
STAT 512 Summary Sheet

Karl B. Gregory

1. Transformations of a random variable

• Let X be a rv with support X and let g be a function mapping X to Y with inverse mapping

g−1(A) = {x ∈ X : g(x) ∈ A} for all A ⊂ Y .

• If X is a discrete rv, the rv Y = g(X) is discrete and has pmf given by

pY (y) =

{ ∑
x∈g−1(y) pX(x) for y ∈ Y

0 for y /∈ Y .

• If X has pdf fX then the cdf of Y = g(X) is given by

FY (y) =

∫
{g(x)<y}

fX(x)dx, −∞ < y <∞.

• If X has pdf fX which is continuous on X and if g is monotone and g−1 has a continuous
derivative then the pdf of Y = g(X) is given by

fY (y) =

{
fX(g−1(y))| d

dy
g−1(y)| for y ∈ Y

0 for y /∈ Y .

• If X has mgf MX(t), the mgf of Y = aX + b is given by MY (t) = ebtMX(at).

• If X has continuous cdf FX , the rv U = FX(X) has the uniform distribution on (0, 1).

• To generate X ∼ FX , generate U ∼ Uniform(0, 1) and set X = F−1
X (U), where

F−1
X (u) = inf{x : FX(x) ≥ u}.

If FX is strictly increasing, F−1
X satisfies

x = F−1
X (u) ⇐⇒ u = FX(x)

for all 0 < u < 1 and −∞ < x <∞.
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2. Transformations of multiple random variables

• Let (X1, X2) be a pair of continuous random variables with pdf fX1,X2 having joint support

X = {(x1, x2) : fX1,X2(x1, x2) > 0}

and let Y1 = g1(X1, X2) and Y2 = g2(X1, X2), where g1 and g2 form a one-to-one transforma-
tion of X onto the set

Y = {(y1, y2) : y1 = g1(x1, x2), y2 = g2(x1, x2), (x1, x2) ∈ X}.

Then the joint pdf fY1,Y2 of rv pair (Y1, Y2) is given by

fY1,Y2(y1, y2) =

{
fX1,X2(g

−1
1 (y1, y2), g−1

2 (y1, y2))|J(y1, y2)| for (y1, y2) ∈ Y
0 for (y1, y2) /∈ Y ,

where g−1
1 and g−1

2 are the functions satisfying

y1 = g1(x1, x2)
y2 = g2(x1, x2)

⇐⇒ x1 = g−1
1 (y1, y2)

x2 = g−1
2 (y1, y2)

and

J(y1, y2) =

∣∣∣∣ ∂
∂y1
g−1

1 (y1, y2) ∂
∂y2
g−1

1 (y1, y2)
∂
∂y1
g−1

2 (y1, y2) ∂
∂y2
g−1

2 (y1, y2)

∣∣∣∣ ,
provided J(y1, y2) is not equal to zero for all (y1, y2) ∈ Y .

• For real numbers a, b, c, d, ∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.

• Let X1, . . . , Xn be mutually independent rvs such that Xi has mgf MXi(t) for i = 1, . . . , n.
Then the mgf of Y = X1 + · · ·+Xn is given by

MY (t) =
n∏
i=1

MXi(t).

It follows that if X1, . . . , Xn are independent identically distributed rvs, each with mgf MX(t),
then the mgf of Y = X1 + · · ·+Xn is given by

MY (t) = [MX(t)]n.

3. Random samples, sums of rvs, and order statistics

• A random sample is a collection of mutually independent rvs all having the same distribution.
This common distribution is called the population distribution and quantities describing the
population distribution are called population parameters. A sample statistic is a function of
the rvs in the random sample and its distribution is called its sampling distribution. What
we can learn about population parameters from sample statistics has everything to do with
their sampling distributions.
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• Random samples might be introduced in any of the following ways,

– Let X1, . . . , Xn be a random sample from a population with such-and-such distribution.

– Let X1, . . . , Xn be independent copies of the random variable X, where X has such-and-
such distribution.

– Let X1, . . . , Xn be iid rvs from such-and-such distribution (iid means independent and
identically distributed).

