STAT 512 Summary Sheet

Karl B. Gregory

1. Transformations of a random variable

- Let X be a rv with support \mathcal{X} and let g be a function mapping \mathcal{X} to \mathcal{Y} with inverse mapping

$$
g^{-1}(A)=\{x \in \mathcal{X}: g(x) \in A\} \quad \text { for all } \quad A \subset \mathcal{Y}
$$

- If X is a discrete rv, the rv $Y=g(X)$ is discrete and has pmf given by

$$
p_{Y}(y)=\left\{\begin{array}{cl}
\sum_{x \in g^{-1}(y)} p_{X}(x) & \text { for } y \in \mathcal{Y} \\
0 & \text { for } y \notin \mathcal{Y} .
\end{array}\right.
$$

- If X has pdf f_{X} then the cdf of $Y=g(X)$ is given by

$$
F_{Y}(y)=\int_{\{g(x)<y\}} f_{X}(x) d x, \quad-\infty<y<\infty
$$

- If X has pdf f_{X} which is continuous on \mathcal{X} and if g is monotone and g^{-1} has a continuous derivative then the pdf of $Y=g(X)$ is given by

$$
f_{Y}(y)=\left\{\begin{array}{cl}
f_{X}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right| & \text { for } y \in \mathcal{Y} \\
0 & \text { for } y \notin \mathcal{Y}
\end{array}\right.
$$

- If X has mgf $M_{X}(t)$, the mgf of $Y=a X+b$ is given by $M_{Y}(t)=e^{b t} M_{X}(a t)$.
- If X has continuous cdf F_{X}, the rv $U=F_{X}(X)$ has the uniform distribution on $(0,1)$.
- To generate $X \sim F_{X}$, generate $U \sim \operatorname{Uniform}(0,1)$ and set $X=F_{X}^{-1}(U)$, where

$$
F_{X}^{-1}(u)=\inf \left\{x: F_{X}(x) \geq u\right\}
$$

If F_{X} is strictly increasing, F_{X}^{-1} satisfies

$$
x=F_{X}^{-1}(u) \Longleftrightarrow u=F_{X}(x)
$$

for all $0<u<1$ and $-\infty<x<\infty$.
2. Transformations of multiple random variables

- Let $\left(X_{1}, X_{2}\right)$ be a pair of continuous random variables with pdf $f_{X_{1}, X_{2}}$ having joint support

$$
\mathcal{X}=\left\{\left(x_{1}, x_{2}\right): f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)>0\right\}
$$

and let $Y_{1}=g_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=g_{2}\left(X_{1}, X_{2}\right)$, where g_{1} and g_{2} form a one-to-one transformation of \mathcal{X} onto the set

$$
\mathcal{Y}=\left\{\left(y_{1}, y_{2}\right): y_{1}=g_{1}\left(x_{1}, x_{2}\right), y_{2}=g_{2}\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right) \in \mathcal{X}\right\} .
$$

Then the joint pdf $f_{Y_{1}, Y_{2}}$ of rv pair $\left(Y_{1}, Y_{2}\right)$ is given by

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\left\{\begin{array}{cl}
f_{X_{1}, X_{2}}\left(g_{1}^{-1}\left(y_{1}, y_{2}\right), g_{2}^{-1}\left(y_{1}, y_{2}\right)\right)\left|J\left(y_{1}, y_{2}\right)\right| & \text { for }\left(y_{1}, y_{2}\right) \in \mathcal{Y} \\
0 & \text { for }\left(y_{1}, y_{2}\right) \notin \mathcal{Y}
\end{array}\right.
$$

where g_{1}^{-1} and g_{2}^{-1} are the functions satisfying

$$
\begin{aligned}
& y_{1}=g_{1}\left(x_{1}, x_{2}\right) \\
& y_{2}=g_{2}\left(x_{1}, x_{2}\right)
\end{aligned} \Longleftrightarrow \begin{aligned}
& x_{1}=g_{1}^{-1}\left(y_{1}, y_{2}\right) \\
& x_{2}=g_{2}^{-1}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

and

$$
J\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
\frac{\partial}{\partial y_{1}} g_{1}^{-1}\left(y_{1}, y_{2}\right) & \frac{\partial}{\partial y_{2}} g_{1}^{-1}\left(y_{1}, y_{2}\right) \\
\frac{\partial}{\partial y_{1}} g_{2}^{-1}\left(y_{1}, y_{2}\right) & \frac{\partial}{\partial y_{2}} g_{2}^{-1}\left(y_{1}, y_{2}\right)
\end{array}\right|
$$

provided $J\left(y_{1}, y_{2}\right)$ is not equal to zero for all $\left(y_{1}, y_{2}\right) \in \mathcal{Y}$.

- For real numbers a, b, c, d,

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

- Let X_{1}, \ldots, X_{n} be mutually independent rvs such that X_{i} has $\operatorname{mgf} M_{X_{i}}(t)$ for $i=1, \ldots, n$. Then the mgf of $Y=X_{1}+\cdots+X_{n}$ is given by

$$
M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)
$$

It follows that if X_{1}, \ldots, X_{n} are independent identically distributed rvs, each with mgf $M_{X}(t)$, then the mgf of $Y=X_{1}+\cdots+X_{n}$ is given by

$$
M_{Y}(t)=\left[M_{X}(t)\right]^{n}
$$

3. Random samples, sums of rvs, and order statistics

- A random sample is a collection of mutually independent rvs all having the same distribution. This common distribution is called the population distribution and quantities describing the population distribution are called population parameters. A sample statistic is a function of the rvs in the random sample and its distribution is called its sampling distribution. What we can learn about population parameters from sample statistics has everything to do with their sampling distributions.
- Random samples might be introduced in any of the following ways,
- Let X_{1}, \ldots, X_{n} be a random sample from a population with such-and-such distribution.
- Let X_{1}, \ldots, X_{n} be independent copies of the random variable X, where X has such-andsuch distribution.
- Let X_{1}, \ldots, X_{n} be iid rvs from such-and-such distribution (iid means independent and identically distributed).
- Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ a distribution.
- Let X_{1}, \ldots, X_{n} be a random sample from a population with mean μ and variance $\sigma^{2}<\infty$ and define the sample mean and sample variance as

$$
\begin{aligned}
\bar{X}_{n} & =\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right) \\
S_{n}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} .
\end{aligned}
$$

Then we have $\mathbb{E} \bar{X}_{n}=\mu, \operatorname{Var} \bar{X}_{n}=\sigma^{2} / n$, and $\mathbb{E} S_{n}^{2}=\sigma^{2}$.

