
STAT 513 fa 2019 Lec 05

Some large-sample tests and sample size calculations

Karl B. Gregory

Large-sample tests for means and proportions

• We consider some tests concerning means and proportions which can be used when sample sizes
are large. Each relies upon the Central Limit Theorem.

• Central Limit Theorem: Let X1, . . . , Xn be a random sample from a distribution with mean
µ and variance σ2 <∞. Then

√
n(X̄n − µ)/σ → Normal(0, 1) in distribution

as n→∞.

• Corollary via Slutzky’s Theorem. Under the same settings, if Sn is a consistent estimator of
σ, then √

n(X̄n − µ)/Sn → Normal(0, 1) in distribution

as n→∞.

• Theses results allow us to easily construct tests of hypotheses about the mean which, when n is
large, do not require that the population distribution be Normal.

• Formulas for large-sample tests about the mean: Let X1, . . . , Xn be a random sample from
a distribution with mean µ and variance σ2 <∞, and for some µ0, let Tn =

√
n(X̄n−µ0)/Sn. We

tabulate below some tests of hypotheses about the mean along with their large-n power functions
and p-value formulas:

H0 H1 Reject H0 at α iff Approx. power function γ(µ) Approx. p-value

µ ≤ µ0 µ > µ0 Tn > zα 1− Φ(zα −
√
n(µ− µ0)/σ) 1− Φ(Tn)

µ ≥ µ0 µ < µ0 Tn < −zα Φ(−zα −
√
n(µ− µ0)/σ) Φ(Tn)

µ = µ0 µ 6= µ0 |Tn| > zα/2 1− [Φ(zα/2 −
√
n(µ− µ0)/σ) 2[1− Φ(|Tn|)]

−Φ(−zα/2 −
√
n(µ− µ0)/σ)]
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• We now consider a special case of sampling from a non-Normal population: when X1, . . . , Xn is a
random sample from the Bernoulli(p) distribution.

• Formulas for large-sample tests about the proportion: Let X1, . . . , Xn be a random sample
from the Bernoulli(p) distribution and for some p0 ∈ (0, 1) let Zn =

√
n(p̂n − p0)/

√
p0(1− p0),

where p̂n = X̄n. We tabulate below some tests of hypotheses about p along with their large-n
power functions and p-value formulas, using the notation σ2

0 = p0(1− p0) and σ2 = p(1− p).

H0 H1 Reject H0 at α iff Approx. power function γ(p) Approx. p-value

p ≤ p0 p > p0 Zn > zα 1− Φ((σ0/σ)(zα −
√
n(p− p0)/σ0)) 1− Φ(Zn)

p ≥ p0 p < p0 Zn < −zα Φ((σ0/σ)(−zα −
√
n(p− p0)/σ0)) Φ(Zn)

p = p0 p 6= p0 |Zn| > zα/2 1− [Φ((σ0/σ)(zα/2 −
√
n(p− p0)/σ)) 2[1− Φ(|Zn|)]

−Φ((σ0/σ)(−zα/2 −
√
n(p− p0)/σ0))]

A rule of thumb is to use these tests only when min{np0, n(1− p0)} ≥ 15. Then the sample size
is “large enough” for Zn to be approximately Normal.

• Exercise:Verify the asymptotic power function in the above table for the test of H0: p ≤ p0 versus
H1: p > p0.

Answer: If X1, . . . , Xn is a random sample from the Bernoulli(p) distribution, then the Central
Limit Theorem gives

√
n(p̂− p)/

√
p(1− p)→ Normal(0, 1) in distribution

as n→∞. Therefore, if n is large, the power is given approximately by

γ(p) = Pp(
√
n(p̂− p0)/

√
p0(1− p0) > zα)

= Pp(
√
n(p̂− p0)/

√
p(1− p) >

√
p0(1− p0)/

√
p(1− p)zα)

= Pp(
√
n(p̂− p)/

√
p(1− p) +

√
n(p− p0)/

√
p(1− p)) >

√
p0(1− p0)/

√
p(1− p)zα)

= Pp(
√
n(p̂− p)/

√
p(1− p) >

√
p0(1− p0)/

√
p(1− p)zα −

√
n(p− p0)/

√
p(1− p))

= P (Z >
√
p0(1− p0)/

√
p(1− p)zα −

√
n(p− p0)/

√
p(1− p)), Z ∼ Normal(0, 1)

= 1− Φ(
√
p0(1− p0)/

√
p(1− p)zα −

√
n(p− p0)/

√
p(1− p))

= 1− Φ((σ0/σ)(zα −
√
n(p− p0)/σ0)),

letting σ =
√
p(1− p) and σ0 =

√
p0(1− p0).