– Let X1, . . . , Xn
ind∼ a distribution.

• Let X1, . . . , Xn be a random sample from a population with mean µ and variance σ2 < ∞
and define the sample mean and sample variance as

X̄n =
1

n
(X1 + · · ·+Xn)

S2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)2.

Then we have EX̄n = µ, Var X̄n = σ2/n, and ES2
n = σ2.

• The order statistics of a rs X1, . . . , Xn are the ordered data values

X(1) < X(2) < · · · < X(n).

• Let X(1) < · · · < X(n) be the order statistics of a random sample from a population with cdf
FX and pdf fX . Then the pdf of the kth order statistic X(k) is given by

fX(k)
(x) =

n!

(k − 1)!(n− k)!
[FX(x)]k−1[1− FX(x)]n−kfX(x)

for k = 1, . . . , n. In particular, the minimum X(1) and the maximum X(n) have the pdfs

fX(1)
(x) = n[1− FX(x)]n−1fX(x)

fX(n)
(x) = n[FX(x)]n−1fX(x)

• Let X(1) < · · · < X(n) be the order statistics of a random sample from a population with
cdf FX and pdf fX . Then the joint pdf of the jth and kth order statistics (X(j), X(k)), with
1 ≤ j < k ≤ n, is given by

fX(j),X(k)
(u, v) =

n!

(j − 1)!(k − 1− j)!(n− k)!
fX(u)fX(v)[FX(u)]j−1[FX(v)−FX(u)]k−1−j[1−FX(v)]n−k

for −∞ < u < v <∞.

In particular, the joint pdf of the minimum and maximum (X(1), X(n)) is

fX(1),X(n)
(u, v) = n(n− 1)fX(u)fX(v)[FX(v)− FX(u)]n−2

for −∞ < u < v <∞.
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4. Pivot quantities and sampling from the Normal distribution

• A pivot quantity is a function of sample statistics and population parameters which has a
known distribution (not depending on unknown parameters).

• A (1−α)100% confidence interval (CI) for an unknown parameter θ ∈ R is an interval (L,U)
where L and U are random variables such that P (L < θ < U) = 1− α, for α ∈ (0, 1).

• Important distributions and upper quantile notation:

– The Normal(0, 1) distribution has pdf

φ(z) =
1√
2π
e−z

2/2
1(−∞ < z <∞),

and for ξ ∈ (0, 1) we denote by zξ the value satisfying P (Z > zξ) = ξ, where Z ∼
Normal(0, 1).

– The Chi-square distributions χ2
ν , ν = 1, 2, . . . have the pdfs

fX(x; ν) =
1

Γ(ν/2)2ν/2
xν/2−1e−x/21(x > 0),

and for ξ ∈ (0, 1) we denote by χ2
ν,ξ the value satisfying P (X > χ2

ν,ξ) = ξ, where X ∼ χ2
ν .

The parameter ν is called the degrees of freedom.

– The t distributions tν , ν = 1, 2, . . . have the pdfs

fT (t; ν) =
Γ(ν+1

2
)

Γ(ν
2
)

1√
νπ

(
1 +

t2

ν

)−(ν+1)/2

1(−∞ < t <∞),

and for ξ ∈ (0, 1) we denote by tν,ξ the value satisfying P (T > tν,ξ) = ξ, where T ∼ tν .
The parameter ν is called the degrees of freedom.

– The F distributions Fν1,ν2 , ν1, ν2 = 1, 2, . . . have the pdfs

fR(r; ν1, ν2) =
Γ(ν1+ν2

2
)

Γ(ν1
2

)Γ(ν2
2

)

(
ν1

ν2

)ν1/2
r(ν1−2)/2

(
1 +

ν1

ν2

r

)−(ν1+ν2)/2

1(r > 0),

and for ξ ∈ (0, 1) we denote by Fν1,ν2,ξ the value satisfying P (R > Fν1,ν2,ξ) = ξ, where
R ∼ Fν1,ν2 . The parameters ν1 and ν2 are called, respectively, the numerator degrees of
freedom and the denominator degrees of freedom.

• Let Z ∼ Normal(0, 1) and X ∼ χ2
ν be independent rvs. Then

T =
Z√
X/ν

∼ tν .

