, $a_n\hat{\theta}_{1,n} + b_n$ is consistent for θ_1 .
- If X_1, \ldots, X_n is a random sample from a distribution with mean μ and variance $\sigma^2 < \infty$ and 4th moment $\mu_4 < \infty$, the sample variance S_n^2 is consistent for σ^2 .
- If X_1, \ldots, X_n is a random sample from the Bernoulli(p) distribution and $\hat{p} = n^{-1}(X_1 + \cdots + X_n)$, then $\hat{p}(1-\hat{p})$ is a consistent estimator of p(1-p).
- 7. Large-sample pivot quantities and central limit theorem
 - A sequence of random variables Y_1, Y_2, \ldots with cdfs F_{Y_1}, F_{Y_2}, \ldots is said to converge in distribution to the random variable $Y \sim F_Y$ if

$$\lim_{n \to \infty} F_{Y_n}(y) = F_Y(y)$$

for all $y \in \mathbb{R}$ at which F_Y is continuous. We express convergence in distribution with the notation $Y_n \xrightarrow{D} Y$ and we refer to the distribution with cdf F_Y as the asymptotic distribution of the sequence of random variables Y_1, Y_2, \ldots

- Convergence in distribution is a sense in which a random variable (we can think of a quantity computed on larger and larger samples) behaves more and more like another random variable (as the sample size grows).
- A *large-sample pivot quantity* is a function of sample statistics and population parameters for which the asymptotic distribution is fully known (not depending on unknown parameters).
- The Central Limit Theorem (CLT): Let X_1, \ldots, X_n be a random sample from any distribution and suppose the distribution has mean μ and variance $\sigma^2 < \infty$. Then

$$\frac{X-\mu}{\sigma/\sqrt{n}} \xrightarrow{\mathrm{D}} Z, \quad Z \sim \mathrm{Normal}(0,1).$$

Application to CIs: The above means that for any $\alpha \in (0, 1)$,

-

$$\lim_{n \to \infty} P\left(-z_{\alpha/2} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}\right) = 1 - \alpha,$$

giving that

$$\bar{X}_n \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

is an approximate $(1 - \alpha)100\%$ CI for μ as long as n is large. A rule of thumb says $n \ge 30$ is "large".

• Slutzky's Theorem: If $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{P} a$, then

$$\begin{array}{ccc} X_n + Y_n \stackrel{\mathrm{D}}{\longrightarrow} X + a. \\ & X_n Y_n \stackrel{\mathrm{D}}{\longrightarrow} Xa \\ & X_n / Y_n \stackrel{\mathrm{D}}{\longrightarrow} X/a, & \text{provided } a \neq 0. \end{array}$$

• Corollary of Slutzky's Theorem: Let X_1, \ldots, X_n be a rs from any distribution and suppose the distribution has mean μ and variance $\sigma^2 < \infty$. Moreover, let $\hat{\sigma}_n$ be a consistent estimator of σ . Then

$$\frac{X_n - \mu}{\hat{\sigma}_n / \sqrt{n}} \xrightarrow{\mathrm{D}} Z, \quad Z \sim \mathrm{Normal}(0, 1).$$

Application to CIs: The above means that for any $\alpha \in (0, 1)$,

$$\lim_{n \to \infty} P\left(-z_{\alpha/2} < \frac{\bar{X} - \mu}{\hat{\sigma}_n/\sqrt{n}} < z_{\alpha/2}\right) = 1 - \alpha,$$

giving that

$$\bar{X}_n \pm z_{\alpha/2} \frac{\hat{\sigma}_n}{\sqrt{n}}$$

is an approximate $(1 - \alpha)100\%$ CI for μ as long as n is large.

A rather arbitrary rule of thumb says $n \ge 30$ is "large".

• Let X_1, \ldots, X_n be a random sample from *any* distribution and suppose the distribution has mean μ and variance $\sigma^2 < \infty$ and 4th moment $\mu_4 < \infty$. Then

$$\frac{X_n - \mu}{S_n / \sqrt{n}} \xrightarrow{\mathrm{D}} Z, \quad Z \sim \mathrm{Normal}(0, 1),$$

so that for large n,

$$\bar{X}_n \pm z_{\alpha/2} \frac{S_n}{\sqrt{n}}$$

is an approximate $(1 - \alpha)100\%$ CI for μ .

