STAT 513 fa 2020 Lec 04 slides Comparing two Normal populations

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard. They are not intended to explain or expound on any material.

• Consider two random samples of sizes n_1 and n_2 :

$$\begin{aligned} X_{11}, \dots, X_{1n_1} &\stackrel{\text{ind}}{\sim} \operatorname{Normal}(\mu_1, \sigma_1^2) \\ X_{21}, \dots, X_{2n_2} &\stackrel{\text{ind}}{\sim} \operatorname{Normal}(\mu_2, \sigma_2^2), \end{aligned}$$

where μ_1 , μ_2 , σ_1^2 , and σ_2^2 are unknown.

- Let
 - \bar{X}_1 and S_1^2 denote the mean and variance of the first sample
 - \bar{X}_2 and S_2^2 denote the mean and variance of the second sample.
- Wish to compare
 - μ_1 and μ_2 by testing hypotheses about the difference $\mu_1 \mu_2$
 - σ_1^2 and σ_2^2 by testing hypotheses about the ratio σ_1^2/σ_2^2

イロト イポト イヨト イヨト 二日

Tests about $\mu_1 - \mu_2$ when $\sigma_1^2 = \sigma_2^2$:

Solution Right-tailed test: Test H_0 : $\mu_1 - \mu_2 \le \delta_0$ versus H_1 : $\mu_1 - \mu_2 > \delta_0$ with the test

Reject
$$H_0$$
 iff $\frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} > C_1.$

Solution Left-tailed test: Test H_0 : $\mu_1 - \mu_2 \ge \delta_0$ versus H_1 : $\mu_1 - \mu_2 < \delta_0$ with the test

Reject
$$H_0$$
 iff $\frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} < -C_1.$

• Two-sided test: Test H_0 : $\mu_1 - \mu_2 = \delta_0$ versus H_1 : $\mu_1 - \mu_2 \neq \delta_0$ with the test

Reject
$$H_0$$
 iff $\left| \frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \right| > C_2.$

(日) (四) (王) (王) (王)

Exercise: For any $\alpha \in (0, 1)$:

- Find C_1 and C_2 such that the tests on the previous slide have size α .
- **②** Find the power functions, in terms of $\delta = \mu_1 \mu_2$, of the size- α tests.

Distribution of equal-variances two-sample t-statistic Let $X_{11},\ldots,X_{1n} \stackrel{\text{ind}}{\sim} \operatorname{Normal}(\mu_1,\sigma_1^2)$ $X_{21},\ldots,X_{2n_2} \stackrel{\text{ind}}{\sim} \operatorname{Normal}(\mu_2,\sigma_2^2).$ with $\sigma_1^2 = \sigma_2^2 = \sigma^2$. Suppose $\mu_1 - \mu_2 = \delta$. Then for any δ_0 we have $\frac{\bar{X}_1 - \bar{X}_2 - \delta_0}{S_{\text{pooled}}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{\phi, n_1 + n_2 - 2}, \quad \text{where } \phi = \frac{\delta - \delta_0}{\sigma\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}.$

Show above...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

<u>Tests about $\mu_1 - \mu_2$ </u>: Let $X_{k1}, \ldots, X_{kn_k} \stackrel{\text{ind}}{\sim} \text{Normal}(\mu_k, \sigma^2)$, k = 1, 2.

For some null value δ_0 , define the test statistic

$$T=rac{ar{X}_1-ar{X}_2-\delta_0}{S_{ ext{pooled}}\sqrt{1/n_1+1/n_2}}.$$

Then we have the following:

H_1	Reject H_0 at α iff	Power function $\gamma(\mu)$
$\mu_1 - \mu_2 > \delta_0$	$T>t_{ u,lpha}$	$1- {\sf F}_{t_{\phi, u}}(t_{ u,lpha})$
$\mu_1 - \mu_2 < \delta_0$	$T < -t_{ u,lpha}$	$F_{t_{\phi, u}}(-t_{ u,lpha})$
$\mu_1 - \mu_2 \neq \delta_0$	$ T > t_{ u, lpha/2}$	$1 - [F_{t_{\phi,\nu}}(t_{\nu,\alpha/2}) - F_{t_{\phi,\nu}}(-t_{\nu,\alpha/2})]$

where $\nu = n_1 + n_2 - 2$ and $\phi = (\delta - \delta_0)/(\sigma \sqrt{1/n_1 + 1/n_2})$.