• Let X1 ∼ χ2
ν1

and X2 ∼ χ2
ν2

be independent rvs. Then

R =
X1/ν1

X2/ν2

∼ Fν1,ν2 .
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• Let X1, . . . , Xn
ind∼ Normal(µ, σ2) distribution. Then

–
√
n(X̄n − µ)/σ ∼ Normal(0, 1), giving P

(
X̄n − zα/2

σ√
n
< µ < X̄n + zα/2

σ√
n

)
= 1− α.

– (n− 1)S2
n/σ

2 ∼ χ2
n−1, giving P

(
(n− 1)S2

n

χ2
n−1,α/2

< σ2 <
(n− 1)S2

n

χ2
n−1,1−α/2

)
= 1− α.

–
√
n(X̄n − µ)/Sn ∼ tn−1, giving P

(
X̄n − tn−1,α/2

Sn√
n
< µ < X̄n + tn−1,α/2

Sn√
n

)
= 1− α.

• Consider two independent random samples X1, . . . , Xn1

ind∼ Normal(µ1, σ
2
1) and Y1, . . . , Yn2

ind∼
Normal(µ2, σ

2
2) with sample means X̄n1 and Ȳn2 and sample variances S2

1 and S2
2 , respectively.

Then
S2

1/σ
2
1

S2
2/σ

2
2

∼ Fn1−1,n2−1,

giving

P

(
S2

2

S2
1

Fn1−1,n2−1,1−α/2 <
σ2

2

σ2
1

<
S2

2

S2
1

Fn1−1,n2−1,α/2

)
= 1− α.

5. Parametric estimation and properties of estimators

• Parametric framework: Let X1, . . . , Xn have a joint distribution which depends on a finite
number of parameters θ1, . . . , θd, the values of which are unknown and lie in the spaces
Θ1, . . . ,Θd, respectively, where Θk ⊂ R, for k = 1, . . . , d. To know the joint distribution of
X1, . . . , Xn, it is sufficient to know the values of θ1, . . . , θd, so we define estimators θ̂1, . . . , θ̂d
of θ1, . . . , θd based on X1, . . . , Xn.

• Nonparametric framework: Let X1, . . . , Xn have a joint distribution which depends on an
infinite number of parameters. For example, suppose X1, . . . , Xn is a random sample from a
distribution with pdf fX , where we do not specify any functional form for fX . Then we may
regard the value of the pdf fX(x) at every point x ∈ R as a parameter, and since there are
an infinite number of values of x ∈ R, there are infinitely many parameters.

• The bias of an estimator θ̂ of a parameter θ is defined as

Bias θ̂ = Eθ̂ − θ.

And estimator is called unbiased if Bias θ̂ = 0, that is if Eθ̂ = θ.

• The standard error of an estimator θ̂ of a parameter θ is defined as

SE θ̂ =
√

Var θ̂,

so the standard error of an estimator is simply its standard deviation.

• The mean squared error (MSE) of an estimator θ̂ of a parameter θ is defined as

MSE θ̂ = E(θ̂ − θ)2,

so the MSE of θ̂ is the expected squared distance between θ̂ and θ.
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• MSE θ̂ = Var θ̂ + (Bias θ̂)2.

• If θ̂ is an unbiased estimator of θ, it is not generally true that τ(θ̂) will be an unbiased
estimator of τ(θ).

6. Large-sample properties of estimators, consistency and WLLN

• A sequence of estimators {θ̂n}n≥1 of a parameter θ ∈ Θ ⊂ R is called consistent if for every
ε > 0 and every θ ∈ Θ,

lim
n→∞

P (|θ̂n − θ| < ε) = 1.

Note: When we write θ̂n, with n in the subscript, it is understood that we are considering a
sequence of estimators for all sample sizes n ≥ 1.

• We often express that θ̂ is a consistent estimator of θ by writing

θ̂n
p−→ θ,

where
p−→ denotes something called convergence in probability. Saying “θ̂n converges in

probability to θ” is equivalent to saying “θ̂ is a consistent estimator of θ”.