• Let X_1, \ldots, X_n be a random sample from the Bernoulli(p) distribution and let $\hat{p}_n = \bar{X}_n$. Then

$$\frac{p_n - p}{\sqrt{\frac{\hat{p}_n(1 - \hat{p}_n)}{n}}} \xrightarrow{\mathrm{D}} Z, \quad Z \sim \mathrm{Normal}(0, 1),$$

so that for large n (a rule of thumb is to require $\min\{n\hat{p}_n, n(1-\hat{p}_n)\} \ge 15$),

$$\hat{p}_n \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}$$

is an approximate $(1 - \alpha)100\%$ CI for p.

• Summary of $(1 - \alpha)100\%$ CIs for μ : Let X_1, \ldots, X_n be independent rvs with the same distribution as the rv X, where $\mathbb{E}X = \mu$, Var $X = \sigma^2$.

- 8. Classical two-sample results comparing means, proportions, and variances
 - Summary of $(1 \alpha)100\%$ CIs for $\mu_1 \mu_2$: Let X_1, \ldots, X_{n_1} be independent rvs with the same distribution as the rv X, where $\mathbb{E}X = \mu_1$ and $\operatorname{Var} X = \sigma_1^2$ and let Y_1, \ldots, Y_{n_2} be independent rvs with the same distribution as the rv Y, where $\mathbb{E}Y = \mu_2$ and $\operatorname{Var} \sigma_2^2$.

Case (i): $\sigma_1^2 \neq \sigma_2^2$:

• A $(1-\alpha)100\%$ CI for p_1-p_2 : Let $X_1, \ldots, X_{n_1} \stackrel{\text{ind}}{\sim} \text{Bernoulli}(p_1)$ and $Y_1, \ldots, Y_{n_2} \stackrel{\text{ind}}{\sim} \text{Bernoulli}(p_2)$ and let $\hat{p}_1 = n_1^{-1}(X_1 + \cdots + X_{n_1})$ and $\hat{p}_2 = n_2^{-1}(Y_1 + \cdots + Y_{n_2})$. Then for large n_1 and n_2 (Rule of thumb is $\min\{n_1\hat{p}_1, n_1(1-\hat{p}_1)\} \ge 15$ and $\min\{n_2\hat{p}_2, n_2(1-\hat{p}_2)\} \ge 15$)

$$\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

is an approximate $(1 - \alpha)100\%$ CI for $p_1 - p_2$.

• A $(1 - \alpha)100\%$ CI for σ_2^2/σ_1^2 : Consider two independent random samples $X_1, \ldots, X_{n_1} \stackrel{\text{ind}}{\sim} Normal(\mu_1, \sigma_1^2)$ and $Y_1, \ldots, Y_{n_2} \stackrel{\text{ind}}{\sim} Normal(\mu_2, \sigma_2^2)$ with sample variances S_1^2 and S_2^2 , respectively. Then

$$\left(\frac{S_2^2}{S_1^2}F_{n_1-1,n_2-1,1-\alpha/2},\frac{S_2^2}{S_1^2}F_{n_1-1,n_2-1,\alpha/2}\right)$$

is a $(1-\alpha)100\%$ CI for σ_2^2/σ_1^2 .

- 9. Sample size calculations
 - Let $\hat{\theta}$ be an estimator of a parameter θ and let $\hat{\theta} \pm \eta$ be a CI for θ . Then the quantity η is called the *margin of error* (ME) of the CI.
 - Let X_1, \ldots, X_n be a random sample from a population with mean μ and variance σ^2 . The smallest sample size n such that the ME of the CI

$$\bar{X}_n \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

is at most M^* is

$$n = \left\lceil \left(\frac{z_{\alpha/2}}{M^*}\right)^2 \sigma^2 \right\rceil,$$

where $\lceil x \rceil$ is the smallest integer greater than or equal to x. Plug in an estimate $\hat{\sigma}^2$ of σ^2 from a previous study to make the calculation.

• Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Bernoulli}(p)$ distribution. The smallest sample size n such that the ME of the CI

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

is at most M^* is

$$n = \left\lceil \left(\frac{z_{\alpha/2}}{M^*}\right)^2 p(1-p) \right\rceil.$$

Plug in an estimate \hat{p} of p from a previous study to make the calculation or use p = 1/2 to err on the side of larger n.

• Let X_1, \ldots, X_{n_1} be iid rvs with mean μ_1 and variance σ_1^2 and let Y_1, \ldots, Y_{n_2} be iid rvs with mean μ_2 and variance σ_2^2 . To find the smallest $n = n_1 + n_2$ such that the ME of the CI

$$\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

is at most M^* , compute

$$n^* = \left(\frac{z_{\alpha/2}}{M^*}\right)^2 (\sigma_1 + \sigma_2)^2$$

and set

$$n_1 = \left\lceil \left(\frac{\sigma_1}{\sigma_1 + \sigma_2} \right) n^* \right\rceil$$
 and $n_2 = \left\lceil \left(\frac{\sigma_2}{\sigma_1 + \sigma_2} \right) n^* \right\rceil$

Plug in estimates $\hat{\sigma}_1$ and $\hat{\sigma}_2$ for σ_1 and σ_2 from a previous study to make the calculation.

• Let $X_1, \ldots, X_{n_1} \stackrel{\text{ind}}{\sim} \text{Bernoulli}(p_1)$ and $Y_1, \ldots, Y_{n_2} \stackrel{\text{ind}}{\sim} \text{Bernoulli}(p_2)$ be independent random samples. To find the smallest $n = n_1 + n_2$ such that the ME of the CI

$$\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

is at most M^* , compute

$$n^* = \left(\frac{z_{\alpha/2}}{M^*}\right)^2 \left(\sqrt{p_1(1-p_1)} + \sqrt{p_2(1-p_2)}\right)^2.$$

Then set

$$n_1 = \left\lceil \left(\frac{\sqrt{p_1(1-p_1)}}{\sqrt{p_1(1-p_1)} + \sqrt{p_2(1-p_2)}} \right) n^* \right\rceil \quad \text{and} \quad n_2 = \left\lceil \left(\frac{\sqrt{p_2(1-p_2)}}{\sqrt{p_1(1-p_1)} + \sqrt{p_2(1-p_2)}} \right) n^* \right\rceil$$

Plug in estimates \hat{p}_1 and \hat{p}_2 for p_1 and p_2 from a previous study to make the calculation.

10. First principles of estimation, sufficiency and Rao–Blackwell theorem

- Let X_1, \ldots, X_n have a joint distribution depending on the parameter $\theta \in \Theta \subset \mathbb{R}^d$. A statistic $T(X_1, \ldots, X_n)$ is a sufficient statistic for θ if it carries all the information about θ contained in X_1, \ldots, X_n .
- Precisely, $T(X_1, \ldots, X_n)$ is a sufficient statistic for θ if the joint distribution of X_1, \ldots, X_n conditional on the value of $T(X_1, \ldots, X_n)$ does not depend on θ . We can establish sufficiency using the following results:
 - For discrete rvs $(X_1, \ldots, X_n) \sim p_{X_1, \ldots, X_n}(x_1, \ldots, x_n; \theta)$, $T(X_1, \ldots, X_n)$ is a sufficient statistic for θ if for all (x_1, \ldots, x_n) in the support of (X_1, \ldots, X_n) , the ratio

$$\frac{p_{(X_1,\dots,X_n)}(x_1,\dots,x_n;\theta)}{p_T(T(x_1,\dots,x_n);\theta)}$$

is free of θ , where $p_T(t; \theta)$ is the pmf of $T(X_1, \ldots, X_n)$.