• We can also use the Central Limit Theorem to construct tests for comparing the means of two
non-Normal populations.
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• Formulas for large-sample tests comparing two means: Let

X11, . . . , X1n1 be a random sample from a distribution with mean µ1 and variance σ2
1 <∞

and X21, . . . , X2n1 be a random sample from a distribution with mean µ2 and variance σ2
2 <∞,

and for some δ0, define

T =
X̄1 − X̄2 − δ0√
S2

1/n1 + S2
2/n2

.

The following table give some tests concerning µ1 − µ2 and gives power functions and p-value
formulas which are approximately correct if n1 and n2 are large (say min{n1, n2} ≥ 30):

H1 Rej. H0 at α iff Approx. power function γ(δ), δ = µ1 − µ2 Approx. p-value

µ1 − µ2 > δ0 T > zα 1− Φ(zα − (δ − δ0)/
√
σ2

1/n1 + σ2
2/n2) 1− Φ(T )

µ1 − µ2 < δ0 T < −zα Φ(−zα − (δ − δ0)/
√
σ2

1/n1 + σ2
2/n2) Φ(T )

µ1 − µ2 6= δ0 |T | > zα/2 1− [Φ(zα/2 − (δ − δ0)/
√
σ2

1/n1 + σ2
2/n2) 2[1− Φ(|T |)]

−Φ(−zα/2 − (δ − δ0)/
√
σ2

1/n1 + σ2
2/n2)]

Sample size calculations

• Sample size calculations center on two questions:

(i) How small a deviation from the null is it of interest to detect?

(ii) With what probability do we wish to detect it?

• Exercise: Suppose you wish to test the hypotheses H0: µ = 500 mL versus H1: µ 6= 500 mL,
where µ is the mean amount of a drink in bottles labeled as containing 500 mL, and suppose you
assume that the standard deviation is σ = 2 mL. Based on the volumes X1, . . . , Xn of n randomly
selected bottles, you plan to test the hypotheses using the test

Reject H0 iff |
√
n(X̄n − 500)/2| > z0.025.

(i) Plot power curves for the sample sizes n = 5, 10, 20, 40, 80, 160 across µ ∈ (497, 503), assum-
ing that the volumes follow a Normal distribution.

(ii) Suppose you wish to detect a deviation as small as 1 mL of the mean from 500 mL with
probability at least 0.80 (deviations of µ from 500 mL of less than 1 mL are nothing to worry
about, say). Based on the plot, which of the sample sizes n = 5, 10, 20, 40, 80, 160 ensure this?

(iii) What is the smallest of the sample sizes n = 5, 10, 20, 40, 80, 160 under which the test has
power at least 0.80 for values of µ at least 1 mL away from 500 mL?
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Answers:

(i) The following R code produces the plot:

mu.0 <- 500

sigma <- 2

mu.seq <- seq(497,503,length=500)

n.seq <- c(5,10,20,40,80,160)

power <- matrix(NA,length(mu.seq),length(n.seq))

for(j in 1:length(n.seq))

{

power[,j] <- 1-(pnorm(qnorm(.975)-sqrt(n.seq[j])*(mu.seq - mu.0)/sigma) -

pnorm(-qnorm(.975)-sqrt(n.seq[j])*(mu.seq - mu.0)/sigma))

}

plot(mu.seq,power[,1],type="l",ylim=c(0,1),xlab="mu",ylab="power")

for(j in 2:length(n.seq))

{

lines(mu.seq,power[,j])

}

abline(v=mu.0,lty=3) # vert line at null value

abline(h=0.05,lty=3) # horiz line at size
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(ii) The sample sizes n = 40, 80, 160 ensure this.
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(iii) The sample size n = 40 is the smallest of these which ensures this.