- The order statistics of a rs X_{1}, \ldots, X_{n} are the ordered data values

$$
X_{(1)}<X_{(2)}<\cdots<X_{(n)}
$$

- Let $X_{(1)}<\cdots<X_{(n)}$ be the order statistics of a random sample from a population with cdf F_{X} and pdf f_{X}. Then the pdf of the k th order statistic $X_{(k)}$ is given by

$$
f_{X_{(k)}}(x)=\frac{n!}{(k-1)!(n-k)!}\left[F_{X}(x)\right]^{k-1}\left[1-F_{X}(x)\right]^{n-k} f_{X}(x)
$$

for $k=1, \ldots, n$. In particular, the minimum $X_{(1)}$ and the maximum $X_{(n)}$ have the pdfs

$$
\begin{aligned}
& f_{X_{(1)}}(x)=n\left[1-F_{X}(x)\right]^{n-1} f_{X}(x) \\
& f_{X_{(n)}}(x)=n\left[F_{X}(x)\right]^{n-1} f_{X}(x)
\end{aligned}
$$

- Let $X_{(1)}<\cdots<X_{(n)}$ be the order statistics of a random sample from a population with cdf F_{X} and pdf f_{X}. Then the joint pdf of the j th and k th order statistics $\left(X_{(j)}, X_{(k)}\right)$, with $1 \leq j<k \leq n$, is given by
$f_{X_{(j)}, X_{(k)}}(u, v)=\frac{n!}{(j-1)!(k-1-j)!(n-k)!} f_{X}(u) f_{X}(v)\left[F_{X}(u)\right]^{j-1}\left[F_{X}(v)-F_{X}(u)\right]^{k-1-j}\left[1-F_{X}(v)\right]^{n-k}$
for $-\infty<u<v<\infty$.

In particular, the joint pdf of the minimum and maximum $\left(X_{(1)}, X_{(n)}\right)$ is

$$
f_{X_{(1)}, X_{(n)}}(u, v)=n(n-1) f_{X}(u) f_{X}(v)\left[F_{X}(v)-F_{X}(u)\right]^{n-2}
$$

for $-\infty<u<v<\infty$.
4. Pivot quantities and sampling from the Normal distribution

- A pivot quantity is a function of sample statistics and population parameters which has a known distribution (not depending on unknown parameters).
- A $(1-\alpha) 100 \%$ confidence interval (CI) for an unknown parameter $\theta \in \mathbb{R}$ is an interval (L, U) where L and U are random variables such that $P(L<\theta<U)=1-\alpha$, for $\alpha \in(0,1)$.
- Important distributions and upper quantile notation:
- The $\operatorname{Normal}(0,1)$ distribution has pdf

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} \mathbb{1}(-\infty<z<\infty)
$$

and for $\xi \in(0,1)$ we denote by z_{ξ} the value satisfying $P\left(Z>z_{\xi}\right)=\xi$, where $Z \sim$ $\operatorname{Normal}(0,1)$.

- The Chi-square distributions $\chi_{\nu}^{2}, \nu=1,2, \ldots$ have the pdfs

$$
f_{X}(x ; \nu)=\frac{1}{\Gamma(\nu / 2) 2^{\nu / 2}} x^{\nu / 2-1} e^{-x / 2} \mathbb{1}(x>0)
$$

and for $\xi \in(0,1)$ we denote by $\chi_{\nu, \xi}^{2}$ the value satisfying $P\left(X>\chi_{\nu, \xi}^{2}\right)=\xi$, where $X \sim \chi_{\nu}^{2}$. The parameter ν is called the degrees of freedom.

- The t distributions $t_{\nu}, \nu=1,2, \ldots$ have the pdfs

$$
f_{T}(t ; \nu)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\sqrt{\nu \pi}}\left(1+\frac{t^{2}}{\nu}\right)^{-(\nu+1) / 2} \mathbb{1}(-\infty<t<\infty),
$$

and for $\xi \in(0,1)$ we denote by $t_{\nu, \xi}$ the value satisfying $P\left(T>t_{\nu, \xi}\right)=\xi$, where $T \sim t_{\nu}$. The parameter ν is called the degrees of freedom.

- The F distributions $F_{\nu_{1}, \nu_{2}}, \nu_{1}, \nu_{2}=1,2, \ldots$ have the pdfs

$$
f_{R}\left(r ; \nu_{1}, \nu_{2}\right)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\nu_{1} / 2} r^{\left(\nu_{1}-2\right) / 2}\left(1+\frac{\nu_{1}}{\nu_{2}} r\right)^{-\left(\nu_{1}+\nu_{2}\right) / 2} \mathbb{1}(r>0),
$$

and for $\xi \in(0,1)$ we denote by $F_{\nu_{1}, \nu_{2}, \xi}$ the value satisfying $P\left(R>F_{\nu_{1}, \nu_{2}, \xi}\right)=\xi$, where $R \sim F_{\nu_{1}, \nu_{2}}$. The parameters ν_{1} and ν_{2} are called, respectively, the numerator degrees of freedom and the denominator degrees of freedom.

