STAT 513 fa 2020 Lec 04

Comparing two Normal populations

Karl B. Gregory

Comparing two Normal populations

• We now consider two random samples of sizes n_1 and n_2 drawn from two Normal populations: Let

 X_{11}, \ldots, X_{1n_1} be a random sample from the Normal (μ_1, σ_1^2) distribution X_{21}, \ldots, X_{2n_2} be a random sample from the Normal (μ_2, σ_2^2) distribution,

where μ_1 , μ_2 , σ_1^2 , and σ_2^2 are unknown, and let \bar{X}_1 and S_1^2 denote the mean and variance of the first sample and \bar{X}_2 and S_2^2 denote the mean and variance of the second sample.

- We are interested in
 - comparing μ_1 and μ_2 by testing hypotheses concerning the difference $\mu_1 \mu_2$ and
 - comparing σ_1^2 and σ_2^2 by testing hypotheses concerning the ratio σ_1^2/σ_2^2

based on the random samples X_{11}, \ldots, X_{1n_1} and X_{21}, \ldots, X_{2n_2} .

Comparing means

- It is simpler to test hypotheses about $\mu_1 \mu_2$ if $\sigma_1^2 = \sigma_2^2$ than if $\sigma_1^2 \neq \sigma_2^2$, so we begin with the equal-variances case.
- If it is assumed that $\sigma_1^2 = \sigma_2^2 = \sigma^2$, we may pool the data from both samples to estimate the common variance σ^2 . The pooled estimator of σ^2 is

$$S_{\text{pooled}}^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}.$$

- We will denote by δ the true value of the difference $\mu_1 \mu_2$.
- For some value δ_0 , which we will call the null value of δ , we consider for some C_1 and C_2 the following tests of hypotheses:

1. Right-tailed test: Test H_0 : $\mu_1 - \mu_2 \leq \delta_0$ versus H_1 : $\mu_1 - \mu_2 > \delta_0$ with the test

Reject
$$H_0$$
 iff $\frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} > C_1.$

2. Left-tailed test: Test H_0 : $\mu_1 - \mu_2 \ge \delta_0$ versus H_1 : $\mu_1 - \mu_2 < \delta_0$ with the test

Reject
$$H_0$$
 iff $\frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} < -C_1.$

3. Two-sided test: Test H_0 : $\mu_1 - \mu_2 = \delta_0$ versus H_1 : $\mu_1 - \mu_2 \neq \delta_0$ with the test

Reject
$$H_0$$
 iff $\left| \frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \right| > C_2.$

- The null value δ_0 is very often chosen to be zero, so that differences in means of any magnitude are of interest. But one may wish to test whether μ_1 is greater than μ_2 by some amount δ_0 .
- These are sometimes called *equal-variance two-sample t-tests*, which comes from the fact that if

 X_{11}, \ldots, X_{1n_1} is a random sample from the Normal (μ_1, σ_1^2) distribution and X_{21}, \ldots, X_{2n_2} is a random sample from the Normal (μ_2, σ_2^2) distribution

and if $\sigma_1^2 = \sigma_2^2$, then

$$\frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{S_{\text{pooled}}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}.$$

- Exercise: Suppose researchers wish to test, for two populations of interest which are assumed to be Normal and to have the same variance, whether the mean μ_1 of the first population exceeds the mean μ_2 of the second population. They decide to collect a sample of size $n_1 = 20$ from the first population and a sample of size $n_2 = 25$ from the second population and to use the first test with $\delta_0 = 0$ and $C_1 = 2$.
 - (i) Suppose the means of the two populations are the same. With what probability will the researchers commit a Type I error?
 - (ii) What would be the effect on this probability of using a smaller value of C_1 ?
 - (iii) Suppose the researchers are interested in testing whether the means of the two populations are different, irrespective of which one is greater. Give a test which has size equal to 0.01.