イロト イロト イヨト イヨト 二日

Exercise: Let $X_{k1}, \ldots, X_{kn_k} \stackrel{\text{ind}}{\sim} \text{Normal}(\mu_k, \sigma_k^2)$, k = 1, 2, with $\sigma_1^2 = \sigma_2^2 = \sigma^2$. Suppose:

• Simone to test H_0 : $\mu_1 - \mu_2 \leq 0$ vs H_1 : $\mu_1 - \mu_2 > 0$ with

Reject
$$H_0$$
 iff $rac{ar{X}_1 - ar{X}_2}{S_{ ext{pooled}} \sqrt{rac{1}{n_1} + rac{1}{n_2}}} > t_{n_1 + n_2 - 2, 0.10}$

• Helmut to test H_0 : $\mu_1 - \mu_2 \ge 0$ vs H_1 : $\mu_1 - \mu_2 < 0$ with

Reject
$$H_0$$
 iff $\frac{\bar{X}_1 - \bar{X}_2}{S_{\text{pooled}}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} < -t_{n_1+n_2-2,0.10}$

• Mechthild to test H_0 : $\mu_1 - \mu_2 = 0$ vs H_1 : $\mu_1 - \mu_2 \neq 0$ with

Reject
$$H_0$$
 iff $\Big| \frac{\bar{X}_1 - \bar{X}_2}{S_{\text{pooled}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \Big| > t_{n_1 + n_2 - 2, 0.05}$

What is the size of each test?

3 Plot the three power curves $\gamma(\delta)$ under $n_1 = 10$, $n_2 = 15$, and $\sigma^2 = 4$.

<ロ> (四) (四) (王) (王) (王)

For the unequal variances $\sigma_1^2 \neq \sigma_2^2$ case, see Lecture 4 notes.

イロト イロト イヨト イヨト 三日

Tests about σ_1^2/σ_2^2 :

Q Right-tailed test: Test H_0 : $\sigma_1^2/\sigma_2^2 \le \vartheta_0$ versus H_1 : $\sigma_1^2/\sigma_2^2 > \vartheta_0$ with the test

Reject
$$H_0$$
 iff $\frac{S_1^2}{S_2^2}/\vartheta_0 > C_{1r}$.

So Left-tailed test: Test $H_0: \sigma_1^2/\sigma_2^2 \ge \vartheta_0$ versus $H_1: \sigma_1^2/\sigma_2^2 < \vartheta_0$ with the test

Reject
$$H_0$$
 iff $\frac{S_1^2}{S_2^2}/\vartheta_0 < C_{1/}$.

• Two-sided test: Test H_0 : $\sigma_1^2/\sigma_2^2 = \vartheta_0$ versus H_1 : $\sigma_1^2/\sigma_2^2 \neq \vartheta_0$ with the test

Reject
$$H_0$$
 iff $\frac{S_1^2}{S_2^2}/\vartheta_0 < C_{2I}$ or $\frac{S_1^2}{S_2^2}/\vartheta_0 > C_{2r}$

イロト イロト イヨト イヨト 三日

Exercise: For any $\alpha \in (0, 1)$:

- Solution Find C_{1r} , C_{1l} , and C_{2l} and C_{2r} such that these tests have size α .
- **②** Find the power functions, in terms of $\vartheta = \sigma_1^2 / \sigma_2^2$, of the size- α tests.

Distribution of variance-ratio *F*-statistic Let $X_{k1}, \ldots, X_{kn_k} \stackrel{\text{ind}}{\sim} \text{Normal}(\mu_k, \sigma_k^2)$, k = 1, 2 with $\sigma_1^2/\sigma_2^2 = \vartheta$. Then $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2}{S_2^2}/\vartheta \sim F_{n_1-1,n_2-1}.$

 F_{n_1-1,n_2-1} denotes *F*-dist. with numerator df $n_1 - 1$ and denominator df $n_2 - 1$.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

Tests about
$$\sigma_1^2/\sigma_2^2$$
: Let $X_{k1}, \ldots, X_{kn_k} \stackrel{\text{ind}}{\sim} \mathsf{Normal}(\mu_k, \sigma_k^2)$, $k = 1, 2$.

