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Inference, tests of hypotheses, power and size

Karl B. Gregory

Inference: tests of hypotheses

• Goal of statistics: learn from random outcomes about the process which generated them.

• Areas of learning:

– Estimate/describe features of the data generating process.

– Predict/forecast values of yet-to-be-observed outcomes.

– Infer/conclude/decide about hypotheses concerning the data generating process.

Inference is the most delicate.

• A statistical inference is a conclusion about a data generating process based on data generated
from it.

• More precisely, it is a decision concerning two complementary statements about the data gener-
ating process: the null hypothesis H0 and the alternate hypothesis H1.

• The null and alternate hypotheses make opposing claims. The null hypothesis is formulated such
that its rejection represents some finding of interest and failure to reject it represents no findings.

• Formally, a statistical inference is a decision to reject H0 or not to reject H0 based on the data.

• If we reject the null hypothesis, we conclude that the alternate hypothesis is true. If we fail to
reject the null hypothesis, we do NOT conclude that the null hypothesis is true; we say only that
we do not have sufficient evidence to reject it.

• The data generating process with which we will be concerned is the random sample: LetX1, . . . , Xn

be independent identically distributed random variables with a distribution that depends on the
parameter θ. We will undertake to make inferences about θ.

• In general, if the parameter of interest θ takes values in some space Θ, H0 and H1 take the form

H0: θ ∈ Θ0 versus H1: θ ∈ Θ1,

where Θ1 = Θ \Θ0 = Θ ∩Θc
0, so that Θ0 ∪Θ1 = Θ.
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• Sometimes we call Θ0 the null space and Θ1 the alternate space.

• Examples:

– If p ∈ (0, 1) is the probability of “heads” when tossing a coin, we might test

H0: p = 1/2 versus H1: p 6= 1/2

i.e. H0: p ∈ {1/2} versus H1: p ∈ (0, 1/2) ∪ (1/2, 1). If we reject H0, we conclude p 6= 1/2,
i.e. that the coin is unbalanced. If we fail to reject H0, we do not claim that the coin is
balanced; we only say that there is insufficient evidence of unbalancedness.

– If µ ∈ (0,∞) is the mean delivery time (in days) of packages, we might test

H0: µ ≤ 2 versus H1: µ > 2

i.e. H0: µ ∈ (0, 2] versus H1: µ ∈ (2,∞). If we reject H0, we conclude µ > 2, i.e. that
the mean delivery time is more than 2 days. If we fail to reject H0, we do not claim that
the mean delivery time is less than or equal to 2 days; we only say that there is insufficient
evidence of a longer mean delivery time.

– If δ ∈ (−∞,∞) is the effect of a drug on a clinical response, we might test

H0: δ = 0 versus H1: δ 6= 0

i.e. H0: δ ∈ {0} versus H1: δ ∈ (−∞, 0)∪ (0,∞). If we reject H0, we conclude δ 6= 0, i.e. that
the drug has an effect on the clinical response. If we fail to reject H0, we do not claim that
the drug has no effect; we only say that there is insufficient evidence of an effect.

• Definition: If a hypothesis specifies only a single value for a parameter, the hypothesis is called
a simple hypothesis. Otherwise it is called a composite hypothesis.

• Definition: A test of hypotheses or a hypothesis test is a rule for deciding whether or not to reject
H0 based on data. Given a random sample X1, . . . , Xn and null and alternate hypotheses H0 and
H1, tests of hypotheses take the form

Reject H0 iff T (X1, . . . , Xn) ∈ R,

where T (X1, . . . , Xn) is a function of the sample values called a test statistic and R is a set called
the rejection region.

• Exercises: For each of the following give (i) H0 and H1, (ii) the test statistic T , and (iii) the
rejection region R.

(a) Based on 10 coin tosses with the probability of “heads” equal to p, call the coin unbalanced if
more than six or fewer than four “heads” are observed.

(i) H0: p = 1/2 versus H1: p 6= 1/2

(ii) T = # “heads” in 10 tosses

(iii) R = {0, 1, 2, 3} ∪ {7, 8, 9, 10}
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(b) Conclude that the mean monthly rent µ paid by USC students is greater than 600 if mean
rent of 20 randomly sampled students exceeds 650.