- For continuous rvs $(X_1, \ldots, X_n) \sim f_{X_1, \ldots, X_n}(x_1, \ldots, x_n; \theta), T(X_1, \ldots, X_n)$ is a sufficient statistic for θ if for all (x_1, \ldots, x_n) in the support of (X_1, \ldots, X_n) , the ratio

$$\frac{f_{X_1,\dots,X_n}(x_1,\dots,x_n;\theta)}{f_T(T(x_1,\dots,x_n);\theta)}$$

is free of θ , where $f_T(t; \theta)$ is the pdf of $T(X_1, \ldots, X_n)$.

- The factorization theorem gives another way to see whether a statistic is sufficient for θ :
 - For discrete rvs $(X_1, \ldots, X_n) \sim p_{X_1, \ldots, X_n}(x_1, \ldots, x_n; \theta)$, $T(X_1, \ldots, X_n)$ is a sufficient statistic for θ if and only if there exist functions $g(T; \theta)$ and $h(x_1, \ldots, x_n)$ such that

 $p_{X_1,\ldots,X_n}(x_1,\ldots,x_n;\theta) = g(T(x_1,\ldots,x_n);\theta)h(x_1,\ldots,x_n)$

for all (x_1, \ldots, x_n) in the support of (X_1, \ldots, X_n) and all $\theta \in \Theta$.

- For continuous rvs $(X_1, \ldots, X_n) \sim f_{X_1, \ldots, X_n}(x_1, \ldots, x_n; \theta)$, $T(X_1, \ldots, X_n)$ is a sufficient statistic for θ if and only if there exist functions $g(T; \theta)$ and $h(x_1, \ldots, x_n)$ such that

 $f_{X_1,\ldots,X_n}(x_1,\ldots,x_n;\theta) = g(T(x_1,\ldots,x_n);\theta)h(x_1,\ldots,x_n)$

for all (x_1, \ldots, x_n) in the support of (X_1, \ldots, X_n) and all $\theta \in \Theta$.

• We also consider statistics with multiple components which take the form

$$T(X_1,\ldots,X_n)=(T_1(X_1,\ldots,X_n),\ldots,T_K(X_1,\ldots,X_n))$$

for some $K \ge 1$. For example, $T(X_1, \ldots, X_n) = (X_{(1)}, \ldots, X_{(n)})$ is the set of order statistics (which is always sufficient); here K = n.

- Minimum-variance unbiased estimator (MVUE): Let $\hat{\theta}$ be an unbiased estimator of $\theta \in \Theta \subset \mathbb{R}$. If $\operatorname{Var} \hat{\theta} \leq \operatorname{Var} \tilde{\theta}$ for every unbiased estimator $\tilde{\theta}$ of θ , then $\hat{\theta}$ is a MVUE.
- Rao-Blackwell Theorem: Let $\tilde{\theta}$ be an estimator of $\theta \in \Theta \subset \mathbb{R}$ such that $\mathbb{E}\tilde{\theta} = \theta$ and let T be a sufficient statistic for θ . Define $\hat{\theta} = \mathbb{E}[\tilde{\theta}|T]$. Then $\hat{\theta}$ is an estimator of θ such that

$$\mathbb{E}\hat{\theta} = \theta$$
 and $\operatorname{Var}\hat{\theta} \leq \operatorname{Var}\tilde{\theta}$.

Interpretation: An unbiased estimator of θ can always be improved by taking into account the value of a sufficient statistic for θ . We conclude that a MVUE must be a function of a sufficient statistic.

- The MVUE for a parameter θ is (essentially) unique (for all situations considered in this course); to find it, do the following:
 - (a) Find a sufficient statistic for θ .
 - (b) Find a function of the sufficient statistic which is unbiased for θ . This is the MVUE.

This also works for finding the MVUE of a function $\tau(\theta)$ of θ . In step (b), just find a function of the sufficient statistic which is unbiased for $\tau(\theta)$.