• The weak law of large numbers (WLLN): Let X1, . . . , Xn be a rs from a distribution with
mean µ and variance σ2 <∞. Then X̄n = n−1(X1 + · · ·+Xn) is a consistent estimator of µ.

• The estimator θ̂n is a consistent estimator for θ if

(a) limn→∞Var θ̂n = 0

(b) limn→∞ Bias θ̂n = 0

So we can show that θ̂n is a consistent estimator of θ by showing MSE θ̂n → 0 as n→∞.

• Let {θ̂1,n}n≥1 and {θ̂2,n}n≥1 be sequences of estimators for θ1 and θ2, respectively. Then

(a) θ̂1,n ± θ̂2,n is consistent for θ1 ± θ2.

(b) θ̂1,n · θ̂2,n is consistent for θ1 · θ2.

(c) θ̂1,n/θ̂2,n is consistent for θ1/θ2, so long as θ2 6= 0.

(d) For any continuous function τ : R→ R, τ(θ̂1,n) is consistent for τ(θ1).

(e) For any sequences {an}n≥1 and {bn}n≥1 such that limn→∞ an = 1 and limn→∞ bn = 0,

anθ̂1,n + bn is consistent for θ1.

• If X1, . . . , Xn is a random sample from a distribution with mean µ and variance σ2 <∞ and
4th moment µ4 <∞, the sample variance S2

n is consistent for σ2.

• If X1, . . . , Xn is a random sample from the Bernoulli(p) distribution and p̂ = n−1(X1 + · · ·+
Xn), then p̂(1− p̂) is a consistent estimator of p(1− p).

7. Large-sample pivot quantities and central limit theorem

• A sequence of random variables Y1, Y2, . . . with cdfs FY1 , FY2 , . . . is said to converge in dis-
tribution to the random variable Y ∼ FY if

lim
n→∞

FYn(y) = FY (y)
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for all y ∈ R at which FY is continuous. We express convergence in distribution with the

notation Yn
D−→ Y and we refer to the distribution with cdf FY as the asymptotic distribution

of the sequence of random variables Y1, Y2, . . .

• Convergence in distribution is a sense in which a random variable (we can think of a quantity
computed on larger and larger samples) behaves more and more like another random variable
(as the sample size grows).

• A large-sample pivot quantity is a function of sample statistics and population parameters for
which the asymptotic distribution is fully known (not depending on unknown parameters).

• The Central Limit Theorem (CLT): LetX1, . . . , Xn be a random sample from any distribution
and suppose the distribution has mean µ and variance σ2 <∞. Then

X̄ − µ
σ/
√
n

D−→ Z, Z ∼ Normal(0, 1).

Application to CIs: The above means that for any α ∈ (0, 1),

lim
n→∞

P

(
−zα/2 <

X̄ − µ
σ/
√
n
< zα/2

)
= 1− α,

giving that

X̄n ± zα/2
σ√
n

is an approximate (1 − α)100% CI for µ as long as n is large. A rule of thumb says n ≥ 30
is “large”.

• Slutzky’s Theorem: If Xn
D−→ X and Yn

p−→ a, then

Xn + Yn
D−→ X + a.

XnYn
D−→ Xa

Xn/Yn
D−→ X/a, provided a 6= 0.

• Corollary of Slutzky’s Theorem: Let X1, . . . , Xn be a rs from any distribution and suppose
the distribution has mean µ and variance σ2 <∞. Moreover, let σ̂n be a consistent estimator
of σ. Then

X̄n − µ
σ̂n/
√
n

D−→ Z, Z ∼ Normal(0, 1).

Application to CIs: The above means that for any α ∈ (0, 1),

lim
n→∞

P

(
−zα/2 <

X̄ − µ
σ̂n/
√
n
< zα/2

)
= 1− α,

giving that

X̄n ± zα/2
σ̂n√
n
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is an approximate (1− α)100% CI for µ as long as n is large.

A rather arbitrary rule of thumb says n ≥ 30 is “large”.