- Let $Z \sim \operatorname{Normal}(0,1)$ and $X \sim \chi_{\nu}^{2}$ be independent rvs. Then

$$
T=\frac{Z}{\sqrt{X / \nu}} \sim t_{\nu}
$$

- Let $X_{1} \sim \chi_{\nu_{1}}^{2}$ and $X_{2} \sim \chi_{\nu_{2}}^{2}$ be independent rvs. Then

$$
R=\frac{X_{1} / \nu_{1}}{X_{2} / \nu_{2}} \sim F_{\nu_{1}, \nu_{2}} .
$$

- Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution. Then
$-\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma \sim \operatorname{Normal}(0,1)$, giving $P\left(\bar{X}_{n}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}_{n}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)=1-\alpha$.
$-(n-1) S_{n}^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$, giving $P\left(\frac{(n-1) S_{n}^{2}}{\chi_{n-1, \alpha / 2}^{2}}<\sigma^{2}<\frac{(n-1) S_{n}^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}\right)=1-\alpha$.
$-\sqrt{n}\left(\bar{X}_{n}-\mu\right) / S_{n} \sim t_{n-1}$, giving $P\left(\bar{X}_{n}-t_{n-1, \alpha / 2} \frac{S_{n}}{\sqrt{n}}<\mu<\bar{X}_{n}+t_{n-1, \alpha / 2} \frac{S_{n}}{\sqrt{n}}\right)=1-\alpha$.
- Consider two independent random samples $X_{1}, \ldots, X_{n_{1}} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y_{1}, \ldots, Y_{n_{2}} \stackrel{\text { ind }}{\sim}$ $\operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ with sample means $\bar{X}_{n_{1}}$ and $\bar{Y}_{n_{2}}$ and sample variances S_{1}^{2} and S_{2}^{2}, respectively. Then

$$
\frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}} \sim F_{n_{1}-1, n_{2}-1}
$$

giving

$$
P\left(\frac{S_{2}^{2}}{S_{1}^{2}} F_{n_{1}-1, n_{2}-1,1-\alpha / 2}<\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}<\frac{S_{2}^{2}}{S_{1}^{2}} F_{n_{1}-1, n_{2}-1, \alpha / 2}\right)=1-\alpha .
$$

5. Parametric estimation and properties of estimators

- Parametric framework: Let X_{1}, \ldots, X_{n} have a joint distribution which depends on a finite number of parameters $\theta_{1}, \ldots, \theta_{d}$, the values of which are unknown and lie in the spaces $\Theta_{1}, \ldots, \Theta_{d}$, respectively, where $\Theta_{k} \subset \mathbb{R}$, for $k=1, \ldots, d$. To know the joint distribution of X_{1}, \ldots, X_{n}, it is sufficient to know the values of $\theta_{1}, \ldots, \theta_{d}$, so we define estimators $\hat{\theta}_{1}, \ldots, \hat{\theta}_{d}$ of $\theta_{1}, \ldots, \theta_{d}$ based on X_{1}, \ldots, X_{n}.
- Nonparametric framework: Let X_{1}, \ldots, X_{n} have a joint distribution which depends on an infinite number of parameters. For example, suppose X_{1}, \ldots, X_{n} is a random sample from a distribution with pdf f_{X}, where we do not specify any functional form for f_{X}. Then we may regard the value of the pdf $f_{X}(x)$ at every point $x \in \mathbb{R}$ as a parameter, and since there are an infinite number of values of $x \in \mathbb{R}$, there are infinitely many parameters.
- The bias of an estimator $\hat{\theta}$ of a parameter θ is defined as

$$
\operatorname{Bias} \hat{\theta}=\mathbb{E} \hat{\theta}-\theta
$$

And estimator is called unbiased if $\operatorname{Bias} \hat{\theta}=0$, that is if $\mathbb{E} \hat{\theta}=\theta$.

- The standard error of an estimator $\hat{\theta}$ of a parameter θ is defined as

$$
\mathrm{SE} \hat{\theta}=\sqrt{\operatorname{Var} \hat{\theta}}
$$

so the standard error of an estimator is simply its standard deviation.

- The mean squared error (MSE) of an estimator $\hat{\theta}$ of a parameter θ is defined as

$$
\operatorname{MSE} \hat{\theta}=\mathbb{E}(\hat{\theta}-\theta)^{2}
$$

so the MSE of $\hat{\theta}$ is the expected squared distance between $\hat{\theta}$ and θ.

- $\operatorname{MSE} \hat{\theta}=\operatorname{Var} \hat{\theta}+(\operatorname{Bias} \hat{\theta})^{2}$.
- If $\hat{\theta}$ is an unbiased estimator of θ, it is not generally true that $\tau(\hat{\theta})$ will be an unbiased estimator of $\tau(\theta)$.

6. Large-sample properties of estimators, consistency and WLLN

- A sequence of estimators $\left\{\hat{\theta}_{n}\right\}_{n \geq 1}$ of a parameter $\theta \in \Theta \subset \mathbb{R}$ is called consistent if for every $\epsilon>0$ and every $\theta \in \Theta$,

$$
\lim _{n \rightarrow \infty} P\left(\left|\hat{\theta}_{n}-\theta\right|<\epsilon\right)=1
$$

Note: When we write $\hat{\theta}_{n}$, with n in the subscript, it is understood that we are considering a sequence of estimators for all sample sizes $n \geq 1$.

- We often express that $\hat{\theta}$ is a consistent estimator of θ by writing

$$
\hat{\theta}_{n} \xrightarrow{\mathrm{p}} \theta,
$$

where $\xrightarrow{\mathrm{p}}$ denotes something called convergence in probability. Saying " $\hat{\theta}_{n}$ converges in probability to θ " is equivalent to saying " $\hat{\theta}$ is a consistent estimator of θ ".

