STAT 513 fa 2020 Lec 04

Comparing two Normal populations

Karl B. Gregory

Comparing two Normal populations

- We now consider two random samples of sizes n_{1} and n_{2} drawn from two Normal populations: Let

$$
\begin{aligned}
& X_{11}, \ldots, X_{1 n_{1}} \text { be a random sample from the } \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right) \text { distribution } \\
& X_{21}, \ldots, X_{2 n_{2}} \text { be a random sample from the } \operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right) \text { distribution, }
\end{aligned}
$$

where $\mu_{1}, \mu_{2}, \sigma_{1}^{2}$, and σ_{2}^{2} are unknown, and let \bar{X}_{1} and S_{1}^{2} denote the mean and variance of the first sample and \bar{X}_{2} and S_{2}^{2} denote the mean and variance of the second sample.

- We are interested in
- comparing μ_{1} and μ_{2} by testing hypotheses concerning the difference $\mu_{1}-\mu_{2}$ and
- comparing σ_{1}^{2} and σ_{2}^{2} by testing hypotheses concerning the ratio $\sigma_{1}^{2} / \sigma_{2}^{2}$
based on the random samples $X_{11}, \ldots, X_{1 n_{1}}$ and $X_{21}, \ldots, X_{2 n_{2}}$.

Comparing means

- It is simpler to test hypotheses about $\mu_{1}-\mu_{2}$ if $\sigma_{1}^{2}=\sigma_{2}^{2}$ than if $\sigma_{1}^{2} \neq \sigma_{2}^{2}$, so we begin with the equal-variances case.
- If it is assumed that $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$, we may pool the data from both samples to estimate the common variance σ^{2}. The pooled estimator of σ^{2} is

$$
S_{\text {pooled }}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}
$$

- We will denote by δ the true value of the difference $\mu_{1}-\mu_{2}$.
- For some value δ_{0}, which we will call the null value of δ, we consider for some C_{1} and C_{2} the following tests of hypotheses:

1. Right-tailed test: Test $H_{0}: \mu_{1}-\mu_{2} \leq \delta_{0}$ versus $H_{1}: \mu_{1}-\mu_{2}>\delta_{0}$ with the test

$$
\text { Reject } H_{0} \text { iff } \frac{\bar{X}_{1}-\bar{X}_{2}-\delta_{0}}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}>C_{1} .
$$

2. Left-tailed test: Test $H_{0}: \mu_{1}-\mu_{2} \geq \delta_{0}$ versus $H_{1}: \mu_{1}-\mu_{2}<\delta_{0}$ with the test

$$
\text { Reject } H_{0} \text { iff } \frac{\bar{X}_{1}-\bar{X}_{2}-\delta_{0}}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}<-C_{1} \text {. }
$$

3. Two-sided test: Test $H_{0}: \mu_{1}-\mu_{2}=\delta_{0}$ versus $H_{1}: \mu_{1}-\mu_{2} \neq \delta_{0}$ with the test

$$
\text { Reject } H_{0} \text { iff }\left|\frac{\bar{X}_{1}-\bar{X}_{2}-\delta_{0}}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\right|>C_{2} \text {. }
$$

- The null value δ_{0} is very often chosen to be zero, so that differences in means of any magnitude are of interest. But one may wish to test whether μ_{1} is greater than μ_{2} by some amount δ_{0}.
- These are sometimes called equal-variance two-sample t-tests, which comes from the fact that if

$$
X_{11}, \ldots, X_{1 n_{1}} \text { is a random sample from the } \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right) \text { distribution }
$$

and $X_{21}, \ldots, X_{2 n_{2}}$ is a random sample from the $\operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ distribution
and if $\sigma_{1}^{2}=\sigma_{2}^{2}$, then

$$
\frac{\bar{X}_{1}-\bar{X}_{2}-\left(\mu_{1}-\mu_{2}\right)}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t_{n_{1}+n_{2}-2}
$$

- Exercise: Suppose researchers wish to test, for two populations of interest which are assumed to be Normal and to have the same variance, whether the mean μ_{1} of the first population exceeds the mean μ_{2} of the second population. They decide to collect a sample of size $n_{1}=20$ from the first population and a sample of size $n_{2}=25$ from the second population and to use the first test with $\delta_{0}=0$ and $C_{1}=2$.
(i) Suppose the means of the two populations are the same. With what probability will the researchers commit a Type I error?
(ii) What would be the effect on this probability of using a smaller value of C_{1} ?
(iii) Suppose the researchers are interested in testing whether the means of the two populations are different, irrespective of which one is greater. Give a test which has size equal to 0.01.