• Let X1, . . . , Xn be a random sample from any distribution and suppose the distribution has
mean µ and variance σ2 <∞ and 4th moment µ4 <∞. Then

X̄n − µ
Sn/
√
n

D−→ Z, Z ∼ Normal(0, 1),

so that for large n,

X̄n ± zα/2
Sn√
n

is an approximate (1− α)100% CI for µ.

• Let X1, . . . , Xn be a random sample from the Bernoulli(p) distribution and let p̂n = X̄n.
Then

p̂n − p√
p̂n(1−p̂n)

n

D−→ Z, Z ∼ Normal(0, 1),

so that for large n (a rule of thumb is to require min{np̂n, n(1− p̂n)} ≥ 15),

p̂n ± zα/2

√
p̂n(1− p̂n)

n

is an approximate (1− α)100% CI for p.

• Summary of (1 − α)100% CIs for µ: Let X1, . . . , Xn be independent rvs with the same
distribution as the rv X, where EX = µ, VarX = σ2.
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Beyond the scope of this course

n < 30

X̄ ± zα/2 Sn√n (approx)

σ unknown

X̄ ± zα/2 σ√
n

(approx)

σ kno
wn

n ≥
30

X
non-N

orm
al

X̄ ± tn−1,α/2
Sn√
n

(exact)

σ unknown

X̄ ± zα/2 σ√
n

(exact)

σ kno
wn

X
∼
N
or
m
al
(µ
, σ

2 )

8. Classical two-sample results comparing means, proportions, and variances

• Summary of (1−α)100% CIs for µ1−µ2: Let X1, . . . , Xn1 be independent rvs with the same
distribution as the rv X, where EX = µ1 and VarX = σ2

1 and let Y1, . . . , Yn2 be independent
rvs with the same distribution as the rv Y , where EY = µ2 and Varσ2

2.
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Case (i): σ2
1 6= σ2

2:

X̄1 − X̄2 ± zα/2
√

s21
n1

+
s22
n2

min{n1 , n2} ≥ 30

Beyond the scope of this course.

non-Normal

X̄1 − X̄2 ± tν̂,α/2
√

s21
n1

+
s22
n2

Nor
mal

min{n1, n
2} <

30

In the above

ν̂ =

(
S2

1

n1

+
S2

2

n2

)2


(
S1

n1

)2

n1 − 1
+

(
S2
2

n2

)2

n2 − 1


−1

.

Case (ii): σ2
1 = σ2

2:

X̄1 − X̄2 ± zα/2
√
s2
pooled

(
1
n1

+ 1
n2

)
min{n1 , n2} ≥ 30

Beyond the scope of this course.

non-Normal

X̄1 − X̄2 ± tn1+n2−2,α/2

√
s2
pooled

(
1
n1

+ 1
n2

)
Nor

mal

min{n1, n
2} <

30
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• A (1−α)100% CI for p1−p2: LetX1, . . . , Xn1

ind∼ Bernoulli(p1) and Y1, . . . , Yn2

ind∼ Bernoulli(p2)
and let p̂1 = n−1

1 (X1 + · · · + Xn1) and p̂2 = n−1
2 (Y1 + · · · + Yn2). Then for large n1 and n2

(Rule of thumb is min{n1p̂1, n1(1− p̂1)} ≥ 15 and min{n2p̂2, n2(1− p̂2)} ≥ 15)

p̂1 − p̂2 ± zα/2

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

is an approximate (1− α)100% CI for p1 − p2.

• A (1 − α)100% CI for σ2
2/σ

2
1: Consider two independent random samples X1, . . . , Xn1

ind∼
Normal(µ1, σ

2
1) and Y1, . . . , Yn2

ind∼ Normal(µ2, σ
2
2) with sample variances S2

1 and S2
2 , respec-

tively. Then (
S2

2

S2
1

Fn1−1,n2−1,1−α/2,
S2

2

S2
1

Fn1−1,n2−1,α/2

)
is a (1− α)100% CI for σ2

2/σ
2
1.

9. Sample size calculations

• Let θ̂ be an estimator of a parameter θ and let θ̂ ± η be a CI for θ. Then the quantity η is
called the margin of error (ME) of the CI.