- The weak law of large numbers (WLLN): Let X_{1}, \ldots, X_{n} be a rs from a distribution with mean μ and variance $\sigma^{2}<\infty$. Then $\bar{X}_{n}=n^{-1}\left(X_{1}+\cdots+X_{n}\right)$ is a consistent estimator of μ.
- The estimator $\hat{\theta}_{n}$ is a consistent estimator for θ if
(a) $\lim _{n \rightarrow \infty} \operatorname{Var} \hat{\theta}_{n}=0$
(b) $\lim _{n \rightarrow \infty} \operatorname{Bias} \hat{\theta}_{n}=0$

So we can show that $\hat{\theta}_{n}$ is a consistent estimator of θ by showing MSE $\hat{\theta}_{n} \rightarrow 0$ as $n \rightarrow \infty$.

- Let $\left\{\hat{\theta}_{1, n}\right\}_{n \geq 1}$ and $\left\{\hat{\theta}_{2, n}\right\}_{n \geq 1}$ be sequences of estimators for θ_{1} and θ_{2}, respectively. Then
(a) $\hat{\theta}_{1, n} \pm \hat{\theta}_{2, n}$ is consistent for $\theta_{1} \pm \theta_{2}$.
(b) $\hat{\theta}_{1, n} \cdot \hat{\theta}_{2, n}$ is consistent for $\theta_{1} \cdot \theta_{2}$.
(c) $\hat{\theta}_{1, n} / \hat{\theta}_{2, n}$ is consistent for θ_{1} / θ_{2}, so long as $\theta_{2} \neq 0$.
(d) For any continuous function $\tau: \mathbb{R} \rightarrow \mathbb{R}, \tau\left(\hat{\theta}_{1, n}\right)$ is consistent for $\tau\left(\theta_{1}\right)$.
(e) For any sequences $\left\{a_{n}\right\}_{n \geq 1}$ and $\left\{b_{n}\right\}_{n \geq 1}$ such that $\lim _{n \rightarrow \infty} a_{n}=1$ and $\lim _{n \rightarrow \infty} b_{n}=0$, $a_{n} \hat{\theta}_{1, n}+b_{n}$ is consistent for θ_{1}.
- If X_{1}, \ldots, X_{n} is a random sample from a distribution with mean μ and variance $\sigma^{2}<\infty$ and 4th moment $\mu_{4}<\infty$, the sample variance S_{n}^{2} is consistent for σ^{2}.
- If X_{1}, \ldots, X_{n} is a random sample from the $\operatorname{Bernoulli}(p)$ distribution and $\hat{p}=n^{-1}\left(X_{1}+\cdots+\right.$ $\left.X_{n}\right)$, then $\hat{p}(1-\hat{p})$ is a consistent estimator of $p(1-p)$.

7. Large-sample pivot quantities and central limit theorem

- A sequence of random variables Y_{1}, Y_{2}, \ldots with cdfs $F_{Y_{1}}, F_{Y_{2}}, \ldots$ is said to converge in distribution to the random variable $Y \sim F_{Y}$ if

$$
\lim _{n \rightarrow \infty} F_{Y_{n}}(y)=F_{Y}(y)
$$

for all $y \in \mathbb{R}$ at which F_{Y} is continuous. We express convergence in distribution with the notation $Y_{n} \xrightarrow{\mathrm{D}} Y$ and we refer to the distribution with cdf F_{Y} as the asymptotic distribution of the sequence of random variables Y_{1}, Y_{2}, \ldots

- Convergence in distribution is a sense in which a random variable (we can think of a quantity computed on larger and larger samples) behaves more and more like another random variable (as the sample size grows).
- A large-sample pivot quantity is a function of sample statistics and population parameters for which the asymptotic distribution is fully known (not depending on unknown parameters).
- The Central Limit Theorem (CLT): Let X_{1}, \ldots, X_{n} be a random sample from any distribution and suppose the distribution has mean μ and variance $\sigma^{2}<\infty$. Then

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \xrightarrow{\mathrm{D}} Z, \quad Z \sim \operatorname{Normal}(0,1) .
$$

Application to CIs: The above means that for any $\alpha \in(0,1)$,

$$
\lim _{n \rightarrow \infty} P\left(-z_{\alpha / 2}<\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<z_{\alpha / 2}\right)=1-\alpha
$$

giving that

$$
\bar{X}_{n} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

is an approximate $(1-\alpha) 100 \%$ CI for μ as long as n is large. A rule of thumb says $n \geq 30$ is "large".

- Slutzky's Theorem: If $X_{n} \xrightarrow{\mathrm{D}} X$ and $Y_{n} \xrightarrow{\mathrm{p}} a$, then

$$
\begin{aligned}
X_{n}+Y_{n} & \xrightarrow{\mathrm{D}} X+a . \\
X_{n} Y_{n} & \xrightarrow{\mathrm{D}} X a \\
X_{n} / Y_{n} & \xrightarrow{\mathrm{D}} X / a, \quad \text { provided } a \neq 0 .
\end{aligned}
$$

- Corollary of Slutzky's Theorem: Let X_{1}, \ldots, X_{n} be a rs from any distribution and suppose the distribution has mean μ and variance $\sigma^{2}<\infty$. Moreover, let $\hat{\sigma}_{n}$ be a consistent estimator of σ. Then

$$
\frac{\bar{X}_{n}-\mu}{\hat{\sigma}_{n} / \sqrt{n}} \xrightarrow{\mathrm{D}} Z, \quad Z \sim \operatorname{Normal}(0,1) .
$$

Application to CIs: The above means that for any $\alpha \in(0,1)$,

$$
\lim _{n \rightarrow \infty} P\left(-z_{\alpha / 2}<\frac{\bar{X}-\mu}{\hat{\sigma}_{n} / \sqrt{n}}<z_{\alpha / 2}\right)=1-\alpha
$$

giving that

$$
\bar{X}_{n} \pm z_{\alpha / 2} \frac{\hat{\sigma}_{n}}{\sqrt{n}}
$$

is an approximate $(1-\alpha) 100 \%$ CI for μ as long as n is large.