Answers:

(i) The probability of rejecting H_{0} if $\mu_{1}=\mu_{2}$ is

$$
\begin{aligned}
P_{\mu_{1}-\mu_{2}=0}\left(\frac{\bar{X}_{1}-\bar{X}_{2}-0}{S_{\text {pooled }} \sqrt{\frac{1}{20}+\frac{1}{25}}}>2\right) & =P(T>2), \quad T \sim t_{43} \\
& =1-F_{t_{43}}(2) \\
& =1-\mathrm{pt}(2,43) \\
& =0.02592102 .
\end{aligned}
$$

(ii) If we use a smaller value of C_{1}, the test will reject H_{0} based on weaker evidence, so the probability of a Type I error will increase.
(iii) To test $H_{0}: \mu_{1}-\mu_{2}=0$ versus $H_{1}: \mu_{1}-\mu_{2} \neq 0$, we will use the two-sided test. To make the test have size 0.01 , we find a value of C_{2} which satisfies

$$
0.01=P_{\mu_{1}-\mu_{2}=0}\left(\left|\frac{\bar{X}_{1}-\bar{X}_{2}-0}{S_{\text {pooled }} \sqrt{\frac{1}{20}+\frac{1}{25}}}\right|>C_{2}\right)=P\left(|T|>C_{2}\right), \quad T \sim t_{43} .
$$

We see that the test will have size 0.01 if we choose $C_{2}=t_{43,0.005}=\mathrm{qt}(.995,43)=2.695102$.

- If we wish to compute the power of the two-sample t-test for any value of $\mu_{1}-\mu_{2}=\delta$, we need to make use of the non-central t-distribution.
- We will base power calculations for the equal-variances two-sample t-test on the following result:

Result: Let
$X_{11}, \ldots, X_{1 n_{1}}$ be a random sample from the $\operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$ distribution and $X_{21}, \ldots, X_{2 n_{2}}$ be a random sample from the $\operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ distribution, and suppose $\sigma_{1}^{2}=\sigma_{2}^{2}$. If $\mu_{1}-\mu_{2}=\delta$, then

$$
\frac{\bar{X}_{1}-\bar{X}_{2}-\delta_{0}}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t_{\phi, n_{1}+n_{2}-2}, \quad \text { where } \phi=\frac{\delta-\delta_{0}}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} .
$$

Derivation: We can see this by writing

$$
\frac{\bar{X}_{1}-\bar{X}_{2}-\delta_{0}}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\left(\frac{\bar{X}_{1}-\bar{X}_{2}-\delta}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}+\frac{\delta-\delta_{0}}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\right)\left[\frac{\left(n_{1}+n_{2}-2\right) S_{\text {pooled }}^{2}}{\sigma^{2}} /\left(n_{1}+n_{2}-2\right)\right]^{-1 / 2}
$$

which has the form

$$
\frac{Z+\phi}{\sqrt{W / \nu}}
$$

where Z and W are independent random variables such that $Z \sim \operatorname{Normal}(0,1)$ and $W \sim \chi_{\nu}^{2}$, and ϕ is a constant; this is the anatomy of a $t_{\phi, \nu}$-distributed random variable.

- Exercise: Get expressions for the power functions in terms of $\delta=\mu_{1}-\mu_{2}$ and the sizes of the right-tailed, left-tailed, and two-sided equal-variance two-sample t-tests. Moreover, for any $\alpha \in(0,1)$, give the values C_{1} and C_{2} such that the tests have size α.

Answer:

1. The power function for the right-tailed equal-variances two-sample t-test is

$$
\begin{aligned}
\gamma(\delta) & =P_{\mu_{1}-\mu_{2}=\delta}\left(\frac{\bar{X}_{1}-\bar{X}_{2}-\delta_{0}}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}>C_{1}\right) \\
& =P\left(T>C_{1}\right), \quad T \sim t_{\phi, n_{1}+n_{2}-2}, \quad \phi=\frac{\delta-\delta_{0}}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \\
& =1-F_{t_{\phi, n_{1}+n_{2}-2}}\left(C_{1}\right) .
\end{aligned}
$$

The size of the test is given by the power at $\delta=\delta_{0}$, for which $\phi=0$. So the size is

$$
\begin{aligned}
\gamma\left(\delta_{0}\right) & =P_{\mu_{1}-\mu_{2}=\delta_{0}}\left(\frac{\bar{X}_{1}-\bar{X}_{2}-\delta_{0}}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}>C_{1}\right) \\
& =P\left(T>C_{1}\right), \quad T \sim t_{n_{1}+n_{2}-2} \\
& =1-F_{t_{n_{1}+n_{2}-2}}\left(C_{1}\right) .
\end{aligned}
$$

The test will have size α if $C_{1}=t_{n_{1}+n_{2}-2, \alpha}$.
2. The power function for the left-tailed equal-variances two-sample t-test is

$$
\begin{aligned}
\gamma(\delta) & =P_{\mu_{1}-\mu_{2}=\delta}\left(\frac{\bar{X}_{1}-\bar{X}_{2}-\delta_{0}}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}<-C_{1}\right) \\
& =P\left(T<-C_{1}\right), \quad T \sim t_{\phi, n_{1}+n_{2}-2}, \quad \phi=\frac{\delta-\delta_{0}}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \\
& =F_{t_{\phi, n_{1}+n_{2}-2}}\left(-C_{1}\right) .
\end{aligned}
$$

The size of the test is given by the power at $\delta=\delta_{0}$, for which $\phi=0$. So the size is

$$
\begin{aligned}
\gamma\left(\delta_{0}\right) & =P_{\mu_{1}-\mu_{2}=\delta_{0}}\left(\frac{\bar{X}_{1}-\bar{X}_{2}-\delta_{0}}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}<-C_{1}\right) \\
& =P\left(T<-C_{1}\right), \quad T \sim t_{n_{1}+n_{2}-2} \\
& =F_{t_{n_{1}+n_{2}-2}}\left(-C_{1}\right) .
\end{aligned}
$$