• Let X1, . . . , Xn be a random sample from a population with mean µ and variance σ2. The
smallest sample size n such that the ME of the CI

X̄n ± zα/2
σ√
n

is at most M∗ is

n =

⌈(zα/2
M∗

)2

σ2

⌉
,

where dxe is the smallest integer greater than or equal to x. Plug in an estimate σ̂2 of σ2

from a previous study to make the calculation.

• Let X1, . . . , Xn
ind∼ Bernoulli(p) distribution. The smallest sample size n such that the ME of

the CI

p̂± zα/2

√
p(1− p)

n

is at most M∗ is

n =

⌈(zα/2
M∗

)2

p(1− p)
⌉
.

Plug in an estimate p̂ of p from a previous study to make the calculation or use p = 1/2 to
err on the side of larger n.

• Let X1, . . . , Xn1 be iid rvs with mean µ1 and variance σ2
1 and let Y1, . . . , Yn2 be iid rvs with

mean µ2 and variance σ2
2. To find the smallest n = n1 + n2 such that the ME of the CI

X̄ − Ȳ ± zα/2

√
σ2

1

n1

+
σ2

2

n2

11



is at most M∗, compute

n∗ =
(zα/2
M∗

)2

(σ1 + σ2)2

and set

n1 =

⌈(
σ1

σ1 + σ2

)
n∗
⌉

and n2 =

⌈(
σ2

σ1 + σ2

)
n∗
⌉
.

Plug in estimates σ̂1 and σ̂2 for σ1 and σ2 from a previous study to make the calculation.

• Let X1, . . . , Xn1

ind∼ Bernoulli(p1) and Y1, . . . , Yn2

ind∼ Bernoulli(p2) be independent random
samples. To find the smallest n = n1 + n2 such that the ME of the CI

p̂1 − p̂2 ± zα/2

√
p1(1− p1)

n1

+
p2(1− p2)

n2

is at most M∗, compute

n∗ =
(zα/2
M∗

)2 (√
p1(1− p1) +

√
p2(1− p2)

)2

.

Then set

n1 =

⌈( √
p1(1− p1)√

p1(1− p1) +
√
p2(1− p2)

)
n∗

⌉
and n2 =

⌈( √
p2(1− p2)√

p1(1− p1) +
√
p2(1− p2)

)
n∗

⌉
.

Plug in estimates p̂1 and p̂2 for p1 and p2 from a previous study to make the calculation.

10. First principles of estimation, sufficiency and Rao–Blackwell theorem

• Let X1, . . . , Xn have a joint distribution depending on the parameter θ ∈ Θ ⊂ Rd. A statistic
T (X1, . . . , Xn) is a sufficient statistic for θ if it carries all the information about θ contained
in X1, . . . , Xn.

• Precisely, T (X1, . . . , Xn) is a sufficient statistic for θ if the joint distribution of X1, . . . , Xn

conditional on the value of T (X1, . . . , Xn) does not depend on θ.
We can establish sufficiency using the following results:

– For discrete rvs (X1, . . . , Xn) ∼ pX1,...,Xn(x1, . . . , xn; θ), T (X1, . . . , Xn) is a sufficient
statistic for θ if for all (x1, . . . , xn) in the support of (X1, . . . , Xn), the ratio

p(X1,...,Xn)(x1, . . . , xn; θ)

pT (T (x1, . . . , xn); θ)

is free of θ, where pT (t; θ) is the pmf of T (X1, . . . , Xn).

– For continuous rvs (X1, . . . , Xn) ∼ fX1,...,Xn(x1, . . . , xn; θ), T (X1, . . . , Xn) is a sufficient
statistic for θ if for all (x1, . . . , xn) in the support of (X1, . . . , Xn), the ratio

fX1,...,Xn(x1, . . . , xn; θ)

fT (T (x1, . . . , xn); θ)

is free of θ, where fT (t; θ) is the pdf of T (X1, . . . , Xn).
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• The factorization theorem gives another way to see whether a statistic is sufficient for θ:

– For discrete rvs (X1, . . . , Xn) ∼ pX1,...,Xn(x1, . . . , xn; θ), T (X1, . . . , Xn) is a sufficient
statistic for θ if and only if there exist functions g(T ; θ) and h(x1, . . . , xn) such that

pX1,...,Xn(x1, . . . , xn; θ) = g(T (x1, . . . , xn); θ)h(x1, . . . , xn)

for all (x1, . . . , xn) in the support of (X1, . . . , Xn) and all θ ∈ Θ.