(i) H0: µ ≤ 600 versus H1: µ > 600

(ii) T = average of rents of 20 sampled students

(iii) R = (650,∞)

(c) Infer that the standard deviation σ of heights of 2-yr-old trees on a tree farm is less than 3
feet if the standard deviation of the heights of 10 randomly sampled trees is less than 2 feet.

(i) H0: σ ≥ 3 versus H1: σ < 3

(ii) T = standard deviation of heights of 10 sampled trees

(iii) R = (0, 2)

• Since our decisions are based on random outcomes, inferences may err.

• Definition: A Type I error is rejecting H0 when H0 is true and a Type II error is failing to reject
H0 when H0 is false.

• Possible outcomes of statistical inference:

H0 true H0 false
reject H0 Type I error correct decision

fail to reject H0 correct decision Type II error

• We want tests for which the probabilities of Type I and Type II errors are small.

Quality of tests: power and size

• Definition: The power of a test is the probability that the test will lead to a rejection of H0. The
power is a function of the true value of the parameter θ. For the test

Reject H0 iff T (X1, . . . , Xn) ∈ R

we write the power as the function

γ(θ) = P (Reject H0 when true value of parameter is θ) = Pθ(T (X1, . . . , Xn) ∈ R)

of θ, where the notation Pθ denotes probability computed when the true value of the parameter
is equal to θ.

• The power function γ : Θ → [0, 1] gives for each value in the parameter space Θ the probability
that the test will reject H0 when the parameter is equal to that value.

• For any θ ∈ Θ, we

– reject H0 with probability γ(θ).

– fail to reject H0 with probability 1− γ(θ).
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• For θ ∈ Θ0,

γ(θ) is the probability of a Type I error.

1− γ(θ) is the probability of a correct decision (fail to reject H0).

• For θ ∈ Θ1, the probability of a

γ(θ) is the probability of a correct decision (reject H0).

1− γ(θ) is the probability of a Type II error.

• We want γ(θ) to be small for θ ∈ Θ0 and large for θ ∈ Θ1.

• Exercise: Based on 10 coin tosses, call the coin unbalanced if more than six or fewer than four
“heads” are observed.

(i) In the following, what decision do you make and is it a correct decision, a Type I error, or a
Type II error?

– The true probability of “heads” is 0.6 and you roll 7 heads.

– The true probability of “heads” is 0.6 and you roll 5 heads.

– The true probability of “heads” is 0.5 and you roll 7 heads.

– The true probability of “heads” is 0.5 and you roll 4 heads.

(ii) Find the power of the test when the true probability of getting “heads” is 0.6.

(iii) Plot the power γ(p) against p for p = 0.01, 0.02, . . . , 0.99.

(iv) Suppose the coin is balanced. What is the probability that this test will lead to a Type I error?

(v) What is the probability of a Type II error if the true probability of “heads” is 1/3?

Answers:

(i) We have

γ(0.6) = P0.6(more than 6 or fewer than 4 “heads”)

= P (Y ≤ 3) + P (Y ≥ 7), Y ∼ Binomial(10,0.6)

= P (Y ≤ 3) + 1− P (Y ≤ 6)

=
∑3

y=0

(
10
y

)
(0.6)y(1− 0.6)10−y + 1−

∑6
y=0

(
10
y

)
(0.6)y(1− 0.6)10−y

= pbinom(3,10,p.seq) + 1 - pbinom(6,10,p.seq)

= 0.437.

This means that if the true probability of getting “heads” were 0.6, this test would reject the
null hypothesis that the coin is balanced with probability 0.437.

(ii) Use the following R code:
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p.seq <- seq(.01,.99,length=99)

power <- pbinom(3,10,p.seq) + 1 - pbinom(6,10,p.seq)

plot(p.seq,power,type="l",ylim=c(0,1),xlab="p")

abline(v=0.5,lty=3) # vert line at null value

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

po
w

er

(iii) If the coin is balanced, p = 0.5, for which the power is

γ(0.5) = pbinom(3,10,.5) + 1 - pbinom(6,10,.5) = 0.34375,

so if the null hypothesis is true the test will lead to a Type I error with probability 0.34375.

(iv) A Type II error is failing to reject the null, so the probability is one minus the power:

1− γ(1/3) = 1 - (pbinom(3,10,1/3) + 1 - pbinom(6,10,1/3)) = 0.421074.