The test will have size α if $C_{1}=t_{n_{1}+n_{2}-2, \alpha}$.
3. The power function for the two-sided equal-variances two-sample t-test is

$$
\begin{aligned}
\gamma(\delta) & =P_{\mu_{1}-\mu_{2}=\delta}\left(\left|\frac{\bar{X}_{1}-\bar{X}_{2}-\delta_{0}}{S_{\mathrm{pooled}} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\right|>C_{2}\right) \\
& =1-P\left(-C_{2}<T<C_{2}\right), \quad T \sim t_{\phi, n_{1}+n_{2}-2}, \quad \phi=\frac{\delta-\delta_{0}}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \\
& =1-\left[F_{t_{\phi, n_{1}+n_{2}-2}}\left(C_{2}\right)-F_{t_{\phi, n_{1}+n_{2}-2}}\left(-C_{2}\right)\right] .
\end{aligned}
$$

The size of the test is given by the power at $\delta=\delta_{0}$, for which $\phi=0$. So the size is

$$
\begin{aligned}
\gamma\left(\delta_{0}\right) & =P_{\mu_{1}-\mu_{2}=\delta_{0}}\left(\left|\frac{\bar{X}_{1}-\bar{X}_{2}-\delta_{0}}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\right|>C_{2}\right) \\
& =1-P\left(-C_{2}<T<C_{2}\right), \quad T \sim t_{n_{1}+n_{2}-2} \\
& =1-\left[F_{t_{n_{1}+n_{2}-2}}\left(C_{2}\right)-F_{t_{n_{1}+n_{2}-2}}\left(-C_{2}\right)\right] .
\end{aligned}
$$

The test will have size α if $C_{2}=t_{n_{1}+n_{2}-2, \alpha / 2}$.

- Exercise: Let

$X_{11}, \ldots, X_{1 n_{1}}$ be a random sample from the $\operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$ distribution and $X_{21}, \ldots, X_{2 n_{2}}$ be a random sample from the $\operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ distribution with $\sigma_{1}^{2}=\sigma_{2}^{2}$, and suppose there are three researchers:

- Simone to test $H_{0}: \mu_{1}-\mu_{2} \leq 0$ vs $H_{1}: \mu_{1}-\mu_{2}>0$ with Rej. H_{0} iff $\frac{\bar{X}_{1}-\bar{X}_{2}}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}>t_{n_{1}+n_{2}-2,0.10}$
- Helmut to test $H_{0}: \mu_{1}-\mu_{2} \geq 0$ vs $H_{1}: \mu_{1}-\mu_{2}<0$ with Rej. H_{0} iff $\frac{\bar{X}_{1}-\bar{X}_{2}}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}<-t_{n_{1}+n_{2}-2,0.10}$
- Mechthild to test $H_{0}: \mu_{1}-\mu_{2}=0$ vs $H_{1}: \mu_{1}-\mu_{2} \neq 0$ with Rej. H_{0} iff $\left|\frac{\bar{X}_{1}-\bar{X}_{2}}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\right|>t_{n_{1}+n_{2}-2,0.05}$
(i) What is the size of each test?
(ii) Suppose $\mu_{1}=1$ and $\mu_{2}=2$. Which researcher is most likely to reject H_{0} ?
(iii) Suppose $\mu_{1}=1$ and $\mu_{2}=2$. Which researcher is least likely to reject H_{0} ?
(iv) Suppose $\mu_{1}=1$ and $\mu_{2}=2$. Which researcher may commit a Type I error?
(v) Suppose $\mu_{1}=2$ and $\mu_{2}=1$. Which researcher may commit a Type I error?
(vi) Suppose $\mu_{1}=1$ and $\mu_{2}=2$. Which researchers may commit a Type II error?
(vii) Suppose $\mu_{1}=2$ and $\mu_{2}=1$. Which researchers may commit a Type II error?
(viii) Based on the sample sizes $n_{1}=10$ and $n_{2}=15$, compute the power of each researcher's test when $\mu_{1}=2$ and $\mu_{2}=1$ and $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}=4$.
(ix) Plot the power curves of the three researchers' tests together, where power is a function of $\delta=\mu_{1}-\mu_{2}$.
(x) Suppose that with sample sizes $n_{1}=10$ and $n_{2}=15, \bar{X}_{1}=0.97, \bar{X}_{2}=1.26, S_{1}=0.24$, and $S_{2}=0.19$. Compute the p-value of each researcher's test.

Answers:

(viii) If $\mu_{1}=2$ and $\mu_{2}=1$ then $\delta=\mu_{1}-\mu_{2}=1$. In the following, let $T \sim t_{\phi, 23}$ (note that $10+15-2=23)$, where $\phi=(1-0) /(2 \sqrt{1 / 10+1 / 15})$.