– For continuous rvs (X1, . . . , Xn) ∼ fX1,...,Xn(x1, . . . , xn; θ), T (X1, . . . , Xn) is a sufficient
statistic for θ if and only if there exist functions g(T ; θ) and h(x1, . . . , xn) such that

fX1,...,Xn(x1, . . . , xn; θ) = g(T (x1, . . . , xn); θ)h(x1, . . . , xn)

for all (x1, . . . , xn) in the support of (X1, . . . , Xn) and all θ ∈ Θ.

• We also consider statistics with multiple components which take the form

T (X1, . . . , Xn) = (T1(X1, . . . , Xn), . . . , TK(X1, . . . , Xn))

for some K ≥ 1. For example, T (X1, . . . , Xn) = (X(1), . . . , X(n)) is the set of order statistics
(which is always sufficient); here K = n.

• Minimum-variance unbiased estimator (MVUE): Let θ̂ be an unbiased estimator of θ ∈ Θ ⊂
R. If Var θ̂ ≤ Var θ̃ for every unbiased estimator θ̃ of θ, then θ̂ is a MVUE.

• Rao–Blackwell Theorem: Let θ̃ be an estimator of θ ∈ Θ ⊂ R such that Eθ̃ = θ and let T be
a sufficient statistic for θ. Define θ̂ = E[θ̃|T ]. Then θ̂ is an estimator of θ such that

Eθ̂ = θ and Var θ̂ ≤ Var θ̃.

Interpretation: An unbiased estimator of θ can always be improved by taking into account
the value of a sufficient statistic for θ. We conclude that a MVUE must be a function of a
sufficient statistic.

• The MVUE for a parameter θ is (essentially) unique (for all situations considered in this
course); to find it, do the following:

(a) Find a sufficient statistic for θ.

(b) Find a function of the sufficient statistic which is unbiased for θ. This is the MVUE.

This also works for finding the MVUE of a function τ(θ) of θ. In step (b), just find a function
of the sufficient statistic which is unbiased for τ(θ).

11. MoMs and MLEs

• Let X1, . . . , Xn be independent rvs with the same distribution as the rv X, where X has
a distribution depending on the parameters θ1, . . . , θd. If the first d moments EX, . . . ,EXd

of X are finite, then the method of moments (MoMs) estimators θ̂1, . . . , θ̂d are the values of
θ1, . . . , θd which solve the following system of equations:

m′1 :=
1

n

n∑
i=1

Xi = EX =: µ′1(θ1, . . . , θd)

...

m′d :=
1

n

n∑
i=1

Xd
i = EXd =: µ′d(θ1, . . . , θd)

13



• Let X1, . . . , Xn be a random sample from a distribution with pdf fX(x; θ1, . . . , θd) or pmf
pX(x; θ1, . . . , θd) which depends on some parameters (θ1, . . . , θd) ∈ Θ ⊂ Rd. Then the likeli-
hood function is defined as

L(θ1, . . . , θd;X1, . . . , Xn) =

{ ∏n
i=1 fX(Xi; θ1, . . . , θd), if X1, . . . , Xn

ind∼ fX(x; θ1, . . . , θd)∏n
i=1 pX(Xi; θ1, . . . , θd), if X1, . . . , Xn

ind∼ pX(x; θ1, . . . , θd).

Moreover, the log-likelihood function is defined as

`(θ1, . . . , θd;X1, . . . , Xn) = logL(θ1, . . . , θd;X1, . . . , Xn).