• In the above exercise, the power curves of the test under several sample sizes were plotted, and
these were used to determine a sample size which would give high enough power. We are interested
in getting formulas for the smallest sample size under which a test will have at least a certain
power under some magnitude of deviation from the null.

• To make sample size calculations, the researcher must specify two values in answer to the two
central questions of sample size calculations stated above. Let

(i) δ∗ be the smallest deviation from the null that we wish to detect.

(ii) γ∗ be the smallest probability with which we wish to detect it.

We want to find the smallest sample size n under which the test has power γ∗ to detect a deviation
from the null as small as δ∗. We will denote this sample size by n∗.

• Given a parameter θ ∈ Θ ⊂ R and given null and alternate hypotheses H0: θ ∈ Θ0 versus H1:
θ ∈ Θ1, we define the “deviation of θ from the null” as the distance

d(θ; Θ0) = inf
θ̃∈Θ0

|θ − θ̃|.

If θ ∈ Θ0, then the deviation d(θ; Θ0) of θ from is equal to zero. If θ /∈ Θ0, then d(θ; Θ0) is equal
to the distance between θ and the value in Θ0 which is closest to θ.

• If the parameter θ has dimension d ≥ 1, such that θ ∈ Θ ⊂ Rd, we define for any set Θ0 ⊂ Rd the
distance

d(θ; Θ0) = inf
θ̃∈Θ0

‖θ − θ̃‖2,

where for any x ∈ Rd, ‖x‖2 = (x2
1 + · · · + x2

d)
1/2 is the length of the d-dimensional vector x in

d-dimensional Euclidean space. Thus for any θ and θ̃ in Rd, ‖θ− θ̃‖2 is the Euclidean distance in
Rd between θ and θ̃.

Examples:

– For p ∈ (0, 1), consider H0: p = 1/2 and H1: p 6= 1/2. Then the null set consists of a single
point 1/2, so that the deviation of any p from the null is

d(p; {1/2}) = inf
p̃∈{1/2}

|p− p̃| = |p− 1/2|,

which is simply the distance between p and 1/2.

– For µ ∈ (−∞,∞), consider H0: µ ≤ 10 and H1: µ > 10. Then the null set is the set
(−∞, 10], so that the deviation of any µ from the null is

d(µ; (−∞, 10]) = inf
µ̃∈(−∞,10]

|µ− µ̃| =
{

0 if µ ≤ 10
µ− 10 if µ > 10,

so that when H0 is true the distance is zero and when H1 is true the distance is the amount
by which µ exceeds 10.
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– For sets of hypotheses in which the alternate hypothesis takes any of the forms, θ > θ0,
θ < θ0, or θ 6= θ0, for some θ0, we have

d(θ; Θ0) =

{
0 if θ ∈ Θ0

|θ − θ0| if θ ∈ Θ1.

– Suppose θ consists of two parameters so that θ = (θ1, θ2)T , and consider the hypotheses H0:
θ1 = θ2 versus H1: θ1 6= θ2. Then the null space is Θ0 = {(x, y) : x = y}. In this case for any
(θ1, θ2) pair, we have

d((θ1, θ2)T ; Θ0) = inf
{(x,y):x=y}

‖(θ1, θ2)T − (x, y)T‖2 = |θ1 − θ2|/
√

2,

which is the shortest distance of any line segment connecting the point (θ1, θ2) to the line
given by y = x.

• We may now give a general expression for n∗ in terms of γ∗ and δ∗. Given a parameter θ ∈ Θ, null
and alternate hypotheses H0: θ ∈ Θ0 versus H1: θ ∈ Θ1, and a test which has, under a sample of
size n, the power function γn(θ) : Θ → [0, 1], for n = 1, 2, . . . , the smallest sample size n under
which the test has power greater than or equal to γ∗ to detect deviations from the null as small
as δ∗ is given by

n∗ = inf

{
n ∈ N : inf

{θ∈Θ:d(θ;Θ0)≥δ∗}
γn(θ) ≥ γ∗

}
,

where N = {1, 2, 3, . . . } is the set of natural numbers.