- The test of Simone has power

$$
\begin{aligned}
1-P\left(T>t_{23,0.10}\right) & =1-F_{t_{\phi, 23}}\left(t_{23,0.10}\right) \\
& =1-\operatorname{pt}(\operatorname{qt}(.9,23), 23,1 /(2 * \operatorname{sqrt}(1 / 10+1 / 15))) \\
& =0.4685883
\end{aligned}
$$

- The test of Helmut has power

$$
\begin{aligned}
P\left(T<-t_{23,0.10}\right) & =F_{t_{\phi, 23}}\left(-t_{23,0.10}\right) \\
& =\operatorname{pt}(-\mathrm{qt}(.9,23), 23,1 /(2 * \operatorname{sqrt}(1 / 10+1 / 15))) \\
& =0.006481496 .
\end{aligned}
$$

- The test of Mechthild has power

$$
\begin{aligned}
1-P\left(|T|>t_{23,0.05}\right)= & 1-\left[F_{t_{\phi, 23}}\left(t_{23,0.05}\right)-F_{t_{\phi, 23}}\left(-t_{23,0.05}\right)\right] \\
= & \quad-\quad(\operatorname{pt}(\operatorname{qt}(.95,23), 23,1 /(2 * \operatorname{sqrt}(1 / 10+1 / 15))) \\
& \quad-\operatorname{pt}(-\operatorname{qt}(.95,23), 23,1 /(2 * \operatorname{sqrt}(1 / 10+1 / 15)))) \\
= & 0.3264441 .
\end{aligned}
$$

(ix) The following R code makes the plot:

```
delta.seq <- seq(-3,3,length=100)
delta.0 <- 0
n1 <- 10
n2 <- 15
alpha <- 0.10
sigma <- 2
phi <- (delta.seq-delta.0)/(sigma*sqrt(1/n1+1/n2))
power.gt <- 1 - pt(qt(1-alpha,n1+n2-2),n1+n2-2,phi)
power.lt <- pt(-qt(1-alpha,n1+n2-2),n1+n2-2,phi)
power.neq <- 1-(pt(qt(1-alpha/2,n1+n2-2),n1+n2-2,phi)
    - pt(-qt(1-alpha/2,n1+n2-2),n1+n2-2,phi))
plot(delta.seq, power.gt,type="l",ylim=c(0,1),xlab="delta",ylab="power")
lines(delta.seq, power.lt,lty=2)
lines(delta.seq, power.neq,lty=4)
abline(v=delta.0,lty=3) # vert line at null value
abline(h=0.10,lty=3) # horiz line at size
```


(x) The estimate of the common variance σ^{2} is

$$
S_{\text {pooled }}^{2}=\frac{(10-1)(0.24)^{2}+(15-1)(0.19)^{2}}{10+15-2}=(9 * 0.24 * * 2+14 * 0.19 * * 2) / 23=0.04451304,
$$

so that we get

$$
\begin{aligned}
\frac{\bar{X}_{1}-\bar{X}_{2}}{S_{\text {pooled }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} & =\frac{0.97-1.26}{\sqrt{0.04451304} \sqrt{1 / 10+1 / 15}} \\
& =(0.97-1.26) / \operatorname{sqrt}(0.04451304 *(1 / 10+1 / 15)) \\
& =-3.366898
\end{aligned}
$$

So the p-value for

- Simone's test is $1-F_{t_{23}}(-3.366898)=1-\mathrm{pt}(-3.366898,23)=0.9986682$.
- Helmut's test is $F_{t_{23}}(-3.366898)=\mathrm{pt}(-3.366898,23)=0.001331817$.
- Mechthild's test is $2\left(1-F_{t_{23}}(|-3.366898|)\right)=2 *(1-\mathrm{pt}(3.366898,23))=0.002663634$.
- In the unequal-variances case, that is when $\sigma_{2}^{2} \neq \sigma_{2}^{2}$, we cannot pool the data together from the two samples to estimate a common variance; we must estimate the two variances separately. As a result, we use a different test statistic, the null distribution (the distribution when $\mu_{1}-\mu_{2}=\delta_{0}$) of which is approximated by a t-distribution with a certain-complicated-degrees of freedom value. This has been discussed in STAT 512, and we will not discuss this case in detail here. The following formulas for two-sample t-tests specify how to perform both the equal- and unequalvariances two-sample t-tests.

- Formulas for two-sample t-tests: Let

$X_{11}, \ldots, X_{1 n_{1}}$ be a random sample from the $\operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$ distribution and $X_{21}, \ldots, X_{2 n_{2}}$ be a random sample from the $\operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ distribution, and for some δ_{0}, define

$$
T= \begin{cases}\left(\bar{X}_{1}-\bar{X}_{2}-\delta_{0}\right) /\left(S_{\text {pooled }} \sqrt{1 / n_{1}+1 / n_{2}}\right), & \text { if believed } \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2} \\ \left(\bar{X}_{1}-\bar{X}_{2}-\delta_{0}\right) / \sqrt{S_{1}^{2} / n_{1}+S_{2}^{2} / n_{2}}, & \text { if believed } \sigma_{1}^{2} \neq \sigma_{2}^{2}\end{cases}
$$

and

$$
\nu= \begin{cases}n_{1}+n_{2}-2, & \text { if believed } \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2} \\ \left(\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}\right)^{2}\left[\left(\frac{S_{1}}{n_{1}}\right)^{2} /\left(n_{1}-1\right)+\left(\frac{S_{2}^{2}}{n_{2}}\right)^{2} /\left(n_{2}-1\right)\right]^{-1}, & \text { if believed } \sigma_{1}^{2} \neq \sigma_{2}^{2} .\end{cases}
$$

Then we have the following, where $F_{t_{\phi, \nu}}$ is the cdf of the $t_{\phi, \nu}$-distribution:

H_{1}	Reject H_{0} at α iff	Power function $\gamma(\mu)$	p-value
$\mu_{1}-\mu_{2}>\delta_{0}$	$T>t_{\nu, \alpha}$	$1-F_{t_{\phi, \nu}}\left(t_{\nu, \alpha}\right)$	$1-F_{t_{\nu}}(T)$
$\mu_{1}-\mu_{2}<\delta_{0}$	$T<-t_{\nu, \alpha}$	$F_{t_{\phi, \nu}}\left(-t_{\nu, \alpha}\right)$	$F_{t_{\nu}}(T)$
$\mu_{1}-\mu_{2} \neq \delta_{0}$	$\|T\|>t_{\nu, \alpha / 2}$	$1-\left[F_{t_{\phi, \nu}}\left(t_{\nu, \alpha / 2}\right)-F_{t_{\phi, \nu}}\left(-t_{\nu, \alpha / 2}\right)\right]$	$2\left[1-F_{t_{\nu}}(\|T\|)\right]$,

where

$$
\phi= \begin{cases}\left(\delta-\delta_{0}\right) /\left(\sigma \sqrt{1 / n_{1}+1 / n_{2}}\right), & \text { if believed } \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2} \\ \left(\delta-\delta_{0}\right) /\left(\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}\right), & \text { if believed } \sigma_{1}^{2} \neq \sigma_{2}^{2}\end{cases}
$$

Comparing variances

- It is easier to get a handle on the distribution of the ratio S_{1}^{2} / S_{2}^{2} than on that of the difference $S_{1}^{2}-S_{2}^{2}$, so we make comparisons of σ_{1}^{2} and σ_{2}^{2} in terms of the ratio $\sigma_{1}^{2} / \sigma_{2}^{2}$.
- We will denote by ϑ the true value of the ratio $\sigma_{1}^{2} / \sigma_{2}^{2}$.
- For some value ϑ_{0}, which we will call the null value of ϑ, we consider for some $C_{1 r}, C_{1 l}, C_{2 l}$, and $C_{2 r}$ the following tests of hypotheses:

1. Right-tailed test: Test $H_{0}: \sigma_{1}^{2} / \sigma_{2}^{2} \leq \vartheta_{0}$ versus $H_{1}: \sigma_{1}^{2} / \sigma_{2}^{2}>\vartheta_{0}$ with the test

$$
\text { Reject } H_{0} \text { iff } \frac{S_{1}^{2}}{S_{2}^{2}} / \vartheta_{0}>C_{1 r} \text {. }
$$

2. Left-tailed test: Test $H_{0}: \sigma_{1}^{2} / \sigma_{2}^{2} \geq \vartheta_{0}$ versus $H_{1}: \sigma_{1}^{2} / \sigma_{2}^{2}<\vartheta_{0}$ with the test

$$
\text { Reject } H_{0} \text { iff } \frac{S_{1}^{2}}{S_{2}^{2}} / \vartheta_{0}<C_{1 l} .
$$

3. Two-sided test: Test $H_{0}: \sigma_{1}^{2} / \sigma_{2}^{2}=\vartheta_{0}$ versus $H_{1}: \sigma_{1}^{2} / \sigma_{2}^{2} \neq \vartheta_{0}$ with the test

$$
\text { Reject } H_{0} \text { iff } \frac{S_{1}^{2}}{S_{2}^{2}} / \vartheta_{0}<C_{2 l} \text { or } \frac{S_{1}^{2}}{S_{2}^{2}} / \vartheta_{0}>C_{2 r} \text {. }
$$

- The null ratio ϑ_{0} is very often chosen as $\vartheta_{0}=1$, in which case it is of interest whether there is a difference of any magnitude between σ_{1}^{2} and σ_{2}^{2}. However, if one wishes to test, for example, whether $\sigma 1^{2}$ is more than twice as large as σ_{2}^{2}, one may choose $\vartheta_{0}=2$.
- We will call these tests variance ratio F-tests, which comes from the fact that if

$$
X_{11}, \ldots, X_{1 n_{1}} \text { is a random sample from the } \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right) \text { distribution }
$$ and $X_{21}, \ldots, X_{2 n_{2}}$ is a random sample from the $\operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ distribution

and if $\sigma_{1}^{2} / \sigma_{2}^{2}=\vartheta$, then

$$
\frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}}=\frac{S_{1}^{2}}{S_{2}^{2}} / \vartheta \sim F_{n_{1}-1, n_{2}-1}
$$

where $F_{n_{1}-1, n_{2}-1}$ denotes the F-distribution with numerator degrees of freedom $n_{1}-1$ and denominator degrees of freedom $n_{2}-1$.

- For $\xi \in(0,1)$, let $F_{n_{1}-1, n_{2}-1, \xi}$ be the value which satisfies $\xi=P\left(R>F_{n_{1}-1, n_{2}-1, \xi}\right)$, when $R \sim$ $F_{n_{1}-1, n_{2}-1}$.
- Let $F_{F_{n_{1}-1, n_{2}-1}}$ denote the cdf of the $F_{n_{1}-1, n_{2}-1}$-distribution.
- Exercise: Suppose researchers wish to test, for two populations of interest which are assumed to be Normal, whether the variance σ_{1}^{2} of the first population is equal to the variance σ_{2}^{2} of the second population. They decide to collect a sample of size $n_{1}=20$ from the first population and a sample of size $n_{2}=25$ from the second population and to use the two-sided test with $\vartheta_{0}=1$ and $C_{2 l}=1 / 2$ and $C_{2 r}=2$; that is, they will reject $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ iff $S_{1}^{2} / S_{2}^{2}<1 / 2$ or $S_{1}^{2} / S_{2}^{2}>2$.
(i) What is the size of the test?
(ii) If $\sigma_{1}^{2}=1.5$ and $\sigma_{2}^{2}=1$, which type of inferential error is possible?
(iii) If $\sigma_{1}^{2}=1.5$ and $\sigma_{2}^{2}=1$, what is the probability the the test will lead to an incorrect decision?