A rather arbitrary rule of thumb says $n \geq 30$ is "large".

- Let X_{1}, \ldots, X_{n} be a random sample from any distribution and suppose the distribution has mean μ and variance $\sigma^{2}<\infty$ and 4th moment $\mu_{4}<\infty$. Then

$$
\frac{\bar{X}_{n}-\mu}{S_{n} / \sqrt{n}} \xrightarrow{\mathrm{D}} Z, \quad Z \sim \operatorname{Normal}(0,1),
$$

so that for large n,

$$
\bar{X}_{n} \pm z_{\alpha / 2} \frac{S_{n}}{\sqrt{n}}
$$

is an approximate $(1-\alpha) 100 \%$ CI for μ.

- Let X_{1}, \ldots, X_{n} be a random sample from the $\operatorname{Bernoulli}(p)$ distribution and let $\hat{p}_{n}=\bar{X}_{n}$. Then

$$
\frac{\hat{p}_{n}-p}{\sqrt{\frac{\hat{p}_{n}\left(1-\hat{p}_{n}\right)}{n}}} \xrightarrow{\mathrm{D}} Z, \quad Z \sim \operatorname{Normal}(0,1),
$$

so that for large n (a rule of thumb is to require $\min \left\{n \hat{p}_{n}, n\left(1-\hat{p}_{n}\right)\right\} \geq 15$),

$$
\hat{p}_{n} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}_{n}\left(1-\hat{p}_{n}\right)}{n}}
$$

is an approximate $(1-\alpha) 100 \% \mathrm{CI}$ for p.

- Summary of $(1-\alpha) 100 \%$ CIs for μ : Let X_{1}, \ldots, X_{n} be independent rvs with the same distribution as the rv X, where $\mathbb{E} X=\mu$, Var $X=\sigma^{2}$.

8. Classical two-sample results comparing means, proportions, and variances

- Summary of $(1-\alpha) 100 \%$ CIs for $\mu_{1}-\mu_{2}$: Let $X_{1}, \ldots, X_{n_{1}}$ be independent rvs with the same distribution as the rv X, where $\mathbb{E} X=\mu_{1}$ and $\operatorname{Var} X=\sigma_{1}^{2}$ and let $Y_{1}, \ldots, Y_{n_{2}}$ be independent rvs with the same distribution as the rv Y, where $\mathbb{E} Y=\mu_{2}$ and $\operatorname{Var} \sigma_{2}^{2}$.
$\underline{\text { Case (i): } \sigma_{1}^{2} \neq \sigma_{2}^{2} \text { : }}$

In the above

$$
\hat{\nu}=\left(\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}\right)^{2}\left[\frac{\left(\frac{S_{1}}{n_{1}}\right)^{2}}{n_{1}-1}+\frac{\left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{n_{2}-1}\right]^{-1}
$$

$\underline{\text { Case (ii): } \sigma_{1}^{2}=\sigma_{2}^{2} \text { : }}$

- A $(1-\alpha) 100 \%$ CI for $p_{1}-p_{2}$: Let $X_{1}, \ldots, X_{n_{1}} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}\left(p_{1}\right)$ and $Y_{1}, \ldots, Y_{n_{2}} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}\left(p_{2}\right)$ and let $\hat{p}_{1}=n_{1}^{-1}\left(X_{1}+\cdots+X_{n_{1}}\right)$ and $\hat{p}_{2}=n_{2}^{-1}\left(Y_{1}+\cdots+Y_{n_{2}}\right)$. Then for large n_{1} and n_{2} (Rule of thumb is $\min \left\{n_{1} \hat{p}_{1}, n_{1}\left(1-\hat{p}_{1}\right)\right\} \geq 15$ and $\left.\min \left\{n_{2} \hat{p}_{2}, n_{2}\left(1-\hat{p}_{2}\right)\right\} \geq 15\right)$

$$
\hat{p}_{1}-\hat{p}_{2} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

is an approximate $(1-\alpha) 100 \% \mathrm{CI}$ for $p_{1}-p_{2}$.

- A $(1-\alpha) 100 \% \mathrm{CI}$ for $\sigma_{2}^{2} / \sigma_{1}^{2}$: Consider two independent random samples $X_{1}, \ldots, X_{n_{1}} \stackrel{\text { ind }}{\sim}$ $\operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y_{1}, \ldots, Y_{n_{2}} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ with sample variances S_{1}^{2} and S_{2}^{2}, respectively. Then

$$
\left(\frac{S_{2}^{2}}{S_{1}^{2}} F_{n_{1}-1, n_{2}-1,1-\alpha / 2}, \frac{S_{2}^{2}}{S_{1}^{2}} F_{n_{1}-1, n_{2}-1, \alpha / 2}\right)
$$

is a $(1-\alpha) 100 \% \mathrm{CI}$ for $\sigma_{2}^{2} / \sigma_{1}^{2}$.
9. Sample size calculations

- Let $\hat{\theta}$ be an estimator of a parameter θ and let $\hat{\theta} \pm \eta$ be a CI for θ. Then the quantity η is called the margin of error (ME) of the CI.
- Let X_{1}, \ldots, X_{n} be a random sample from a population with mean μ and variance σ^{2}. The smallest sample size n such that the ME of the CI

$$
\bar{X}_{n} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

is at most M^{*} is

$$
n=\left\lceil\left(\frac{z_{\alpha / 2}}{M^{*}}\right)^{2} \sigma^{2}\right\rceil,
$$

where $\lceil x\rceil$ is the smallest integer greater than or equal to x. Plug in an estimate $\hat{\sigma}^{2}$ of σ^{2} from a previous study to make the calculation.

- Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}(p)$ distribution. The smallest sample size n such that the ME of the CI

$$
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{p(1-p)}{n}}
$$

is at most M^{*} is

$$
n=\left\lceil\left(\frac{z_{\alpha / 2}}{M^{*}}\right)^{2} p(1-p)\right\rceil .
$$

Plug in an estimate \hat{p} of p from a previous study to make the calculation or use $p=1 / 2$ to err on the side of larger n.

- Let $X_{1}, \ldots, X_{n_{1}}$ be iid rvs with mean μ_{1} and variance σ_{1}^{2} and let $Y_{1}, \ldots, Y_{n_{2}}$ be iid rvs with mean μ_{2} and variance σ_{2}^{2}. To find the smallest $n=n_{1}+n_{2}$ such that the ME of the CI

$$
\bar{X}-\bar{Y} \pm z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

is at most M^{*}, compute

$$
n^{*}=\left(\frac{z_{\alpha / 2}}{M^{*}}\right)^{2}\left(\sigma_{1}+\sigma_{2}\right)^{2}
$$

and set

$$
n_{1}=\left\lceil\left(\frac{\sigma_{1}}{\sigma_{1}+\sigma_{2}}\right) n^{*}\right\rceil \quad \text { and } \quad n_{2}=\left\lceil\left(\frac{\sigma_{2}}{\sigma_{1}+\sigma_{2}}\right) n^{*}\right\rceil .
$$

Plug in estimates $\hat{\sigma}_{1}$ and $\hat{\sigma}_{2}$ for σ_{1} and σ_{2} from a previous study to make the calculation.

- Let $X_{1}, \ldots, X_{n_{1}} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}\left(p_{1}\right)$ and $Y_{1}, \ldots, Y_{n_{2}} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}\left(p_{2}\right)$ be independent random samples. To find the smallest $n=n_{1}+n_{2}$ such that the ME of the CI

$$
\hat{p}_{1}-\hat{p}_{2} \pm z_{\alpha / 2} \sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}
$$

is at most M^{*}, compute

$$
n^{*}=\left(\frac{z_{\alpha / 2}}{M^{*}}\right)^{2}\left(\sqrt{p_{1}\left(1-p_{1}\right)}+\sqrt{p_{2}\left(1-p_{2}\right)}\right)^{2} .
$$

Then set
$n_{1}=\left\lceil\left(\frac{\sqrt{p_{1}\left(1-p_{1}\right)}}{\sqrt{p_{1}\left(1-p_{1}\right)}+\sqrt{p_{2}\left(1-p_{2}\right)}}\right) n^{*}\right\rceil \quad$ and $\quad n_{2}=\left\lceil\left(\frac{\sqrt{p_{2}\left(1-p_{2}\right)}}{\sqrt{p_{1}\left(1-p_{1}\right)}+\sqrt{p_{2}\left(1-p_{2}\right)}}\right) n^{*}\right\rceil$.
Plug in estimates \hat{p}_{1} and \hat{p}_{2} for p_{1} and p_{2} from a previous study to make the calculation.
10. First principles of estimation, sufficiency and Rao-Blackwell theorem

- Let X_{1}, \ldots, X_{n} have a joint distribution depending on the parameter $\theta \in \Theta \subset \mathbb{R}^{d}$. A statistic $T\left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic for θ if it carries all the information about θ contained in X_{1}, \ldots, X_{n}.
- Precisely, $T\left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic for θ if the joint distribution of X_{1}, \ldots, X_{n} conditional on the value of $T\left(X_{1}, \ldots, X_{n}\right)$ does not depend on θ.
We can establish sufficiency using the following results:
- For discrete rvs $\left(X_{1}, \ldots, X_{n}\right) \sim p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n} ; \theta\right), T\left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic for θ if for all $\left(x_{1}, \ldots, x_{n}\right)$ in the support of $\left(X_{1}, \ldots, X_{n}\right)$, the ratio

$$
\frac{p_{\left(X_{1}, \ldots, X_{n}\right)}\left(x_{1}, \ldots, x_{n} ; \theta\right)}{p_{T}\left(T\left(x_{1}, \ldots, x_{n}\right) ; \theta\right)}
$$

is free of θ, where $p_{T}(t ; \theta)$ is the pmf of $T\left(X_{1}, \ldots, X_{n}\right)$.

- For continuous rvs $\left(X_{1}, \ldots, X_{n}\right) \sim f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n} ; \theta\right), T\left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic for θ if for all $\left(x_{1}, \ldots, x_{n}\right)$ in the support of $\left(X_{1}, \ldots, X_{n}\right)$, the ratio

$$
\frac{f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n} ; \theta\right)}{f_{T}\left(T\left(x_{1}, \ldots, x_{n}\right) ; \theta\right)}
$$

is free of θ, where $f_{T}(t ; \theta)$ is the pdf of $T\left(X_{1}, \ldots, X_{n}\right)$.

- The factorization theorem gives another way to see whether a statistic is sufficient for θ :
- For discrete $\operatorname{rvs}\left(X_{1}, \ldots, X_{n}\right) \sim p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n} ; \theta\right), T\left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic for θ if and only if there exist functions $g(T ; \theta)$ and $h\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n} ; \theta\right)=g\left(T\left(x_{1}, \ldots, x_{n}\right) ; \theta\right) h\left(x_{1}, \ldots, x_{n}\right)
$$

for all $\left(x_{1}, \ldots, x_{n}\right)$ in the support of $\left(X_{1}, \ldots, X_{n}\right)$ and all $\theta \in \Theta$.