• Is the above expression needlessly complicated? Well, we will come to some simpler formulas for
tests which we often encounter, but the above expression works for any situation. To get a sample
size “recipe” which works for any situation, it has to be a bit abstract. To break it down, read
each piece separately: The first infimum over n ∈ N indicates that we are looking for a small
sample size. The second infimum asks, “what is the lowest power of the test over values of the
parameter for which we would like to reject the null?”. We want this lowest power to be no lower
than γ∗.

• Exercise (cont): Suppose you now wish to test the one-sided set of hypotheses H0: µ ≥ 500 mL
versus H1: µ < 500 mL (it will be easier to begin with a one-sided example), where µ is the
mean amount of a drink in bottles labeled as containing 500 mL, and suppose you assume that the
standard deviation is σ = 2 mL. Based on the volumes X1, . . . , Xn of n randomly selected bottles,
you plan to test the hypotheses using the test

Reject H0 iff
√
n(X̄n − 500)/2 < −z0.05.

(i) Make a sketch showing what the power curve should look like.

(ii) Find the smallest sample size under which the test will have a power of at least 0.80 to detect
a deviation as small as 1 mL from the null (suppose it does not matter if the average volume
is less than 500 by less than 1 mL).
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(iii) Plot the power curve of the test under this sample size. Also include power curves for the
test under a sample with 10 fewer observations and a sample with 10 more observations.

Answers:

(ii) We have γ∗ = 0.80 and δ∗ = 1. The power function of the test for any sample size n is

γn(µ) = Φ(−z0.05 −
√
n(µ− 500)/2).

We are interested the power whenever µ is at least δ∗ = 1 mL below 500, that is, when µ is
in the set

{µ ∈ (−∞,∞) : d(µ; [500,∞)) ≥ 1} = (−∞, 499].

Since the power function γn(µ) is decreasing in µ, its smallest value over µ ∈ (−∞, 499]
occurs at µ = 499, so we have

inf
{µ∈(−∞,∞):d(µ;[500,∞))≥1}

γn(µ) = γn(499) = Φ(−z0.05 −
√
n(499− 500)/2).

Now we must find the smallest n such that this power is at least γ∗ = 0.80. That is, we need

n∗ = inf
{
n ∈ N : Φ(−z0.05 −

√
n(499− 500)/2) ≥ 0.80

}
= inf

{
n ∈ N : −z0.05 −

√
n(499− 500)/2 ≥ Φ−1(0.80)

}
= inf

{
n ∈ N : −

√
n ≥ 2(z0.20 + z0.05)/(499− 500)

}
= inf

{
n ∈ N : n ≥ 22(z0.20 + z0.05)2/(499− 500)2

}
= b22(z0.20 + z0.05)2/(1)2c+ 1

= floor(2**2*(qnorm(.8)+qnorm(.95))**2/(1)**2)+1

= 25.

(iii) The following R code makes the plot:
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mu.0 <- 500

sigma <- 2

mu.seq <- seq(498,501,length=500)

n.seq <- c(15,25,35)

power <- matrix(NA,length(mu.seq),length(n.seq))

for(j in 1:length(n.seq))

{

power[,j] <- pnorm(-qnorm(.95) - sqrt(n.seq[j])*(mu.seq - mu.0)/2)

}

plot(mu.seq,power[,1],type="l",ylim=c(0,1),xlab="mu",ylab="power",lty=2)

lines(mu.seq,power[,2],lty=1)

lines(mu.seq,power[,3],lty=4)

abline(v=mu.0,lty=3) # vert line at null value

abline(h=0.05,lty=3) # horiz line at size

abline(v = mu.0 - 1,lty=3) # vert line at detect boundary

abline(h = 0.8,lty=3) # horiz line at desired power at detect boundary
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• If we want a test to have power greater than or equal to γ∗, it is the same as wanting the probability
of a Type II error to be less than or equal to 1−γ∗. Let β∗ = 1−γ∗ denote from now on a desired
upper bound on the Type II error probability.