- 11. MoMs and MLEs
 - Let X_1, \ldots, X_n be independent rvs with the same distribution as the rv X, where X has a distribution depending on the parameters $\theta_1, \ldots, \theta_d$. If the first d moments $\mathbb{E}X, \ldots, \mathbb{E}X^d$ of X are finite, then the *method of moments (MoMs) estimators* $\hat{\theta}_1, \ldots, \hat{\theta}_d$ are the values of $\theta_1, \ldots, \theta_d$ which solve the following system of equations:

$$m'_1 := \frac{1}{n} \sum_{i=1}^n X_i = \mathbb{E}X =: \mu'_1(\theta_1, \dots, \theta_d)$$
$$\vdots$$
$$m'_d := \frac{1}{n} \sum_{i=1}^n X_i^d = \mathbb{E}X^d =: \mu'_d(\theta_1, \dots, \theta_d)$$

• Let X_1, \ldots, X_n be a random sample from a distribution with pdf $f_X(x; \theta_1, \ldots, \theta_d)$ or pmf $p_X(x; \theta_1, \ldots, \theta_d)$ which depends on some parameters $(\theta_1, \ldots, \theta_d) \in \Theta \subset \mathbb{R}^d$. Then the *likelihood function* is defined as

$$\mathcal{L}(\theta_1,\ldots,\theta_d;X_1,\ldots,X_n) = \begin{cases} \prod_{i=1}^n f_X(X_i;\theta_1,\ldots,\theta_d), & \text{if } X_1,\ldots,X_n \stackrel{\text{ind}}{\sim} f_X(x;\theta_1,\ldots,\theta_d) \\ \prod_{i=1}^n p_X(X_i;\theta_1,\ldots,\theta_d), & \text{if } X_1,\ldots,X_n \stackrel{\text{ind}}{\sim} p_X(x;\theta_1,\ldots,\theta_d). \end{cases}$$

Moreover, the *log-likelihood function* is defined as

$$\ell(\theta_1,\ldots,\theta_d;X_1,\ldots,X_n) = \log \mathcal{L}(\theta_1,\ldots,\theta_d;X_1,\ldots,X_n).$$

• Let X_1, \ldots, X_n be rvs with likelihood function $\mathcal{L}(\theta_1, \ldots, \theta_d; X_1, \ldots, X_n)$ for some parameters $(\theta_1, \ldots, \theta_d) \in \Theta \subset \mathbb{R}^d$. Then the maximum likelihood estimators (MLEs) of $\theta_1, \ldots, \theta_d$ are the values $\hat{\theta}_1, \ldots, \theta_d$ which maximize the likelihood function over all $(\theta_1, \ldots, \theta_d) \in \Theta$. That is

$$(\hat{\theta}_1, \dots, \hat{\theta}_d) = \operatorname*{argmax}_{(\theta_1, \dots, \theta_d) \in \Theta} \mathcal{L}(\theta_1, \dots, \theta_d; X_1, \dots, X_n)$$
$$= \operatorname*{argmax}_{(\theta_1, \dots, \theta_d) \in \Theta} \ell(\theta_1, \dots, \theta_d; X_1, \dots, X_n)$$

• If $\ell(\theta_1, \ldots, \theta_d; X_1, \ldots, X_n)$ is differentiable and has a single maximum in the interior of Θ , then we can find the MLEs $\hat{\theta}_1, \ldots, \theta_d$ by solving the following system of equations:

$$\frac{\partial}{\partial \theta_1} \ell(\theta_1, \dots, \theta_d; X_1, \dots, X_n) = 0$$

$$\vdots$$

$$\frac{\partial}{\partial \theta_d} \ell(\theta_1, \dots, \theta_d; X_1, \dots, X_n) = 0.$$

- The MLE is always a function of a sufficient statistic.
- If $\hat{\theta}$ is the MLE for θ , then $\tau(\hat{\theta})$ is the MLE for $\tau(\theta)$, for any function τ .