- For continuous rvs $\left(X_{1}, \ldots, X_{n}\right) \sim f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n} ; \theta\right), T\left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic for θ if and only if there exist functions $g(T ; \theta)$ and $h\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n} ; \theta\right)=g\left(T\left(x_{1}, \ldots, x_{n}\right) ; \theta\right) h\left(x_{1}, \ldots, x_{n}\right)
$$

for all $\left(x_{1}, \ldots, x_{n}\right)$ in the support of $\left(X_{1}, \ldots, X_{n}\right)$ and all $\theta \in \Theta$.

- We also consider statistics with multiple components which take the form

$$
T\left(X_{1}, \ldots, X_{n}\right)=\left(T_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, T_{K}\left(X_{1}, \ldots, X_{n}\right)\right)
$$

for some $K \geq 1$. For example, $T\left(X_{1}, \ldots, X_{n}\right)=\left(X_{(1)}, \ldots, X_{(n)}\right)$ is the set of order statistics (which is always sufficient); here $K=n$.

- Minimum-variance unbiased estimator (MVUE): Let $\hat{\theta}$ be an unbiased estimator of $\theta \in \Theta \subset$ \mathbb{R}. If $\operatorname{Var} \hat{\theta} \leq \operatorname{Var} \tilde{\theta}$ for every unbiased estimator $\tilde{\theta}$ of θ, then $\hat{\theta}$ is a MVUE.
- Rao-Blackwell Theorem: Let $\tilde{\theta}$ be an estimator of $\theta \in \Theta \subset \mathbb{R}$ such that $\mathbb{E} \tilde{\theta}=\theta$ and let T be a sufficient statistic for θ. Define $\hat{\theta}=\mathbb{E}[\tilde{\theta} \mid T]$. Then $\hat{\theta}$ is an estimator of θ such that

$$
\mathbb{E} \hat{\theta}=\theta \quad \text { and } \quad \operatorname{Var} \hat{\theta} \leq \operatorname{Var} \tilde{\theta}
$$

Interpretation: An unbiased estimator of θ can always be improved by taking into account the value of a sufficient statistic for θ. We conclude that a MVUE must be a function of a sufficient statistic.

- The MVUE for a parameter θ is (essentially) unique (for all situations considered in this course); to find it, do the following:
(a) Find a sufficient statistic for θ.
(b) Find a function of the sufficient statistic which is unbiased for θ. This is the MVUE.

This also works for finding the MVUE of a function $\tau(\theta)$ of θ. In step (b), just find a function of the sufficient statistic which is unbiased for $\tau(\theta)$.
11. MoMs and MLEs

- Let X_{1}, \ldots, X_{n} be independent rvs with the same distribution as the rv X, where X has a distribution depending on the parameters $\theta_{1}, \ldots, \theta_{d}$. If the first d moments $\mathbb{E} X, \ldots, \mathbb{E} X^{d}$ of X are finite, then the method of moments (MoMs) estimators $\hat{\theta}_{1}, \ldots, \hat{\theta}_{d}$ are the values of $\theta_{1}, \ldots, \theta_{d}$ which solve the following system of equations:

$$
\begin{gathered}
m_{1}^{\prime}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\mathbb{E} X=: \mu_{1}^{\prime}\left(\theta_{1}, \ldots, \theta_{d}\right) \\
\vdots \\
m_{d}^{\prime}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{d}=\mathbb{E} X^{d}=: \mu_{d}^{\prime}\left(\theta_{1}, \ldots, \theta_{d}\right)
\end{gathered}
$$

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with pdf $f_{X}\left(x ; \theta_{1}, \ldots, \theta_{d}\right)$ or pmf $p_{X}\left(x ; \theta_{1}, \ldots, \theta_{d}\right)$ which depends on some parameters $\left(\theta_{1}, \ldots, \theta_{d}\right) \in \Theta \subset \mathbb{R}^{d}$. Then the likelihood function is defined as

$$
\mathcal{L}\left(\theta_{1}, \ldots, \theta_{d} ; X_{1}, \ldots, X_{n}\right)= \begin{cases}\prod_{i=1}^{n} f_{X}\left(X_{i} ; \theta_{1}, \ldots, \theta_{d}\right), & \text { if } X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} f_{X}\left(x ; \theta_{1}, \ldots, \theta_{d}\right) \\ \prod_{i=1}^{n} p_{X}\left(X_{i} ; \theta_{1}, \ldots, \theta_{d}\right), & \text { if } X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} p_{X}\left(x ; \theta_{1}, \ldots, \theta_{d}\right) .\end{cases}
$$

Moreover, the log-likelihood function is defined as

$$
\ell\left(\theta_{1}, \ldots, \theta_{d} ; X_{1}, \ldots, X_{n}\right)=\log \mathcal{L}\left(\theta_{1}, \ldots, \theta_{d} ; X_{1}, \ldots, X_{n}\right)
$$

- Let X_{1}, \ldots, X_{n} be rvs with likelihood function $\mathcal{L}\left(\theta_{1}, \ldots, \theta_{d} ; X_{1}, \ldots, X_{n}\right)$ for some parameters $\left(\theta_{1}, \ldots, \theta_{d}\right) \in \Theta \subset \mathbb{R}^{d}$. Then the maximum likelihood estimators (MLEs) of $\theta_{1}, \ldots, \theta_{d}$ are the values $\hat{\theta}_{1}, \ldots, \theta_{d}$ which maximize the likelihood function over all $\left(\theta_{1}, \ldots, \theta_{d}\right) \in \Theta$. That is

$$
\begin{aligned}
\left(\hat{\theta}_{1}, \ldots, \hat{\theta}_{d}\right) & =\underset{\left(\theta_{1}, \ldots, \theta_{d}\right) \in \Theta}{\operatorname{argmax}} \mathcal{L}\left(\theta_{1}, \ldots, \theta_{d} ; X_{1}, \ldots, X_{n}\right) \\
& =\underset{\left(\theta_{1}, \ldots, \theta_{d}\right) \in \Theta}{\operatorname{argmax}} \ell\left(\theta_{1}, \ldots, \theta_{d} ; X_{1}, \ldots, X_{n}\right)
\end{aligned}
$$