For some null value ϑ_0 , define the test statistic

 $R = (S_1/S_2)/\vartheta_0.$

Then we have the following:

H_1	Reject H_0 at $lpha$ iff	Power function $\gamma(artheta)$
$\sigma_1^2/\sigma_2^2 > \vartheta_0$	$R > F_{n_1-1,n_2-1,\alpha}$	$1 - F_{F_{n_1-1,n_2-1}}(F_{n_1-1,n_2-1,\alpha}(\vartheta_0/\vartheta))$
$\sigma_1^2/\sigma_2^2 < \vartheta_0$	$R < F_{n_1-1,n_2-1,1-\alpha}$	$F_{F_{n_1-1,n_2-1}}(F_{n_1-1,n_2-1,1-\alpha}(\vartheta_0/\vartheta))$
$\sigma_1^2/\sigma_2^2 \neq \vartheta_0$	$R < F_{n_1-1,n_2-1,1-lpha/2}$ or $R > F_{n_1-1,n_2-1,lpha/2}$	$ \begin{vmatrix} F_{F_{n_{1}-1,n_{2}-1}}(F_{n_{1}-1,n_{2}-1,1-\alpha/2}(\vartheta_{0}/\vartheta)) \\ +1-F_{F_{n_{1}-1,n_{2}-1}}(F_{n_{1}-1,n_{2}-1,\alpha/2}(\vartheta_{0}/\vartheta)) \end{vmatrix} $

2

イロト イポト イヨト イヨト

Exercise: Let $X_{k1}, \ldots, X_{kn_k} \stackrel{\text{ind}}{\sim} \text{Normal}(\mu_k, \sigma_k^2)$, k = 1, 2. Suppose:

• Kwame to test $H_0: \sigma_1^2/\sigma_2^2 \le 1$ vs $H_1: \sigma_1^2/\sigma_2^2 > 1$ with

Rej. H_0 iff $S_1^2/S_2^2 > F_{n_1-1,n_2-1,0.10}$

• Ama to test H_0 : $\sigma_1^2/\sigma_2^2 \ge 1$ vs H_1 : $\sigma_1^2/\sigma_2^2 < 1$ with

Rej. H_0 iff $S_1^2/S_2^2 < F_{n_1-1,n_2-1,0.90}$

• Kobe to test $H_0: \sigma_1^2/\sigma_2^2 = 1$ vs $H_1: \sigma_1^2/\sigma_2^2 \neq 1$ with Rej. H_0 iff $S_1^2/S_2^2 < F_{n_1-1,n_2-1,0,95}$ or $S_1^2/S_2^2 > F_{n_1-1,n_2-1,0,05}$

Suppose σ₁² = 1 and σ₂² = 2. Who may commit a Type I error?
Suppose σ₁² = 2 and σ₂² = 1. Who may commit a Type I error?
Suppose σ₁² = 1 and σ₂² = 2. Who may commit a Type II error?
Suppose σ₁² = 2 and σ₂² = 1. Who may commit a Type II error?

Exercise: Let $X_{k1}, \ldots, X_{kn_k} \stackrel{\text{ind}}{\sim} \text{Normal}(\mu_k, \sigma_k^2)$, k = 1, 2. Suppose:

• Kwame to test $H_0: \sigma_1^2/\sigma_2^2 \le 1$ vs $H_1: \sigma_1^2/\sigma_2^2 > 1$ with Rej. H_0 iff $S_1^2/S_2^2 > F_{\alpha_1-1,\alpha_2-1,0,10}$

• Ama to test H_0 : $\sigma_1^2/\sigma_2^2 \ge 1$ vs H_1 : $\sigma_1^2/\sigma_2^2 < 1$ with

Rej. H_0 iff $S_1^2/S_2^2 < F_{n_1-1,n_2-1,0.90}$

- Kobe to test $H_0: \sigma_1^2/\sigma_2^2 = 1$ vs $H_1: \sigma_1^2/\sigma_2^2 \neq 1$ with Rej. H_0 iff $S_1^2/S_2^2 < F_{n_1-1,n_2-1,0.95}$ or $S_1^2/S_2^2 > F_{n_1-1,n_2-1,0.05}$
- What is the size of each test?
- **(**) Under $n_1 = 18$ and $n_2 = 17$, plot the three power curves $\gamma(\vartheta)$ together.
- ② Suppose that with samples of sizes $n_1 = 18$ and $n_2 = 17$, $S_1^2 = 1.15$ and $S_2^2 = 1.87$ is observed. Compute the *p*-value of each researcher's test.

<ロ> (四) (四) (王) (王) (王)

ъ.

<ロ> (四) (四) (三) (三) (三)

2

<ロ> (四) (四) (三) (三) (三)

2

イロト イポト イヨト イヨト