• Sample size formulas for tests about a mean: Suppose you are to draw a random sample
X1, . . . , Xn from a population with mean µ and variance σ2 < ∞, and for some µ0 define Tn =√
n(X̄n−µ0)/Sn. The following table gives the sample sizes required in order that the power of the

8



test to detect a deviation from the null of size δ∗ > 0 be at least γ∗. In the table β∗ = 1−γ∗, so that
β∗ is the desired upper bound on the probability of Type II error. Thus n∗ is the smallest sample
size required such that for deviations from the null as small as δ∗, the Type II error probability
will not exceed β∗.

H0 H1 Rej. at α iff choose n∗ as smallest integer greater than

µ ≤ µ0 µ > µ0 Tn > zα σ2(zα + zβ∗)2/(δ∗)2

µ ≥ µ0 µ < µ0 Tn < −zα σ2(zα + zβ∗)2/(δ∗)2

µ = µ0 µ 6= µ0 |Tn| > zα/2 σ2(zα/2 + zβ∗)2/(δ∗)2

• Exercise: Verify the sample size formula in the above table for the two-sided test.

Answer: For each n, the power function for the test is given by

Φ(−zα/2 −
√
n(µ− µ0)/σ) + 1− Φ(zα/2 −

√
n(µ− µ0)/σ).

If we consider the case µ > µ0, then as n increases, most of the contribution to the power comes
from the right tail

1− Φ(zα/2 −
√
n(µ− µ0)/σ),

whereas in the case µ < µ0, more of the power comes from the left tail

Φ(−zα/2 −
√
n(µ− µ0)/σ).

In the case µ > µ0, ignoring the contribution from the left tail, we write

1− Φ(zα/2 −
√
n(µ− µ0)/σ) ≥ γ∗

⇐⇒ 1− γ∗ ≥ Φ(zα/2 −
√
n(µ− µ0)/σ)

(draw a picture!) ⇐⇒ zα/2 −
√
n(µ− µ0)/σ ≤ zγ∗ = −zβ∗ (zγ∗ = −z1−γ∗ = −zβ∗)

⇐⇒ zα/2 + zβ∗ ≤
√
n(µ− µ0)/σ

⇐⇒ n ≥ σ2(zα/2 + zβ∗)2/|µ− µ0|2.

In the case µ < µ0, ignoring the contribution from the right tail, we write

Φ(−zα/2 −
√
n(µ− µ0)/σ) ≥ γ∗

(draw a picture!) ⇐⇒ −zα/2 −
√
n(µ− µ0)/σ ≥ z1−γ∗ = zβ∗

⇐⇒
√
n ≥ −σ(zα/2 + zβ∗)/(µ− µ0)

⇐⇒ n ≥ σ2(zα/2 + zβ∗)2/|µ− µ0|2.

Now if we replace |µ− µ0| with δ∗ we have the formula.
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Our ignoring one or the other tail based on whether µ > µ0 or µ < µ0 corresponds to using the
approximation

γn(µ) = Φ(−zα/2 −
√
n(µ− µ0)/σ) + 1− Φ(zα/2 −

√
n(µ− µ0)/σ)

≈ 1− Φ(zα/2 −
√
n|µ− µ0|/σ),

which becomes more accurate for larger |µ− µ0|.

• Remark: Note that the sample size formulas do not assume that the sample will be drawn from
a Normal population; they assume only that the sample size resulting from the calculation will be
large enough for the Central Limit Theorem to have taken effect. If we knew that the population
was Normal, we could do sample size calculations using the exact distribution of the test statistic√
n(X̄n − µ)/Sn, which would then be the tn−1 distribution. However, since the distribution of√
n(X̄n−µ)/Sn is different for every sample size, we cannot get simple sample size formulas as we

have done by using the asymptotic distribution. In practice, even when the population is believed
to be Normal, the formulas in the table above are used because they are simple and give answers
which are very close to the sample sizes one would obtain using exact calculations.