Answers:

(i) The size of the test is

$$
\begin{aligned}
P_{\sigma_{1}^{2} / \sigma_{2}^{2}=1}\left(S_{1}^{2} / S_{2}^{2}<1 / 2\right)+P_{\sigma_{1}^{2} / \sigma_{2}^{2}=1}\left(S_{1}^{2} / S_{2}^{2}>2\right) & =P(R<1 / 2)+P(R>2), \quad R \sim F_{19,24} \\
& =\operatorname{pf}(1 / 2,19,24)+1-\mathrm{pf}(2,19,24) \\
& =0.1183526 .
\end{aligned}
$$

(ii) If $\sigma_{1}^{2}=1.5$ and $\sigma_{2}^{2}=1$, the correct decision is to reject H_{0}; if we fail to reject it, it is a Type II error.
(iii) If $\sigma_{1}^{2}=1.5$ and $\sigma_{2}^{2}=1$, the probability of a Type II error is

$$
\begin{aligned}
P_{\sigma_{1}^{2} / \sigma_{2}^{2}=3 / 2}\left(1 / 2<S_{1}^{2} / S_{2}^{2}<2\right) & =P_{\sigma_{1}^{2} / \sigma_{2}^{2}=3 / 2}\left((1 / 2) /(3 / 2)<\left(S_{1}^{2} / S_{2}^{2}\right) /(3 / 2)<2 /(3 / 2)\right) \\
& =P(1 / 3<R<4 / 3), \quad R \sim F_{19,24} \\
& =\operatorname{pf}(4 / 3,19,24)-\operatorname{pf}(1 / 3,19,24) \\
& =0.7412179 .
\end{aligned}
$$

- Exercise: Get expressions for the power functions in terms of the true ratio of the variances $\vartheta=\sigma_{1}^{2} / \sigma_{2}^{2}$ of the right-tailed, left-tailed, and two-sided variance ratio F-tests and calibrate the rejection regions, that is, find $C_{1 l}, C_{1 r}, C_{2 l}$, and $C_{2 r}$, such that for any $\alpha \in(0,1)$ each test has size α.

Answers:

1. The right-tailed test has power given by

$$
\begin{aligned}
\gamma(\vartheta) & =P_{\sigma_{1}^{2} / \sigma_{2}^{2}=\vartheta}\left(\left(S_{1}^{2} / S_{2}^{2}\right) / \vartheta_{0}>C_{1 r}\right) \\
& =P_{\sigma_{1}^{2} / \sigma_{2}^{2}=\vartheta}\left(\left(S_{1}^{2} / S_{2}^{2}\right) / \vartheta>C_{1 r}\left(\vartheta_{0} / \vartheta\right)\right) \\
& =P\left(R>C_{1 r}\left(\vartheta_{0} / \vartheta\right)\right), \quad R \sim F_{n_{1}-1, n_{2}-1} \\
& =1-F_{F_{n_{1}-1, n_{2}-1}}\left(C_{1 r}\left(\vartheta_{0} / \vartheta\right)\right) .
\end{aligned}
$$

The size is given by

$$
\gamma\left(\vartheta_{0}\right)=1-F_{F_{n_{1}-1, n_{2}-1}}\left(C_{1 r}\right) .
$$

The test will have size equal to α if $C_{1 r}=F_{n_{1}-1, n_{2}-1, \alpha}$.
2. The left-tailed test has power given by

$$
\begin{aligned}
\gamma(\vartheta) & =P_{\sigma_{1}^{2} / \sigma_{2}^{2}=\vartheta}\left(\left(S_{1}^{2} / S_{2}^{2}\right) / \vartheta_{0}<C_{1 l}\right) \\
& =P_{\sigma_{1}^{2} / \sigma_{2}^{2}=\vartheta}\left(\left(S_{1}^{2} / S_{2}^{2}\right) / \vartheta<C_{1 l}\left(\vartheta_{0} / \vartheta\right)\right) \\
& =P\left(R<C_{1 l}\left(\vartheta_{0} / \vartheta\right)\right), \quad R \sim F_{n_{1}-1, n_{2}-1} \\
& =F_{F_{n_{1}-1, n_{2}-1}}\left(C_{1 l}\left(\vartheta_{0} / \vartheta\right)\right) .
\end{aligned}
$$

The size is given by

$$
\gamma\left(\vartheta_{0}\right)=F_{F_{n_{1}-1, n_{2}-1}}\left(C_{1 l}\right) .
$$