(i) The probability of rejecting H_0 if $\mu_1 = \mu_2$ is

$$P_{\mu_1-\mu_2=0}\left(\frac{\bar{X}_1 - \bar{X}_2 - 0}{S_{\text{pooled}}\sqrt{\frac{1}{20} + \frac{1}{25}}} > 2\right) = P(T > 2), \quad T \sim t_{43}$$
$$= 1 - F_{t_{43}}(2)$$
$$= 1 - \text{pt}(2, 43)$$
$$= 0.02592102.$$

- (ii) If we use a smaller value of C_1 , the test will reject H_0 based on weaker evidence, so the probability of a Type I error will increase.
- (iii) To test H_0 : $\mu_1 \mu_2 = 0$ versus H_1 : $\mu_1 \mu_2 \neq 0$, we will use the two-sided test. To make the test have size 0.01, we find a value of C_2 which satisfies

$$0.01 = P_{\mu_1 - \mu_2 = 0} \left(\left| \frac{\bar{X}_1 - \bar{X}_2 - 0}{S_{\text{pooled}} \sqrt{\frac{1}{20} + \frac{1}{25}}} \right| > C_2 \right) = P(|T| > C_2), \quad T \sim t_{43}$$

We see that the test will have size 0.01 if we choose $C_2 = t_{43,0.005} = qt(.995,43) = 2.695102$.

- If we wish to compute the power of the two-sample *t*-test for any value of $\mu_1 \mu_2 = \delta$, we need to make use of the non-central *t*-distribution.
- We will base power calculations for the equal-variances two-sample *t*-test on the following result:

Result: Let

 X_{11}, \ldots, X_{1n_1} be a random sample from the Normal (μ_1, σ_1^2) distribution and X_{21}, \ldots, X_{2n_2} be a random sample from the Normal (μ_2, σ_2^2) distribution,

and suppose $\sigma_1^2 = \sigma_2^2$. If $\mu_1 - \mu_2 = \delta$, then

$$\frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{\phi, n_1 + n_2 - 2}, \quad \text{where } \phi = \frac{\delta - \delta_0}{\sigma\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}.$$

Derivation: We can see this by writing

$$\frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \left(\frac{\bar{X}_1 - \bar{X}_2 - \delta}{\sigma\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} + \frac{\delta - \delta_0}{\sigma\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}\right) \left[\frac{(n_1 + n_2 - 2)S_{\text{pooled}}^2}{\sigma^2} / (n_1 + n_2 - 2)\right]^{-1/2},$$

which has the form

$$\frac{Z+\phi}{\sqrt{W/\nu}}$$

where Z and W are independent random variables such that $Z \sim \text{Normal}(0,1)$ and $W \sim \chi^2_{\nu}$, and ϕ is a constant; this is the anatomy of a $t_{\phi,\nu}$ -distributed random variable.

• Exercise: Get expressions for the power functions in terms of $\delta = \mu_1 - \mu_2$ and the sizes of the right-tailed, left-tailed, and two-sided equal-variance two-sample t-tests. Moreover, for any $\alpha \in (0, 1)$, give the values C_1 and C_2 such that the tests have size α .

Answer:

1. The power function for the right-tailed equal-variances two-sample *t*-test is

$$\begin{split} \gamma(\delta) &= P_{\mu_1 - \mu_2 = \delta} \left(\frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} > C_1 \right) \\ &= P(T > C_1), \quad T \sim t_{\phi, n_1 + n_2 - 2}, \quad \phi = \frac{\delta - \delta_0}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \\ &= 1 - F_{t_{\phi, n_1 + n_2 - 2}}(C_1). \end{split}$$

The size of the test is given by the power at $\delta = \delta_0$, for which $\phi = 0$. So the size is

$$\gamma(\delta_0) = P_{\mu_1 - \mu_2 = \delta_0} \left(\frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} > C_1 \right)$$
$$= P(T > C_1), \quad T \sim t_{n_1 + n_2 - 2}$$
$$= 1 - F_{t_{n_1 + n_2 - 2}}(C_1).$$

The test will have size α if $C_1 = t_{n_1+n_2-2,\alpha}$.

2. The power function for the left-tailed equal-variances two-sample t-test is

$$\begin{split} \gamma(\delta) &= P_{\mu_1 - \mu_2 = \delta} \left(\frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} < -C_1 \right) \\ &= P(T < -C_1), \quad T \sim t_{\phi, n_1 + n_2 - 2}, \quad \phi = \frac{\delta - \delta_0}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \\ &= F_{t_{\phi, n_1 + n_2 - 2}}(-C_1). \end{split}$$

The size of the test is given by the power at $\delta = \delta_0$, for which $\phi = 0$. So the size is

$$\gamma(\delta_0) = P_{\mu_1 - \mu_2 = \delta_0} \left(\frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} < -C_1 \right)$$
$$= P(T < -C_1), \quad T \sim t_{n_1 + n_2 - 2}$$
$$= F_{t_{n_1 + n_2 - 2}}(-C_1).$$

The test will have size α if $C_1 = t_{n_1+n_2-2,\alpha}$.