pmf/pdf	X	$M_X(t)$	$\mathbb{E}X$	$\operatorname{Var} X$
$p_X(x;p) = p^x (1-p)^{1-x},$	x = 0, 1	$pe^t + (1-p)$	p	p(1-p)
$p_X(x;n,p) = \binom{n}{x} p^x (1-p)^{n-x},$	$x = 0, 1, \ldots, n$	$[pe^t + (1-p)]^n$	np	np(1-p)
$p_X(x;p) = (1-p)^{x-1}p,$	$x = 1, 2, \ldots$	$\frac{pe^t}{1-(1-p)e^t}$	p^{-1}	$(1-p)p^{-2}$
$p_X(x; p, r) = \binom{x-1}{r-1}(1-p)^{x-r}p^r,$	$x = r, r + 1, \ldots$	$\left[rac{pe^t}{1-(1-p)e^t} ight]^r$	rp^{-1}	$r(1-p)p^{-2}$
$p_X(x;\lambda) = e^{-\lambda} \lambda^x / x!$	$x = 0, 1, \ldots$	$e^{\lambda(e^t-1)}$	λ	λ
$p_X(x; N, M, K) = \binom{M}{x} \binom{N-M}{K-x} / \binom{N}{K}$	$x = 0, 1, \ldots, K$	¡complicadísimo!	$\frac{KM}{N}$	$\frac{KM}{N} \frac{(N-K)(N-M)}{N(N-1)}$
$p_X(x;K) = \frac{1}{K}$	$x = 1, \ldots, K$	$\frac{1}{K}\sum_{x=1}^{K}e^{tx}$	$\frac{K+1}{2}$	$\frac{(K+1)(K-1)}{12}$
$p_X(x;x_1,\ldots,x_n) = \frac{1}{n}$	$x = x_1, \ldots, x_n$	$\frac{1}{n}\sum_{i=1}^{n}e^{tx_{i}}$	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2$
$f_X(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$-\infty < x < \infty$	$e^{\mu t + \sigma^2 t^2/2}$	μ	σ^2
$f_X(x;\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} \exp\left(-\frac{x}{\beta}\right)$	$0 < x < \infty$	$(1-\beta t)^{-lpha}$	lphaeta	$lphaeta^2$
$f_X(x;\lambda) = \frac{1}{\lambda} \exp\left(-\frac{x}{\lambda}\right)$	$0 < x < \infty$	$(1-\lambda t)^{-1}$	λ	λ^2
$f_X(x;\nu) = \frac{1}{\Gamma(\nu/2)2^{\nu/2}} x^{\nu/2-1} \exp\left(-\frac{x}{2}\right)$	$0 < x < \infty$	$(1-2t)^{-\nu/2}$	ν	2ν
$f_X(x;\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	0 < x < 1	$\left 1+\sum_{k=1}^{\infty}\frac{t^{k}}{k!}\left(\prod_{r=0}^{k}\frac{\alpha+r}{\alpha+\beta+r}\right)\right $	$\frac{\alpha}{\alpha+\beta}$	$rac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$

Table 1: Commonly encountered pmfs and pdfs along with their mgfs, expected values, and variances.

 $p_{(X_1,\dots,X_K)}(x_1,\dots,x_K;p_1,\dots,p_K) = p_1^{x_1}\cdots p_K^{x_K} \cdot \mathbb{1}\left\{ (x_1,\dots,x_K) \in \{0,1\}^K : \sum_{k=1}^K x_k = 1 \right\}$ $p_{(Y_1,\dots,Y_K)}(y_1,\dots,y_K;n,p_1,\dots,p_K) = \left(\frac{n!}{y_1!\cdots y_K!}\right) p_1^{y_1}\cdots p_K^{y_K} \cdot \mathbb{1}\left\{ (y_1,\dots,y_K) \in \{0,1,\dots,n\}^K : \sum_{k=1}^K y_k = n \right\}$ $f_{(X,Y)}(x,y;\mu_X,\mu_Y,\sigma_X^2,\sigma_Y^2,\rho) = \frac{1}{2\pi} \frac{1}{\sigma_X \sigma_Y \sqrt{1-\rho^2}} \exp\left(-\frac{1}{2} \frac{1}{1-\rho^2} \left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho \left(\frac{x-\mu_X}{\sigma_X}\right) \left(\frac{y-\mu_Y}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 \right] \right)$

Table 2: The "multinoulli" and multinomial pmfs and the bivariate Normal pdf.