• Sample size formulas for tests about a proportion: Suppose you are to draw a random
sample X1, . . . , Xn from the Bernoulli(p) distribution, and for some p0 define Zn =

√
n(p̂ −

p0)/
√
p0(1− p0). The following table gives the sample sizes required in order that the power of

the test to detect a deviation from the null of size δ∗ > 0 be at least γ∗. In the table β∗ = 1− γ∗.

H0 H1 Rej. at α iff choose n∗ as smallest integer greater than

p ≤ p0 p > p0 Zn > zα

[√
(p0 + δ∗)(1− (p0 + δ∗))zβ∗ +

√
p0(1− p0)zα

]2

/(δ∗)2

p ≥ p0 p < p0 Zn < −zα
[√

(p0 − δ∗)(1− (p0 − δ∗))zβ∗ +
√
p0(1− p0)zα

]2

/(δ∗)2

p = p0 p 6= p0 |Zn| > zα/2 max

{[√
(p0 + δ∗)(1− (p0 + δ∗))zβ∗ +

√
p0(1− p0)zα/2

]2

,[√
(p0 − δ∗)(1− (p0 − δ∗))zβ∗ +

√
p0(1− p0)zα/2

]2
}
/(δ∗)2

• Exercise: Verify the first sample size formula in the above table.

Answers: The asymptotic power function for any sample size n is

γn(p) = 1− Φ((σ0/σ)(zα −
√
n(p− p0)/σ0)).

We are interested in the probability of rejecting H0 when p > p0 +δ∗ for some δ∗ > 0. The smallest
power of the test over all p > p0 + δ∗ is given by

inf
p≥p0+δ∗

γn(p) = γn(p0 + δ∗) = 1− Φ(σ0/
√

(p0 + δ∗)(1− (p0 + δ∗))(zα −
√
n(p0 + δ∗ − p0)/σ0)).
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We now find the smallest n such that the above is greater than or equal to γ∗. We have

1− Φ(σ0/
√

(p0 + δ∗)(1− (p0 + δ∗))(zα −
√
n(p0 + δ∗ − p0)/σ0)) ≥ γ∗

⇐⇒ Φ(σ0/
√

(p0 + δ∗)(1− (p0 + δ∗))(zα −
√
nδ∗/σ0)) ≤ 1− γ∗

⇐⇒ σ0/
√

(p0 + δ∗)(1− (p0 + δ∗))(zα −
√
nδ∗/σ0) ≤ Φ−1(1− γ∗).

Letting β∗ = 1−γ∗, we have Φ(γ∗) = zβ∗ so that we can write Φ−1(1−γ∗) = −zβ∗ . Then we have

zα −
√
nδ∗/σ0 ≤ −

√
(p0 + δ∗)(1− (p0 + δ∗))/σ0zβ∗

⇐⇒
√
nδ∗ ≥

√
(p0 + δ∗)(1− (p0 + δ∗))zβ∗ + σ0zα

⇐⇒ n ≥ [
√

(p0 + δ∗)(1− (p0 + δ∗))zβ∗ +
√
p0(1− p0)zα]2/(δ∗)2.

This verifies the formula.

• Quite often sample sizes are determined based on the desired width of a confidence interval for a
parameter. One specifies the desired width as well as the confidence level and works backwards to
find the minimum sample size required. This strategy does not consider the desired power under
certain deviations from the null. For details about the confidence interval approach, see the STAT
512 notes.

• Exercise: Let X1, . . . , Xn represent a random sample from the Bernoulli(p) distribution, where p
is unknown and suppose there are three researchers:

– Fausto to test H0: p ≤ 1/4 vs H1: p > 1/4 with Rej. H0 iff p̂n−1/4√
(1/4)(1−1/4)/n

> zα

– Inés to test H0: p ≥ 1/4 vs H1: p < 1/4 with Rej. H0 iff p̂n−1/4√
(1/4)(1−1/4)/n

< −zα

– Germán to test H0: p = 1/4 vs H1: p 6= 1/4 with Rej. H0 iff

∣∣∣∣ p̂n−1/4√
(1/4)(1−1/4)/n

∣∣∣∣ > zα/2

(i) If each researcher wishes to detect a deviation from the null as small as 0.10 with probability
at least 0.80, what sample size should each use?