3. The power function for the two-sided equal-variances two-sample *t*-test is

$$\begin{split} \gamma(\delta) &= P_{\mu_1 - \mu_2 = \delta} \left(\left| \frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \right| > C_2 \right) \\ &= 1 - P(-C_2 < T < C_2), \quad T \sim t_{\phi, n_1 + n_2 - 2}, \quad \phi = \frac{\delta - \delta_0}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \\ &= 1 - [F_{t_{\phi, n_1 + n_2 - 2}}(C_2) - F_{t_{\phi, n_1 + n_2 - 2}}(-C_2)]. \end{split}$$

The size of the test is given by the power at $\delta = \delta_0$, for which $\phi = 0$. So the size is

$$\gamma(\delta_0) = P_{\mu_1 - \mu_2 = \delta_0} \left(\left| \frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \right| > C_2 \right)$$
$$= 1 - P(-C_2 < T < C_2), \quad T \sim t_{n_1 + n_2 - 2}$$
$$= 1 - [F_{t_{n_1 + n_2 - 2}}(C_2) - F_{t_{n_1 + n_2 - 2}}(-C_2)].$$

The test will have size α if $C_2 = t_{n_1+n_2-2,\alpha/2}$.

• Exercise: Let

 X_{11}, \ldots, X_{1n_1} be a random sample from the Normal (μ_1, σ_1^2) distribution and X_{21}, \ldots, X_{2n_2} be a random sample from the Normal (μ_2, σ_2^2) distribution

with $\sigma_1^2 = \sigma_2^2$, and suppose there are three researchers:

- $Simone to test H_0: \mu_1 \mu_2 \le 0 vs H_1: \mu_1 \mu_2 > 0 with Rej. H_0 iff \frac{\bar{X}_1 \bar{X}_2}{S_{\text{pooled}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} > t_{n_1 + n_2 2, 0.10}$
- $\text{ Helmut to test } H_0: \ \mu_1 \mu_2 \ge 0 \text{ vs } H_1: \ \mu_1 \mu_2 < 0 \text{ with Rej. } H_0 \text{ iff } \frac{\bar{X}_1 \bar{X}_2}{S_{\text{pooled}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} < -t_{n_1 + n_2 2, 0.10}$

 $- \text{ Mechthild to test } H_0: \mu_1 - \mu_2 = 0 \text{ vs } H_1: \mu_1 - \mu_2 \neq 0 \text{ with Rej. } H_0 \text{ iff } \left| \frac{\bar{X}_1 - \bar{X}_2}{S_{\text{pooled}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \right| > t_{n_1 + n_2 - 2, 0.05}$

(i) What is the size of each test?

(ii) Suppose $\mu_1 = 1$ and $\mu_2 = 2$. Which researcher is most likely to reject H_0 ?

(iii) Suppose $\mu_1 = 1$ and $\mu_2 = 2$. Which researcher is least likely to reject H_0 ?

(iv) Suppose $\mu_1 = 1$ and $\mu_2 = 2$. Which researcher may commit a Type I error?

(v) Suppose $\mu_1 = 2$ and $\mu_2 = 1$. Which researcher may commit a Type I error?

- (vi) Suppose $\mu_1 = 1$ and $\mu_2 = 2$. Which researchers may commit a Type II error?
- (vii) Suppose $\mu_1 = 2$ and $\mu_2 = 1$. Which researchers may commit a Type II error?
- (viii) Based on the sample sizes $n_1 = 10$ and $n_2 = 15$, compute the power of each researcher's test when $\mu_1 = 2$ and $\mu_2 = 1$ and $\sigma_1^2 = \sigma_2^2 = \sigma^2 = 4$.

- (ix) Plot the power curves of the three researchers' tests together, where power is a function of $\delta = \mu_1 \mu_2$.
- (x) Suppose that with sample sizes $n_1 = 10$ and $n_2 = 15$, $\bar{X}_1 = 0.97$, $\bar{X}_2 = 1.26$, $S_1 = 0.24$, and $S_2 = 0.19$. Compute the p-value of each researcher's test.

(viii) If $\mu_1 = 2$ and $\mu_2 = 1$ then $\delta = \mu_1 - \mu_2 = 1$. In the following, let $T \sim t_{\phi,23}$ (note that 10 + 15 - 2 = 23), where $\phi = (1 - 0)/(2\sqrt{1/10 + 1/15})$.