The test will have size equal to α if $C_{1 l}=F_{n_{1}-1, n_{2}-1,1-\alpha}$.
3. The two-sided test has power given by

$$
\begin{aligned}
\gamma(\vartheta) & =P_{\sigma_{1}^{2} / \sigma_{2}^{2}=\vartheta}\left(\left(S_{1}^{2} / S_{2}^{2}\right) / \vartheta_{0}<C_{2 l}\right)+P_{\sigma_{1}^{2} / \sigma_{2}^{2}=\vartheta}\left(\left(S_{1}^{2} / S_{2}^{2}\right) / \vartheta_{0}>C_{2 r}\right) \\
& =P_{\sigma_{1}^{2} / \sigma_{2}^{2}=\vartheta}\left(\left(S_{1}^{2} / S_{2}^{2}\right) / \vartheta<C_{2 l}\left(\vartheta_{0} / \vartheta\right)\right)+P_{\sigma_{1}^{2} / \sigma_{2}^{2}=\vartheta}\left(\left(S_{1}^{2} / S_{2}^{2}\right) / \vartheta>C_{2 r}\left(\vartheta_{0} / \vartheta\right)\right) \\
& =P\left(R<C_{2 l}\left(\vartheta_{0} / \vartheta\right)\right)+P\left(R>C_{2 r}\left(\vartheta_{0} / \vartheta\right)\right), \quad R \sim F_{n_{1}-1, n_{2}-1} \\
& =F_{F_{n_{1}-1, n_{2}-1}}\left(C_{1 l}\left(\vartheta_{0} / \vartheta\right)\right)+1-F_{F_{n_{1}-1, n_{2}-1}}\left(C_{1 r}\left(\vartheta_{0} / \vartheta\right)\right) .
\end{aligned}
$$

The size is given by

$$
\gamma\left(\vartheta_{0}\right)=F_{F_{n_{1}-1, n_{2}-1}}\left(C_{1 l}\right)+1-F_{F_{n_{1}-1, n_{2}-1}}\left(C_{1 r}\right) .
$$

The test will have size equal to α if $C_{2 l}=F_{n_{1}-1, n_{2}-1,1-\alpha / 2}$ and $C_{2 r}=F_{n_{1}-1, n_{2}-1, \alpha / 2}$.

- Exercise: Let

$$
X_{11}, \ldots, X_{1 n_{1}} \text { be a random sample from the } \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right) \text { distribution }
$$ and $X_{21}, \ldots, X_{2 n_{2}}$ be a random sample from the $\operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ distribution, and suppose there are three researchers:

- Kwame to test $H_{0}: \sigma_{1}^{2} / \sigma_{2}^{2} \leq 1$ vs $H_{1}: \sigma_{1}^{2} / \sigma_{2}^{2}>1$ with Rej. H_{0} iff $S_{1}^{2} / S_{2}^{2}>F_{n_{1}-1, n_{2}-1,0.10}$
- Ama to test $H_{0}: \sigma_{1}^{2} / \sigma_{2}^{2} \geq 1$ vs $H_{1}: \sigma_{1}^{2} / \sigma_{2}^{2}<1$ with Rej. H_{0} iff $S_{1}^{2} / S_{2}^{2}<F_{n_{1}-1, n_{2}-1,0.90}$
- Kobe to test $H_{0}: \sigma_{1}^{2} / \sigma_{2}^{2}=1$ vs $H_{1}: \sigma_{1}^{2} / \sigma_{2}^{2} \neq 1$ with Rej. H_{0} iff $S_{1}^{2} / S_{2}^{2}<F_{n_{1}-1, n_{2}-1,0.95}$ or $S_{1}^{2} / S_{2}^{2}>F_{n_{1}-1, n_{2}-1,0.05}$
(i) What is the size of each test?
(ii) Suppose $\sigma_{1}^{2}=1$ and $\sigma_{2}^{2}=2$. Which researcher is most likely to reject H_{0} ?
(iii) Suppose $\sigma_{1}^{2}=1$ and $\sigma_{2}^{2}=2$. Which researcher is least likely to reject H_{0} ?
(iv) Suppose $\sigma_{1}^{2}=1$ and $\sigma_{2}^{2}=2$. Which researcher may commit a Type I error?
(v) Suppose $\sigma_{1}^{2}=2$ and $\sigma_{2}^{2}=1$. Which researcher may commit a Type I error?
(vi) Suppose $\sigma_{1}^{2}=1$ and $\sigma_{2}^{2}=2$. Which researchers may commit a Type II error?
(vii) Suppose $\sigma_{1}^{2}=2$ and $\sigma_{2}^{2}=1$. Which researchers may commit a Type II error?
(viii) Based on the sample sizes $n_{1}=18$ and $n_{2}=17$, compute the power of each researcher's test when $\sigma_{1}^{2}=1$ and $\sigma_{2}^{2}=2$.
(ix) Plot the power curves of the three researchers' tests together, where power is a function of $\vartheta=\sigma_{1}^{2} / \sigma_{2}^{2}$.
(x) Suppose that with samples of sizes $n_{1}=18$ and $n_{2}=17, S_{1}^{2}=1.15$ and $S_{2}^{2}=1.87$ is observed. Compute the p-value of each researcher's test.

Answers:

(viii) We have $\vartheta_{0}=1$, and if $\sigma_{1}^{2}=1$ and $\sigma_{2}^{2}=2$ then $\vartheta=\sigma_{1}^{2} / \sigma_{2}^{2}=2$. In the following, let $R \sim F_{17,16}$.