(ii) Using these sample sizes, plot the power curves for the three researchers’ tests.
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Answers:

(i) Using the sample size formulas, we get

– for Fausto, n∗ = 125.

– for Inés, n∗ = 103.

– for Germán, n∗ = 157.

(ii) The following R code makes the plot:

p.seq <- seq(0.1,.5,length=200)

p.0 <- 1/4

sig.0 <- sqrt(p.0*(1-p.0))

sig <- sqrt(p.seq*(1-p.seq))

pwr.gt <- 1-pnorm(sig.0/sig*(qnorm(.95)-sqrt(125)*(p.seq-p.0)/sig.0))

pwr.lt <- pnorm(sig.0/sig*(-qnorm(.95)-sqrt(103)*(p.seq-p.0)/sig.0))

pwr.neq <- pnorm(sig.0/sig*(-qnorm(.975)-sqrt(157)*(p.seq-p.0)/sig.0))

+1-pnorm(sig.0/sig*(qnorm(.975)-sqrt(157)*(p.seq-p.0)/sig.0))

plot(p.seq, pwr.neq,type="l",ylim=c(0,1),xlab="p",ylab="power")

lines(p.seq, pwr.gt,lty=2)

lines(p.seq, pwr.lt,lty=4)

abline(v=p.0,lty=3) # vert line at null value

abline(h=0.05,lty=3) # horiz line at size

abline(v=p.0-.1,lty=3)

abline(v=p.0+.1,lty=3)

abline(h=.8, lty=3)
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• Sample size formulas for tests comparing two means: Suppose you are to draw random
samples

X11, . . . , X1n1 from a distribution with mean µ1 and variance σ2
1 <∞

and X21, . . . , X2n1 from a distribution with mean µ2 and variance σ2
2 <∞,

and define the quantity

T =
X̄1 − X̄2 − (0)√
S2

1/n1 + S2
2/n2

,

on the basis of which you plan to test hypotheses about the difference µ1−µ2. The following table
gives the smallest values of n such that for all n1 and n2 satisfying

n1 ≥
(

σ2

σ1 + σ2

)
n and n2 ≥

(
σ2

σ1 + σ2

)
n

the power of the test to detect a difference in means in the direction of the alternative of size
δ∗ > 0 will be at least γ∗. In the table β∗ = 1− γ∗.

H0 H1 Rej. at α iff choose n greater than or equal to

µ1 − µ2 ≤ 0 µ1 − µ2 > 0 T > zα [(zβ∗ + zα)(σ1 + σ2)]2/(δ∗)2

µ1 − µ2 ≥ 0 µ1 − µ2 < 0 T < −zα [(zβ∗ + zα)(σ1 + σ2)]2/(δ∗)2

µ1 − µ2 = 0 µ1 − µ2 6= 0 |T | > zα/2 [(zβ∗ + zα/2)(σ1 + σ2)]2/(δ∗)2

13



• Exercise: Verify the first sample size formula.

Answers: Firstly, for any n > 0, let

n1 =

(
σ1

σ1 + σ2

)
n and n2 =

(
σ2

σ1 + σ2

)
n,

ignoring the fact that these may not be whole numbers. Then for any n > 0, we have

σ2
1

n1

+
σ2

2

n2

=
1

n

[
σ2

1

σ1/(σ1 + σ2)
+

σ2
2

σ2/(σ1 + σ2)

]
=

1

n
[σ1(σ1 + σ2) + σ2(σ1 + σ2)] =

1

n
(σ1 + σ2)2,

which is the minimum variance of X̄1− X̄2 under a fixed total sample size n. Under these choices
of n1 and n2, the power function of the test for large n is approximately

γn(δ) = 1− Φ(zα −
√
nδ/(σ1 + σ2)).

The smallest power of the test over all δ > δ∗ is given by

inf
δ>δ∗

γn(δ) = γn(δ∗) = 1− Φ(zα −
√
nδ∗/(σ1 + σ2)).