- The test of Simone has power

$$\begin{split} 1 - P(T > t_{23,0.10}) &= 1 - F_{t_{\phi,23}}(t_{23,0.10}) \\ &= 1 - \operatorname{pt}(\operatorname{qt}(.9,23),23,1/(2*\operatorname{sqrt}(1/10+1/15))) \\ &= 0.4685883. \end{split}$$

- The test of Helmut has power

$$\begin{split} P(T < -t_{23,0.10}) &= F_{t_{\phi,23}}(-t_{23,0.10}) \\ &= \texttt{pt(-qt(.9,23),23,1/(2*\texttt{sqrt(1/10+1/15))})} \\ &= 0.006481496. \end{split}$$

- The test of Mechthild has power

$$\begin{split} 1 - P(|T| > t_{23,0.05}) &= 1 - \left[F_{t_{\phi,23}}(t_{23,0.05}) - F_{t_{\phi,23}}(-t_{23,0.05})\right] \\ &= 1 - (\mathsf{pt}(\mathsf{qt}(.95,23),23,1/(2*\mathsf{sqrt}(1/10+1/15)))) \\ &-\mathsf{pt}(-\mathsf{qt}(.95,23),23,1/(2*\mathsf{sqrt}(1/10+1/15)))) \\ &= 0.3264441. \end{split}$$

(ix) The following R code makes the plot:

```
delta.seq <- seq(-3,3,length=100)</pre>
delta.0 <- 0
n1 <- 10
n2 <- 15
alpha <- 0.10
sigma <- 2
phi <- (delta.seq-delta.0)/(sigma*sqrt(1/n1+1/n2))</pre>
power.gt <- 1 - pt(qt(1-alpha,n1+n2-2),n1+n2-2,phi)</pre>
power.lt <- pt(-qt(1-alpha,n1+n2-2),n1+n2-2,phi)</pre>
power.neq <- 1-(pt(qt(1-alpha/2,n1+n2-2),n1+n2-2,phi)</pre>
                 - pt(-qt(1-alpha/2,n1+n2-2),n1+n2-2,phi))
plot(delta.seq, power.gt,type="l",ylim=c(0,1),xlab="delta",ylab="power")
lines(delta.seq, power.lt,lty=2)
lines(delta.seq, power.neq,lty=4)
abline(v=delta.0,lty=3) # vert line at null value
abline(h=0.10,lty=3)
                               # horiz line at size
```


(x) The estimate of the common variance σ^2 is

$$S_{\text{pooled}}^2 = \frac{(10-1)(0.24)^2 + (15-1)(0.19)^2}{10+15-2} = (9*0.24**2+14*0.19**2)/23 = 0.04451304,$$

so that we get

$$\frac{\bar{X}_1 - \bar{X}_2}{S_{\text{pooled}}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{0.97 - 1.26}{\sqrt{0.04451304}\sqrt{1/10 + 1/15}}$$
$$= (0.97 - 1.26)/\text{sqrt}(0.04451304*(1/10+1/15))$$
$$= -3.366898.$$

So the p-value for

- Simone's test is $1 F_{t_{23}}(-3.366898) = 1$ -pt(-3.366898,23) = 0.9986682.
- Helmut's test is $F_{t_{23}}(-3.366898) = pt(-3.366898, 23) = 0.001331817.$
- Mechthild's test is $2(1 F_{t_{23}}(|-3.366898|)) = 2*(1-pt(3.366898,23)) = 0.002663634.$
- In the unequal-variances case, that is when $\sigma_2^2 \neq \sigma_2^2$, we cannot pool the data together from the two samples to estimate a common variance; we must estimate the two variances separately. As a result, we use a different test statistic, the null distribution (the distribution when $\mu_1 \mu_2 = \delta_0$) of which is approximated by a *t*-distribution with a certain—complicated—degrees of freedom value. This has been discussed in STAT 512, and we will not discuss this case in detail here. The following formulas for two-sample *t*-tests specify how to perform both the equal- and unequal-variances two-sample *t*-tests.
- Formulas for two-sample *t*-tests: Let