• Definition: The size of a test, denoted by α, is defined as

α = sup
θ∈Θ0

γ(θ),

which we read as “the supremum of the power γ(θ) over all θ ∈ Θ0”. More simply put, the size is
the maximum power over the null space. The size is thus the largest probability of a Type I error
over all θ ∈ Θ0.

• If the null space contains a single point, say Θ0 = {θ0}, then the size is α = supθ∈{θ0} γ(θ) = γ(θ0).
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• We would like tests to have small size as well as large power when H0 is false. We will find that
there is a size and power trade-off.

• Exercise (cont): Based on 10 coin tosses, call the coin unbalanced if more than six or fewer than
four “heads” are observed. What is the size of the test?

Answer:

Since H0 specifies a single value p ∈ {0.5}, the size of the test is

α = sup
p∈{0.5}

γ(p) = γ(0.5) = pbinom(3,10,.5) + 1 - pbinom(6,10,.5) = 0.34375.

• Exercises: For the following tests, (i) find an expression for the power function, (ii) calculate the
size, and (iii) make a plot of the power function.

(a) Let X1, . . . , X10 be a random sample from the Bernoulli(p) distribution, where p ∈ (0, 1) is
unknown, and suppose you wish to test H0: p ≤ 1/4 versus H1: p > 1/4 using the test

Reject H0 iff X1 + · · ·+X10 > 5.

(b) Let X1, . . . , Xn be a random sample from the Normal(µ, 1) distribution, where µ ∈ (−∞,∞)
is unknown, and suppose you wish to test H0: µ = 0 versus H1: µ 6= 0 using the test

Reject H0 iff |
√
nX̄n| > 2.

(c) Let X1, . . . , X25 be a random sample from the Exponential(λ) distribution, where λ ∈ (0,∞)
is unknown, and suppose you wish to test H0: λ ≥ 2 versus H1: λ < 2 using the test

Reject H0 iff X̄25 < 1.5.

Answers:

(a) (i) The power function is

γ(p) = Pp(X1 + · · ·+X10 > 5)

= P (Y > 5), Y ∼ Binomial(10, p)

=
∑10

y=6

(
10
y

)
py(1− p)10−y.
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(ii) The size is

α = supp∈(0,1/4] γ(p)

= supp∈(0,1/4]

∑10
y=6

(
10
y

)
py(1− p)10−y

=
∑10

y=6

(
10
y

)
(1/4)y(1− 1/4)10−y

= 1 - pbinom(5,10,0.25)

= 0.01972771.

(iii) Use the following code:

p.seq <- seq(.01,.99,length=99)

power <- 1 - pbinom(5,10,p.seq)

plot(p.seq,power,type="l",ylim=c(0,1),xlab="p")

abline(v=0.25,lty=3) # vert line at null boundary

abline(h=0.01972771,lty=3) # horiz line at size

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

po
w

er

(b) (i) The power function is

γ(µ) = Pµ(|
√
nX̄n| > 2)

= 1− Pµ(−2 <
√
nX̄n < 2)

= 1− Pµ(−2−
√
nµ <

√
n(X̄n − µ) < 2−

√
nµ)

= 1− P (−2−
√
nµ < Z < 2−

√
nµ), Z ∼ Normal(0, 1)

= 1− [Φ(2−
√
nµ)− Φ(−2−

√
nµ)]
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since
√
n(X̄n − µ) = (X̄n − µ)/(1/

√
n) ∼ Normal(0, 1).

(ii) The size is

α = supµ∈{0} γ(µ)

= γ(0)

= 1− [Φ(2)− Φ(−2)]

= 1 - (pnorm(2) - pnorm(-2))

= 0.04550026.