We now find the smallest value of n such that the above is greater than or equal to γ∗. We have

1− Φ(zα −
√
nδ∗/(σ1 + σ2)) ≥ γ∗

⇐⇒ zα −
√
nδ∗/(σ1 + σ2) ≤ Φ−1(1− γ∗).

Letting β∗ = 1− γ∗, we may write Φ−1(1− γ∗) = −zβ∗ , so we have

zα −
√
nδ∗/(σ1 + σ2) ≤ −zβ∗

⇐⇒ −
√
nδ∗/(σ1 + σ2) ≤ −zβ∗ − zα
⇐⇒

√
nδ∗ ≥ (zβ∗ + zα)(σ1 + σ2)

⇐⇒ n ≥ [(zβ∗ + zα)(σ1 + σ2)]2/(δ∗)2.

• Exercise: A researcher wishes to compare the means µ1 and µ2 of two populations by testing the
hypotheses H0: µ1 − µ2 = 0 versus H1: µ1 − µ2 6= 0. A pilot study resulted in estimates of the
variances of the two populations equal to σ̂2

1 = 1.22 and σ̂2
2 = 0.26. Suppose that a difference

between µ1 and µ2 less than 0.50 units is not practically meaningful, but the researcher wishes to
find a difference if it is greater than 0.50 units with probability at least 0.90. The researcher will
reject H0 if ∣∣∣∣∣ X̄1 − X̄2 − (0)√

S2
1/n1 + S2

2/n2

∣∣∣∣∣ > 2.575829.

(i) Recommend sample sizes n1 and n2 to the researcher.
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(ii) Plot the power curve of the test under these sample sizes, assuming σ2
1 = 1.22 and σ2

2 = 0.26.
Add to the plot the power curve resulting from using the same total sample size as in part (i),
but when samples of equal size are drawn from the two populations. Explain how the power
curves are different and why.

Answers:

(i) We have 2.575829 = zα/2 for α = 0.01. With γ∗ = 0.90 and δ∗ = 0.20, the formula gives

[(z0.10+z0.005)(
√

1.22 +
√

0.26)]2/(0.20)2

= ((qnorm(.9)+qnorm(.995))*(sqrt(1.22)+sqrt(0.26)))**2/(0.5)**2

= 155.1271.

So we recommend

n1 =

⌊( √
1.22√

1.22 +
√

0.26

)
156

⌋
+ 1 = 107 and n2 =

⌊( √
0.26√

1.22 +
√

0.26

)
156

⌋
+ 1 = 50.

(ii) The following R code produces the plot:

sig1 <- sqrt(1.22)

sig2 <- sqrt(0.26)

d.star <- 0.5

alpha <- 0.01

beta.star <- 0.1

n.pre <- ceiling(((qnorm(1-beta.star)+qnorm(1-alpha/2))*(sig1+sig2))^2/d.star^2)

n1 <- ceiling(sig1/(sig1 + sig2) * n.pre)

n2 <- ceiling(sig2/(sig1 + sig2) * n.pre)

n <- n1 + n2

d.seq <- seq(-1,1,length=500)

power.n1n2opt <- 1-(pnorm(qnorm(1-alpha/2)-d.seq/sqrt(sig1^2/n1+sig2^2/n2))

-pnorm(-qnorm(1-alpha/2)-d.seq/sqrt(sig1^2/n1+sig2^2/n2)))

power.n1n2eq <- 1-(pnorm(qnorm(1-alpha/2)-d.seq/sqrt(sig1^2/(n/2)+sig2^2/(n/2)))

-pnorm(-qnorm(1-alpha/2)-d.seq/sqrt(sig1^2/(n/2)+sig2^2/(n/2))))

plot(d.seq, power.n1n2opt,type="l",ylim=c(0,1),xlab="delta",ylab="power",lty=1)

lines(d.seq, power.n1n2eq,lty=4)

abline(v = d.star,lty=3)

abline(v = -d.star,lty=3)

abline(h = alpha,lty=3)

abline(h = 1 - beta.star,lty=3)
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The power curve under n1 = n2 is lower for all δ 6= 0 than the power curve under the choices
of n1 and n2 which take into account the different variances of the two populations.

16