 X_{11}, \ldots, X_{1n_1} be a random sample from the Normal (μ_1, σ_1^2) distribution and X_{21}, \ldots, X_{2n_2} be a random sample from the Normal (μ_2, σ_2^2) distribution,

and for some δ_0 , define

$$T = \begin{cases} (\bar{X}_1 - \bar{X}_2 - \delta_0) / (S_{\text{pooled}} \sqrt{1/n_1 + 1/n_2}), & \text{if believed } \sigma_1^2 = \sigma_2^2 = \sigma^2 \\ (\bar{X}_1 - \bar{X}_2 - \delta_0) / \sqrt{S_1^2/n_1 + S_2^2/n_2}, & \text{if believed } \sigma_1^2 \neq \sigma_2^2 \end{cases}$$

and

$$\nu = \begin{cases} n_1 + n_2 - 2, & \text{if believed } \sigma_1^2 = \sigma_2^2 = \sigma^2 \\ \left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2 \left[\left(\frac{S_1}{n_1}\right)^2 / (n_1 - 1) + \left(\frac{S_2^2}{n_2}\right)^2 / (n_2 - 1) \right]^{-1}, & \text{if believed } \sigma_1^2 \neq \sigma_2^2. \end{cases}$$

Then we have the following, where $F_{t_{\phi,\nu}}$ is the cdf of the $t_{\phi,\nu}$ -distribution:

H_1	Reject H_0 at α iff	Power function $\gamma(\mu)$	<i>p</i> -value
$\mu_1 - \mu_2 > \delta_0$	$T > t_{\nu,\alpha}$	$1 - F_{t_{\phi,\nu}}(t_{\nu,\alpha})$	$1 - F_{t_{\nu}}(T)$
$\mu_1 - \mu_2 < \delta_0$	$T < -t_{\nu,\alpha}$	$F_{t_{\phi,\nu}}(-t_{\nu,\alpha})$	$F_{t_{\nu}}(T)$
$\mu_1 - \mu_2 \neq \delta_0$	$ T > t_{\nu,\alpha/2}$	$1 - [F_{t_{\phi,\nu}}(t_{\nu,\alpha/2}) - F_{t_{\phi,\nu}}(-t_{\nu,\alpha/2})]$	$2[1-F_{t_{\nu}}(T)],$

where

$$\phi = \begin{cases} (\delta - \delta_0) / (\sigma \sqrt{1/n_1 + 1/n_2}), & \text{if believed } \sigma_1^2 = \sigma_2^2 = \sigma^2 \\ (\delta - \delta_0) / (\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}), & \text{if believed } \sigma_1^2 \neq \sigma_2^2. \end{cases}$$

Comparing variances

- It is easier to get a handle on the distribution of the ratio S_1^2/S_2^2 than on that of the difference $S_1^2 S_2^2$, so we make comparisons of σ_1^2 and σ_2^2 in terms of the ratio σ_1^2/σ_2^2 .
- We will denote by ϑ the true value of the ratio σ_1^2/σ_2^2 .
- For some value ϑ_0 , which we will call the null value of ϑ , we consider for some C_{1r} , C_{1l} , C_{2l} , and C_{2r} the following tests of hypotheses:
 - 1. Right-tailed test: Test H_0 : $\sigma_1^2/\sigma_2^2 \leq \vartheta_0$ versus H_1 : $\sigma_1^2/\sigma_2^2 > \vartheta_0$ with the test

Reject
$$H_0$$
 iff $\frac{S_1^2}{S_2^2}/\vartheta_0 > C_{1r}$

2. Left-tailed test: Test H_0 : $\sigma_1^2/\sigma_2^2 \ge \vartheta_0$ versus H_1 : $\sigma_1^2/\sigma_2^2 < \vartheta_0$ with the test

Reject
$$H_0$$
 iff $\frac{S_1^2}{S_2^2} / \vartheta_0 < C_{1l}$

3. Two-sided test: Test H_0 : $\sigma_1^2/\sigma_2^2 = \vartheta_0$ versus H_1 : $\sigma_1^2/\sigma_2^2 \neq \vartheta_0$ with the test

Reject
$$H_0$$
 iff $\frac{S_1^2}{S_2^2}/\vartheta_0 < C_{2l}$ or $\frac{S_1^2}{S_2^2}/\vartheta_0 > C_{2r}$.

- The null ratio ϑ_0 is very often chosen as $\vartheta_0 = 1$, in which case it is of interest whether there is a difference of any magnitude between σ_1^2 and σ_2^2 . However, if one wishes to test, for example, whether $\sigma 1^2$ is more than twice as large as σ_2^2 , one may choose $\vartheta_0 = 2$.
- We will call these tests variance ratio F-tests, which comes from the fact that if

 X_{11}, \ldots, X_{1n_1} is a random sample from the Normal (μ_1, σ_1^2) distribution and X_{21}, \ldots, X_{2n_2} is a random sample from the Normal (μ_2, σ_2^2) distribution

and if $\sigma_1^2/\sigma_2^2 = \vartheta$, then

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2}{S_2^2}/\vartheta \sim F_{n_1-1,n_2-1},$$

where F_{n_1-1,n_2-1} denotes the *F*-distribution with numerator degrees of freedom $n_1 - 1$ and denominator degrees of freedom $n_2 - 1$.