- The test of Kwame has power

$$
\begin{aligned}
P\left(R>F_{17,16,0.10}(1 / 2)\right) & =1-F_{F_{17,16}}\left(F_{17,16,0.10} / 2\right) \\
& =1-\operatorname{pf}(\operatorname{qf}(.9,17,16) / 2,17,16) \\
& =0.5355808
\end{aligned}
$$

- The test of Ama has power

$$
\begin{aligned}
P\left(R<F_{17,16,0.90}(1 / 2)\right) & =F_{F_{17,16}}\left(F_{17,16,0.90} / 2\right) \\
& =\operatorname{pf}(\operatorname{qf}(.10,17,16) / 2,17,16) \\
& =0.004645553
\end{aligned}
$$

- The test of Kobe has power

$$
\begin{aligned}
P\left(R<F_{17,16,0.95}(1 / 2)\right)+ & P\left(R>F_{17,16,0.05} / 2\right) \\
& =F_{F_{17,16}}\left(F_{17,16,0.95} / 2\right)+1-F_{F_{17,16}}\left(F_{17,16,0.05} / 2\right) \\
& =\operatorname{pf}(\mathrm{qf}(.05,17,16) / 2,17,16) \\
& \quad+1-\operatorname{pf}(\mathrm{qf}(.95,17,16) / 2,17,16) \\
& =0.3880993 .
\end{aligned}
$$

(ix) The following R code makes the plot:

```
v.seq <- seq(1/8,4,length=200)
v.0 <- 1
n1 <- 18
n2 <- 17
alpha <- 0.10
power.gt <- 1 - pf(qf(1-alpha,n1-1,n2-1)*v.0/v.seq,n1-1,n2-1)
power.lt <- pf(qf(alpha,n1-1,n2-1)*v.0/v.seq,n1-1,n2-1)
power.neq <- pf(qf(alpha/2,n1-1,n2-1)*v.0/v.seq,n1-1,n2-1)
    + 1 - pf(qf(1-alpha/2,n1-1,n2-1)*v.0/v.seq,n1-1,n2-1)
plot(v.seq, power.gt,type="l",ylim=c(0,1),xlab="v",ylab="power")
lines(v.seq, power.lt,lty=2)
lines(v.seq, power.neq,lty=4)
abline(v=v.0,lty=3) # vert line at null value
abline(h=0.10,lty=3) # horiz line at size
```


(x) We have $S_{1}^{2} / S_{2}^{2}=1.15 / 1.87=0.6149733$. So the p-value

- for Kwame's test is $1-F_{F_{17,16}}(0.6149733)=1-\mathrm{pf}(0.6149733,17,16)=0.8351805$.

r
- for Ama's test is $F_{F_{17,16}}(0.6149733)=\operatorname{pf}(0.6149733,17,16)=0.1648195$.

r
- for Kobe's test is $2\left[F_{F_{17,16}}(0.6149733)\right]=2 * \operatorname{pf}(0.6149733,17,16)=0.329639$.

- Formulas for variance ratio F-tests: Let

$X_{11}, \ldots, X_{1 n_{1}}$ be a random sample from the $\operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right)$ distribution and $X_{21}, \ldots, X_{2 n_{2}}$ be a random sample from the $\operatorname{Normal}\left(\mu_{2}, \sigma_{2}^{2}\right)$ distribution, and for some ϑ_{0}, define $R=\left(S_{1}^{2} / S_{2}^{2}\right) / \vartheta_{0}$. Then we have the following:

H_{1}	Reject H_{0} at α iff	Power function $\gamma(\vartheta)$	p-value
$\sigma_{1}^{2} / \sigma_{2}^{2}>\vartheta_{0}$	$R>F_{n_{1}-1, n_{2}-1, \alpha}$	$1-F_{F_{n_{1}-1, n_{2}-1}}\left(F_{n_{1}-1, n_{2}-1, \alpha}\left(\vartheta_{0} / \vartheta\right)\right)$	$1-F_{F_{n_{1}-1, n_{2}-1}}(R)$
$\sigma_{1}^{2} / \sigma_{2}^{2}<\vartheta_{0}$	$R<F_{n_{1}-1, n_{2}-1,1-\alpha}$	$F_{F_{n_{1}-1, n_{2}-1}}\left(F_{n_{1}-1, n_{2}-1,1-\alpha}\left(\vartheta_{0} / \vartheta\right)\right)$	$F_{F_{n_{1}-1, n_{2}-1}}(R)$
$\sigma_{1}^{2} / \sigma_{2}^{2} \neq \vartheta_{0}$	$R<F_{n_{1}-1, n_{2}-1,1-\alpha / 2}$ or $R>F_{n_{1}-1, n_{2}-1, \alpha / 2}$	$F_{F_{n_{1}-1, n_{2}-1}}\left(F_{n_{1}-1, n_{2}-1,1-\alpha / 2}\left(\vartheta_{0} / \vartheta\right)\right)$ $1-F_{F_{n_{1}-1, n_{2}-1}}\left(F_{n_{1}-1, n_{2}-1, \alpha / 2}\left(\vartheta_{0} / \vartheta\right)\right)$	$2 \cdot \min \left\{F_{F_{n_{1}-1, n_{2}-1}}(R)\right.$, $\left.1-F_{F_{n_{1}-1, n_{2}-1}}(R)\right\}$