- If $\ell\left(\theta_{1}, \ldots, \theta_{d} ; X_{1}, \ldots, X_{n}\right)$ is differentiable and has a single maximum in the interior of Θ, then we can find the MLEs $\hat{\theta}_{1}, \ldots, \theta_{d}$ by solving the following system of equations:

$$
\begin{aligned}
& \frac{\partial}{\partial \theta_{1}} \ell\left(\theta_{1}, \ldots, \theta_{d} ; X_{1}, \ldots, X_{n}\right)=0 \\
& \vdots \\
& \frac{\partial}{\partial \theta_{d}} \ell\left(\theta_{1}, \ldots, \theta_{d} ; X_{1}, \ldots, X_{n}\right)=0 .
\end{aligned}
$$

- The MLE is always a function of a sufficient statistic.
- If $\hat{\theta}$ is the MLE for θ, then $\tau(\hat{\theta})$ is the MLE for $\tau(\theta)$, for any function τ.

pmf/pdf	\mathcal{X}	$M_{X}(t)$	$\mathbb{E} X$	Var X
$p_{X}(x ; p)=p^{x}(1-p)^{1-x}$,	$x=0,1$	$p e^{t}+(1-p)$	p	$p(1-p)$
$p_{X}(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}$,	$x=0,1, \ldots, n$	$\left[p e^{t}+(1-p)\right]^{n}$	$n p$	$n p(1-p)$
$p_{X}(x ; p)=(1-p)^{x-1} p$,	$x=1,2, \ldots$	$\frac{p e^{t}}{1-(1-p) e^{t}}$	p^{-1}	$(1-p) p^{-2}$
$p_{X}(x ; p, r)=\binom{x-1}{r-1}(1-p)^{x-r} p^{r}$,	$x=r, r+1, \ldots$	$\left[\frac{p e^{t}}{1-(1-p) e^{t}}\right]^{r}$	$r p^{-1}$	$r(1-p) p^{-2}$
$p_{X}(x ; \lambda)=e^{-\lambda} \lambda^{x} / x!$	$x=0,1, \ldots$	$e^{\lambda\left(e^{t}-1\right)}$	λ	λ
$p_{X}(x ; N, M, K)=\binom{M}{x}\binom{N-M}{K-x} /\binom{N}{K}$	$x=0,1, \ldots, K$	$i \operatorname{complicadísimo!}$	$\frac{K M}{N}$	$\frac{K M}{N} \frac{(N-K)(N-M)}{N(N-1)}$
$p_{X}(x ; K)=\frac{1}{K}$	$x=1, \ldots, K$	$\frac{1}{K} \sum_{x=1}^{K} e^{t x}$	$\frac{K+1}{2}$	$\frac{(K+1)(K-1)}{12}$
$p_{X}\left(x ; x_{1}, \ldots, x_{n}\right)=\frac{1}{n}$	$x=x_{1}, \ldots, x_{n}$	$\frac{1}{n} \sum_{i=1}^{n} e^{t x_{i}}$	$\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$	
$f_{X}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$	$-\infty<x<\infty$	$e^{\mu t+\sigma^{2} t^{2} / 2}$	μ	σ^{2}
$f_{X}(x ; \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} \exp \left(-\frac{x}{\beta}\right)$	$0<x<\infty$	$(1-\beta t)^{-\alpha}$	$\alpha \beta$	$\alpha \beta^{2}$
$f_{X}(x ; \lambda)=\frac{1}{\lambda} \exp \left(-\frac{x}{\lambda}\right)$	$0<x<\infty$	$(1-\lambda t)^{-1}$	λ	λ^{2}
$f_{X}(x ; \nu)=\frac{1}{\Gamma(\nu / 2) 2^{\nu / 2}} x^{\nu / 2-1} \exp \left(-\frac{x}{2}\right) 0<x<\infty$	$(1-2 t)^{-\nu / 2}$	ν	2ν	
$f_{X}(x ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}(0<x<1$	$1+\sum_{k=1}^{\infty} \frac{t^{k}}{k!}\left(\prod_{r=0}^{k} \frac{\alpha+r}{\alpha+\beta+r}\right)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	

Table 1: Commonly encountered pmfs and pdfs along with their mgfs, expected values, and variances.
$p_{\left(X_{1}, \ldots, X_{K}\right)}\left(x_{1}, \ldots, x_{K} ; p_{1}, \ldots, p_{K}\right)=p_{1}^{x_{1}} \cdots p_{K}^{x_{K}} \cdot \mathbb{1}\left\{\left(x_{1}, \ldots, x_{K}\right) \in\{0,1\}^{K}: \sum_{k=1}^{K} x_{k}=1\right\}$
$p_{\left(Y_{1}, \ldots, Y_{K}\right)}\left(y_{1}, \ldots, y_{K} ; n, p_{1}, \ldots, p_{K}\right)=\left(\frac{n!}{y_{1}!\cdots y_{K}!}\right) p_{1}^{y_{1}} \cdots p_{K}^{y_{K}} \cdot \mathbb{1}\left\{\left(y_{1}, \ldots, y_{K}\right) \in\{0,1, \ldots, n\}^{K}: \sum_{k=1}^{K} y_{k}=n\right\}$ $f_{(X, Y)}\left(x, y ; \mu_{X}, \mu_{Y}, \sigma_{X}^{2}, \sigma_{Y}^{2}, \rho\right)=\frac{1}{2 \pi} \frac{1}{\sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2} \frac{1}{1-\rho^{2}}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}-2 \rho\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}\right]\right)$

Table 2: The "multinoulli" and multinomial pmfs and the bivariate Normal pdf.