- For $\xi \in (0,1)$, let $F_{n_1-1,n_2-1,\xi}$ be the value which satisfies $\xi = P(R > F_{n_1-1,n_2-1,\xi})$, when $R \sim F_{n_1-1,n_2-1}$.
- Let $F_{F_{n_1-1,n_2-1}}$ denote the cdf of the F_{n_1-1,n_2-1} -distribution.
- Exercise: Suppose researchers wish to test, for two populations of interest which are assumed to be Normal, whether the variance σ_1^2 of the first population is equal to the variance σ_2^2 of the second population. They decide to collect a sample of size $n_1 = 20$ from the first population and a sample of size $n_2 = 25$ from the second population and to use the two-sided test with $\vartheta_0 = 1$ and $C_{2l} = 1/2$ and $C_{2r} = 2$; that is, they will reject $H_0: \sigma_1^2 = \sigma_2^2$ iff $S_1^2/S_2^2 < 1/2$ or $S_1^2/S_2^2 > 2$.
 - (i) What is the size of the test?
 - (ii) If $\sigma_1^2 = 1.5$ and $\sigma_2^2 = 1$, which type of inferential error is possible?
 - (iii) If $\sigma_1^2 = 1.5$ and $\sigma_2^2 = 1$, what is the probability the the test will lead to an incorrect decision?

(i) The size of the test is

$$\begin{aligned} P_{\sigma_1^2/\sigma_2^2=1}(S_1^2/S_2^2 < 1/2) + P_{\sigma_1^2/\sigma_2^2=1}(S_1^2/S_2^2 > 2) &= P(R < 1/2) + P(R > 2), \quad R \sim F_{19,24} \\ &= \mathsf{pf}(1/2, \mathsf{19}, \mathsf{24}) + \mathsf{1-pf}(2, \mathsf{19}, \mathsf{24}) \\ &= 0.1183526. \end{aligned}$$

- (ii) If $\sigma_1^2 = 1.5$ and $\sigma_2^2 = 1$, the correct decision is to reject H_0 ; if we fail to reject it, it is a Type II error.
- (iii) If $\sigma_1^2 = 1.5$ and $\sigma_2^2 = 1$, the probability of a Type II error is

$$\begin{split} P_{\sigma_1^2/\sigma_2^2=3/2}(1/2 < S_1^2/S_2^2 < 2) &= P_{\sigma_1^2/\sigma_2^2=3/2}((1/2)/(3/2) < (S_1^2/S_2^2)/(3/2) < 2/(3/2)) \\ &= P(1/3 < R < 4/3), \quad R \sim F_{19,24} \\ &= \mathrm{pf}\,(4/3,19,24) - \mathrm{pf}\,(1/3,19,24) \\ &= 0.7412179. \end{split}$$

• Exercise: Get expressions for the power functions in terms of the true ratio of the variances $\vartheta = \sigma_1^2/\sigma_2^2$ of the right-tailed, left-tailed, and two-sided variance ratio F-tests and calibrate the rejection regions, that is, find C_{1l} , C_{1r} , C_{2l} , and C_{2r} , such that for any $\alpha \in (0, 1)$ each test has size α .

1. The right-tailed test has power given by

$$\begin{split} \gamma(\vartheta) &= P_{\sigma_1^2/\sigma_2^2=\vartheta}((S_1^2/S_2^2)/\vartheta_0 > C_{1r}) \\ &= P_{\sigma_1^2/\sigma_2^2=\vartheta}((S_1^2/S_2^2)/\vartheta > C_{1r}(\vartheta_0/\vartheta)) \\ &= P(R > C_{1r}(\vartheta_0/\vartheta)), \quad R \sim F_{n_1-1,n_2-1} \\ &= 1 - F_{F_{n_1-1,n_2-1}}(C_{1r}(\vartheta_0/\vartheta)). \end{split}$$

The size is given by

$$\gamma(\vartheta_0) = 1 - F_{F_{n_1-1,n_2-1}}(C_{1r}).$$

The test will have size equal to α if $C_{1r} = F_{n_1-1,n_2-1,\alpha}$. 2. The left-tailed test has power given by

$$\begin{split} \gamma(\vartheta) &= P_{\sigma_1^2/\sigma_2^2=\vartheta}((S_1^2/S_2^2)/\vartheta_0 < C_{1l}) \\ &= P_{\sigma_1^2/\sigma_2^2=\vartheta}((S_1^2/S_2^2)/\vartheta < C_{1l}(\vartheta_0/\vartheta)) \\ &= P(R < C_{1l}(\vartheta_0/\vartheta)), \quad R \sim F_{n_1-1,n_2-1} \\ &= F_{F_{n_1-1,n_2-1}}(C_{1l}(\vartheta_0/\vartheta)). \end{split}$$