(iii) In order to plot the power function, we must choose a sample size n. The following code
plots the power function for n = 5 and n = 10:

mu.seq <- seq(-2.5,2.5,length=100)

power.n5 <- 1-(pnorm(2-sqrt(5)*mu.seq)-pnorm(-2-sqrt(5)*mu.seq))

power.n10 <- 1-(pnorm(2-sqrt(10)*mu.seq)-pnorm(-2-sqrt(10)*mu.seq))

plot(mu.seq,power.n5,type="l",ylim=c(0,1),xlab="mu",ylab="power")

lines(mu.seq,power.n10,ylim=c(0,1),xlab="p",lty=4)

abline(v=0,lty=3) # vert line at null value

abline(h=0.04550026,lty=3) # horiz line at size
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Note that increasing the sample size increased the power for all µ 6= 0; the size was
unaffected, but the Type II error probability was reduced.
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(c) (i) The power function is

γ(λ) = Pλ(X̄25 < 1.5)

= P (Y < 1.5), Y ∼ Gamma(25, λ/25), (show by mgfs)

(ii) The size is

α = supλ∈[2,∞) γ(λ)

= γ(2)

= P (Y < 1.5), Y ∼ Gamma(25, 2/25)

= pgamma(1.5,shape=25,scale=2/25)

= 0.0960497.

(iii) Use the following code:

lambda.seq <- seq(.01,3,length=100)

power <- pgamma(1.5,shape=25,scale=lambda.seq/25)

plot(lambda.seq,power,type="l",ylim=c(0,1),xlab="lambda")

abline(v=2,lty=3) # vert line at null boundary

abline(h=0.0960497,lty=3) # horiz line at size
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Calibrating the rejection region for desired size

• We often choose the rejection region in order to control the size of the test, that is, to control the
Type I error rate (the probability of a Type I error).

• We cannot directly control the Type II error rate, because it depends on the true parameter value,
which is unknown to us.

• The smaller the size of a test, the stronger the evidence against H0 must be in order for the test
to reject H0.

• Exercises (cont): For each of the following tests, (iv) modify the rejection region so that the size
is less than or equal to 0.01 and (v) plot the power function of the new test along with the power
function of the original test.

(a) Let X1, . . . , X10 be a random sample from the Bernoulli(p) distribution, where p ∈ (0, 1) is
unknown, and suppose you wish to test H0: p ≤ 1/4 versus H1: p > 1/4 using the test

Reject H0 iff X1 + · · ·+X10 ∈ {6, 7, 8, 9, 10}.

(b) Let X1, . . . , Xn be a random sample from the Normal(µ, 1) distribution, where µ ∈ (−∞,∞)
is unknown, and suppose you wish to test H0: µ = 0 versus H1: µ 6= 0 using the test

Reject H0 iff |
√
nX̄n| > 2.

(c) Let X1, . . . , X25 be a random sample from the Exponential(λ) distribution, where λ ∈ (0,∞)
is unknown, and suppose you wish to test H0: λ ≥ 2 versus H1: λ < 2 using the test

Reject H0 iff X̄25 < 1.5.

Answers:

(a) (iv) The size of this test, as shown before, is 0.01972771 > 0.01. To make the size smaller,
the test needs to require stronger evidence against H0 in order to reject it. Consider the
test

Reject H0 iff X1 + · · ·+X10 ∈ {7, 8, 9, 10}.

The power function of this test is

γ(p) = Pp(X1 + · · ·+X10 ∈ {7, 8, 9, 10}) =
∑10

y=7

(
10
y

)
py(1− p)10−y,

10



and the size is

α = supp∈(0,1/4] γ(p)

= supp∈(0,1/4]

∑10
y=7

(
10
y

)
py(1− p)10−y

=
∑10

y=7

(
10
y

)
(1/4)y(1− 1/4)10−y

= 1 - pbinom(6,10,0.25)

= 0.003505707

< 0.01.

(v) The following R code makes a plot of the power curves of the two tests:

p.seq <- seq(.01,.99,length=99)

power.gt5 <- 1 - pbinom(5, 10, p.seq)

power.gt6 <- 1 - pbinom(6, 10, p.seq)

plot(p.seq,power.gt5,type="l",ylim=c(0,1),xlab="p",ylab="power")

lines(p.seq,power.gt6,lty=4)

abline(v=0.25,lty=3) # vert line at null boundary

abline(h=0.01,lty=3) # horiz line at max. allowed size
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Note that the test with greater size also has greater power across all values of p; it is
more prone to make Type I errors, but more likely to reject H0 when it is false, i.e. less
prone to make Type II errors. This illustrates the size-power trade-off.

(b) (iv) The size of this test, as shown before, is 0.04550026 > 0.01. To make the size smaller,
the test needs to require stronger evidence against H0 in order to reject it. Suppose we
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try
Reject H0 iff |

√
nX̄n| > 3.