• Let X1, . . . , Xn be rvs with likelihood function L(θ1, . . . , θd;X1, . . . , Xn) for some parameters
(θ1, . . . , θd) ∈ Θ ⊂ Rd. Then the maximum likelihood estimators (MLEs) of θ1, . . . , θd are the
values θ̂1, . . . , θd which maximize the likelihood function over all (θ1, . . . , θd) ∈ Θ. That is

(θ̂1, . . . , θ̂d) = argmax
(θ1,...,θd)∈Θ

L(θ1, . . . , θd;X1, . . . , Xn)

= argmax
(θ1,...,θd)∈Θ

`(θ1, . . . , θd;X1, . . . , Xn)

• If `(θ1, . . . , θd;X1, . . . , Xn) is differentiable and has a single maximum in the interior of Θ,
then we can find the MLEs θ̂1, . . . , θd by solving the following system of equations:

∂

∂θ1

`(θ1, . . . , θd;X1, . . . , Xn) = 0

...

∂

∂θd
`(θ1, . . . , θd;X1, . . . , Xn) = 0.

• The MLE is always a function of a sufficient statistic.

• If θ̂ is the MLE for θ, then τ(θ̂) is the MLE for τ(θ), for any function τ .

14



pmf/pdf X MX(t) EX VarX

pX(x; p) = px(1− p)1−x, x = 0, 1 pet + (1− p) p p(1− p)

pX(x;n, p) =
(
n
x

)
px(1− p)n−x, x = 0, 1, . . . , n [pet + (1− p)]n np np(1− p)

pX(x; p) = (1− p)x−1p, x = 1, 2, . . . pet

1−(1−p)et p−1 (1− p)p−2

pX(x; p, r) =
(
x−1
r−1

)
(1− p)x−rpr, x = r, r + 1, . . .

[
pet

1−(1−p)et

]r
rp−1 r(1− p)p−2

pX(x;λ) = e−λλx/x! x = 0, 1, . . . eλ(et−1) λ λ

pX(x;N,M,K) =
(
M
x

)(
N−M
K−x

)
/
(
N
K

)
x = 0, 1, . . . , K ¡complicad́ısimo! KM

N
KM
N

(N−K)(N−M)
N(N−1)

pX(x;K) = 1
K

x = 1, . . . , K 1
K

∑K
x=1 e

tx K+1
2

(K+1)(K−1)
12

pX(x;x1, . . . , xn) = 1
n

x = x1, . . . , xn
1
n

∑n
i=1 e

txi x̄ = 1
n

∑n
i=1 xi

1
n

∑n
i=1(xi − x̄)2

fX(x;µ, σ2) = 1√
2π

1
σ

exp
(
− (x−µ)2

2σ2

)
−∞ < x <∞ eµt+σ

2t2/2 µ σ2

fX(x;α, β) = 1
Γ(α)βα

xα−1 exp
(
−x
β

)
0 < x <∞ (1− βt)−α αβ αβ2

fX(x;λ) = 1
λ

exp
(
−x
λ

)
0 < x <∞ (1− λt)−1 λ λ2

fX(x; ν) = 1
Γ(ν/2)2ν/2

xν/2−1 exp
(
−x

2

)
0 < x <∞ (1− 2t)−ν/2 ν 2ν

fX(x;α, β) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1 0 < x < 1 1 +
∑∞

k=1
tk

k!

(∏k
r=0

α+r
α+β+r

)
α

α+β
αβ

(α+β)2(α+β+1)

Table 1: Commonly encountered pmfs and pdfs along with their mgfs, expected values, and variances.

p(X1,...,XK)(x1, . . . , xK ; p1, . . . , pK) = px11 · · · p
xK
K · 1

{
(x1, . . . , xK) ∈ {0, 1}K :

∑K
k=1 xk = 1

}
p(Y1,...,YK)(y1, . . . , yK ;n, p1, . . . , pK) =

(
n!

y1!···yK !

)
py11 · · · p

yK
K · 1

{
(y1, . . . , yK) ∈ {0, 1, . . . , n}K :

∑K
k=1 yk = n

}
f(X,Y )(x, y;µX , µY , σ

2
X , σ

2
Y , ρ) = 1

2π
1

σXσY
√

1−ρ2
exp

(
−1

2
1

1−ρ2

[(
x−µX
σX

)2

− 2ρ
(
x−µX
σX

)(
y−µY
σY

)
+
(
y−µY
σY

)2
])

Table 2: The “multinoulli” and multinomial pmfs and the bivariate Normal pdf.
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