The size is given by

$$\gamma(\vartheta_0) = F_{F_{n_1-1,n_2-1}}(C_{1l})$$

The test will have size equal to α if $C_{1l} = F_{n_1-1,n_2-1,1-\alpha}$. 3. The two-sided test has power given by

$$\begin{split} \gamma(\vartheta) &= P_{\sigma_1^2/\sigma_2^2 = \vartheta}((S_1^2/S_2^2)/\vartheta_0 < C_{2l}) + P_{\sigma_1^2/\sigma_2^2 = \vartheta}((S_1^2/S_2^2)/\vartheta_0 > C_{2r}) \\ &= P_{\sigma_1^2/\sigma_2^2 = \vartheta}((S_1^2/S_2^2)/\vartheta < C_{2l}(\vartheta_0/\vartheta)) + P_{\sigma_1^2/\sigma_2^2 = \vartheta}((S_1^2/S_2^2)/\vartheta > C_{2r}(\vartheta_0/\vartheta)) \\ &= P(R < C_{2l}(\vartheta_0/\vartheta)) + P(R > C_{2r}(\vartheta_0/\vartheta)), \quad R \sim F_{n_1 - 1, n_2 - 1} \\ &= F_{F_{n_1 - 1, n_2 - 1}}(C_{1l}(\vartheta_0/\vartheta)) + 1 - F_{F_{n_1 - 1, n_2 - 1}}(C_{1r}(\vartheta_0/\vartheta)). \end{split}$$

The size is given by

$$\gamma(\vartheta_0) = F_{F_{n_1-1,n_2-1}}(C_{1l}) + 1 - F_{F_{n_1-1,n_2-1}}(C_{1r}).$$

The test will have size equal to α if $C_{2l} = F_{n_1-1,n_2-1,1-\alpha/2}$ and $C_{2r} = F_{n_1-1,n_2-1,\alpha/2}$.

• Exercise: Let

 X_{11}, \ldots, X_{1n_1} be a random sample from the $Normal(\mu_1, \sigma_1^2)$ distribution and X_{21}, \ldots, X_{2n_2} be a random sample from the $Normal(\mu_2, \sigma_2^2)$ distribution,

and suppose there are three researchers:

- Kwame to test $H_0: \sigma_1^2/\sigma_2^2 \le 1$ vs $H_1: \sigma_1^2/\sigma_2^2 > 1$ with Rej. H_0 iff $S_1^2/S_2^2 > F_{n_1-1,n_2-1,0.10}$

- Ama to test $H_0: \sigma_1^2/\sigma_2^2 \ge 1$ vs $H_1: \sigma_1^2/\sigma_2^2 < 1$ with Rej. H_0 iff $S_1^2/S_2^2 < F_{n_1-1,n_2-1,0.90}$
- Kobe to test H_0 : $\sigma_1^2/\sigma_2^2 = 1$ vs H_1 : $\sigma_1^2/\sigma_2^2 \neq 1$ with Rej. H_0 iff $S_1^2/S_2^2 < F_{n_1-1,n_2-1,0.95}$ or $S_1^2/S_2^2 > F_{n_1-1,n_2-1,0.05}$
- (i) What is the size of each test?
- (ii) Suppose $\sigma_1^2 = 1$ and $\sigma_2^2 = 2$. Which researcher is most likely to reject H_0 ?
- (iii) Suppose $\sigma_1^2 = 1$ and $\sigma_2^2 = 2$. Which researcher is least likely to reject H_0 ?
- (iv) Suppose $\sigma_1^2 = 1$ and $\sigma_2^2 = 2$. Which researcher may commit a Type I error?
- (v) Suppose $\sigma_1^2 = 2$ and $\sigma_2^2 = 1$. Which researcher may commit a Type I error?
- (vi) Suppose $\sigma_1^2 = 1$ and $\sigma_2^2 = 2$. Which researchers may commit a Type II error?
- (vii) Suppose $\sigma_1^2 = 2$ and $\sigma_2^2 = 1$. Which researchers may commit a Type II error?
- (viii) Based on the sample sizes $n_1 = 18$ and $n_2 = 17$, compute the power of each researcher's test when $\sigma_1^2 = 1$ and $\sigma_2^2 = 2$.
- (ix) Plot the power curves of the three researchers' tests together, where power is a function of $\vartheta = \sigma_1^2/\sigma_2^2$.
- (x) Suppose that with samples of sizes $n_1 = 18$ and $n_2 = 17$, $S_1^2 = 1.15$ and $S_2^2 = 1.87$ is observed. Compute the p-value of each researcher's test.