This test, following previous work, has power function

γ(µ) = Pµ(|
√
nX̄n| > 3)

= 1− [Φ(3−
√
nµ)− Φ(−3−

√
nµ)],

and the size is

α = supµ∈{0} γ(µ)

= γ(0)

= 1− [Φ(3)− Φ(−3)]

= 1 - (pnorm(3) - pnorm(-3))

= 0.002699796

< 0.01.

So this test has size less than 0.01; however, the smaller the size, the smaller the power
of the test under the alternative hypothesis, so we should not make the size smaller than
it has to be. We can make the size exactly 0.01 by considering a test of the form

Reject H0 iff |
√
nX̄n| > C,

and choosing C such that the size of the test is exactly 0.01. The power of the above
test, following previous work, is

γ(µ) = Pµ(|
√
nX̄n| > C) = 1− [Φ(C −

√
nµ)− Φ(−C −

√
nµ)],

and the size is

α = supµ∈{0} γ(µ) = γ(0) = 1− [Φ(C)− Φ(−C)] = P (Z > C) + P (Z < −C),

where Z ∼ Normal(0, 1). This equation gives C = zα/2 since P (Z > zα/2) = P (Z <
−zα/2) = α/2. To achieve the size α = 0.01, we therefore take C = z.005 = qnorm(.995) =
2.575829.

(v) The following R code plots the power curves of the test

Reject H0 iff |
√
nX̄n| > C,

for C = 2, C = 2.575829, and C = 3 under the sample size n = 10.
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mu.seq <- seq(-2.5,2.5,length=100)

power2 <- 1-(pnorm(2-sqrt(10)*mu.seq)-pnorm(-2-sqrt(10)*mu.seq))

power2.575829 <- 1-(pnorm(2.575829-sqrt(10)*mu.seq)

-pnorm(-2.575829-sqrt(10)*mu.seq))

power3 <- 1-(pnorm(3-sqrt(10)*mu.seq)-pnorm(-3-sqrt(10)*mu.seq))

plot(mu.seq, power2,type="l",ylim=c(0,1),xlab="mu",ylab="power")

lines(mu.seq, power2.575829,ylim=c(0,1),xlab="p",lty=2)

lines(mu.seq, power3,ylim=c(0,1),xlab="p",lty=4)

abline(v=0,lty=3) # vert line at null value

abline(h=0.01,lty=3) # horiz line at max. allowed size
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The test with C = 2.575829, which has size equal to 0.01 has greater power when µ 6= 0
than the test with C = 3, which has slightly smaller size. If we are willing to accept a
Type I error rate of 0.04550026, then we can use the test with C = 2, which has the
greatest power.

(c) (iv) The size of this test, as shown before, is 0.0960497 > 0.01. To make the size smaller,
the test needs to require stronger evidence against H0 in order to reject it. We can make
the size exactly 0.01 by considering a test of the form

Reject H0 iff X̄25 < C

and choosing C such that the size of the test is exactly 0.01. The power of the above
test, following previous work, is

γ(λ) = Pλ(X̄25 < C) = P (Y < C), Y ∼ Gamma(25, λ/25) (show by mgfs) ,
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and the size is

α = sup
λ∈[2,∞)

γ(λ) = γ(2) = P (Y < C), Y ∼ Gamma(25, 2/25).

This equation says that if we choose C to be the α quantile of the Gamma(25, 2/25)
distribution, the test will have size α. For α = 0.01, we have

C = qgamma(0.01,shape=25,scale=2/25) = 1.188267.

(v) The following R code plots the power curves of the test

Reject H0 iff X̄25 < C,

for C = 1.5 and C = 1.188267.

lambda.seq <- seq(.01,3,length=100)

power1.5 <- pgamma(1.5,shape=25,scale=lambda.seq/25)

power1.188267 <- pgamma(1.188267,shape=25,scale=lambda.seq/25)

plot(lambda.seq,power1.5,type="l",ylim=c(0,1),xlab="lambda",ylab="power")

lines(lambda.seq,power1.188267,lty=4)

abline(v=2,lty=3) # vert line at null boundary

abline(h=0.01,lty=3) # horiz line at max. allowed size
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The test with smaller size has smaller power. This illustrates the size-power trade-off.
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