- (viii) We have $\vartheta_0 = 1$, and if $\sigma_1^2 = 1$ and $\sigma_2^2 = 2$ then $\vartheta = \sigma_1^2/\sigma_2^2 = 2$. In the following, let $R \sim F_{17,16}$.
 - The test of Kwame has power

$$P(R > F_{17,16,0.10}(1/2)) = 1 - F_{F_{17,16}}(F_{17,16,0.10}/2)$$

= 1 - pf(qf(.9,17,16)/2,17,16)
= 0.5355808.

– The test of Ama has power

$$P(R < F_{17,16,0.90}(1/2)) = F_{F_{17,16}}(F_{17,16,0.90}/2)$$

= pf(qf(.10,17,16)/2,17,16)
= 0.004645553.

– The test of Kobe has power

$$\begin{split} P(R < F_{17,16,0.95}(1/2)) + P(R > F_{17,16,0.05}/2) \\ &= F_{F_{17,16}}(F_{17,16,0.95}/2) + 1 - F_{F_{17,16}}(F_{17,16,0.05}/2) \\ &= \text{pf}(\text{qf}(.05,17,16)/2,17,16) \\ &\quad +1\text{-pf}(\text{qf}(.95,17,16)/2,17,16) \\ &= 0.3880993. \end{split}$$

(ix) The following R code makes the plot:

(x) We have $S_1^2/S_2^2 = 1.15/1.87 = 0.6149733$. So the *p*-value - for Kwame's test is $1 - F_{F_{17,16}}(0.6149733) = 1$ -pf(0.6149733,17,16) = 0.8351805.

- for Ama's test is $F_{F_{17,16}}(0.6149733) = pf(0.6149733, 17, 16) = 0.1648195.$

- for Kobe's test is $2[F_{F_{17,16}}(0.6149733)] = 2*pf(0.6149733,17,16) = 0.329639.$

r

• Formulas for variance ratio *F*-tests: Let

 X_{11}, \ldots, X_{1n_1} be a random sample from the Normal (μ_1, σ_1^2) distribution and X_{21}, \ldots, X_{2n_2} be a random sample from the Normal (μ_2, σ_2^2) distribution,

and for some ϑ_0 , define $R = (S_1^2/S_2^2)/\vartheta_0$. Then we have the following:

H_1	Reject H_0 at α iff	Power function $\gamma(\vartheta)$	<i>p</i> -value
$\sigma_1^2/\sigma_2^2 > \vartheta_0$	$R > F_{n_1 - 1, n_2 - 1, \alpha}$	$1 - F_{F_{n_1-1,n_2-1}}(F_{n_1-1,n_2-1,\alpha}(\vartheta_0/\vartheta))$	$1 - F_{F_{n_1-1,n_2-1}}(R)$
$\sigma_1^2/\sigma_2^2 < \vartheta_0$	$R < F_{n_1 - 1, n_2 - 1, 1 - \alpha}$	$F_{F_{n_1-1,n_2-1}}(F_{n_1-1,n_2-1,1-\alpha}(\vartheta_0/\vartheta))$	$F_{F_{n_1-1,n_2-1}}(R)$
$\sigma_1^2/\sigma_2^2 \neq \vartheta_0$	$\begin{vmatrix} R < F_{n_1-1,n_2-1,1-\alpha/2} \\ \text{or } R > F_{n_1-1,n_2-1,\alpha/2} \end{vmatrix}$	$\begin{vmatrix} F_{F_{n_1-1,n_2-1}}(F_{n_1-1,n_2-1,1-\alpha/2}(\vartheta_0/\vartheta)) \\ +1-F_{F_{n_1-1,n_2-1}}(F_{n_1-1,n_2-1,\alpha/2}(\vartheta_0/\vartheta)) \end{vmatrix}$	$\begin{vmatrix} 2 \cdot \min\{F_{F_{n_1-1,n_2-1}}(R), \\ 1 - F_{F_{n_1-1,n_2-1}}(R) \end{vmatrix}$