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Building tests of hypotheses

Karl B. Gregory

Building tests of hypotheses with the likelihood ratio

• By now we have seen several tests of hypotheses, but we have not asked how tests are, in the first
place, constructed.

• Most of the tests we have seen so far result from following a certain recipe for test construction
which uses the ratio of two likelihood functions. We will introduce in this lecture what are called
likelihood ratio tests.

• Some things to recall:

– Likelihood function: If X1, . . . , Xn is a random sample from a distribution with pdf or pmf
f(x; θ) that depends on a parameter θ the likelihood function is given by

L(θ;X1, . . . , Xn) =
n∏
i=1

f(Xi; θ).

– Maximum likelihood estimator: Recall that the maximum likelihood estimator of the param-
eter θ is given by

θ̂ = argmaxθ∈Θ L(θ;X1, . . . , Xn),

which we may think of as the value of θ under which the observed data were most likely to
occur.

– Log-likelihood function: We call the natural log of the likelihood function the log-likelihood
function and denote it by

`(θ;X1, . . . , Xn) =
n∑
i=1

log f(Xi; θ).

To get the maximum likelihood estimator, it is often easier to work with the log-likelihood
function.

• We now define the likelihood ratio (LR) and the likelihood ratio test (LRT).
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• Definition: For a random sample X1, . . . , Xn with likelihood function L(θ;X1, . . . , Xn) and null
and alternate hypotheses H0: θ ∈ Θ0 and H1: θ ∈ Θ1, define the likelihood ratio as

LR(X1, . . . , Xn) =
supθ∈Θ0

L(θ;X1, . . . , Xn)

supθ∈Θ L(θ;X1, . . . , Xn)
.

A likelihood ratio test is a test of the form

Reject H0 iff LR(X1, . . . , XN) < c

for some c ∈ [0, 1].

• Note the following:

– LR(X1, . . . , Xn) ∈ [0, 1].

– Smaller values of LR(X1, . . . , Xn) cast greater doubt on H0.

– The supremum in the denominator may be obtained by plugging in the maximum likelihood
estimator θ̂, since this is the value which maximizes the likelihood over all θ ∈ Θ. That is

supθ∈Θ L(θ;X1, . . . , Xn) = L(θ̂;X1, . . . , Xn).

Letting θ̂0 = argmaxθ∈Θ0
L(θ;X1, . . . , Xn), so that θ̂0 is the value of θ which maximizes the

likelihood over the null space, we may similarly write

supθ∈Θ0
L(θ;X1, . . . , Xn) = L(θ̂0;X1, . . . , Xn).

This allows us to rewrite likelihood ratio as

LR(X1, . . . , Xn) =
L(θ̂0;X1, . . . , Xn)

L(θ̂;X1, . . . , Xn)
,

where θ̂0 is the value of θ which “best explains the data” among all the values of θ in the null
space Θ0, and θ̂ is the value of θ which “best explains the data” among all possible values of
θ.

– If the maximum likelihood estimator θ̂ is found in the null space Θ0, then θ̂ = θ̂0, making the
numerator equal to the denominator so that the likelihood ratio is equal to 1. In this case
the data are in support of the null hypothesis and there are no grounds for its rejection.

– values of c give the test power and size.

– The critical value c can be chosen to give the test a desired size.

– The likelihood ratio is a function of a sufficient statistic for θ. To see why, recall that for a
random sample X1, . . . , Xn with likelihood L(θ;X1, . . . , Xn), the statistic W (X1, . . . , Xn) is
a sufficient statistic for θ if and only if the likelihood admits a factorization of the form

L(θ;X1, . . . , Xn) = h(X1, . . . , Xn)g(W (X1, . . . , Xn); θ),
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where h(X1, . . . , Xn) does not involve the parameter θ and g(W (X1, . . . , Xn); θ) depends on
the sample X1, . . . , Xn only through the statistic W (X1, . . . , Xn). For a sufficient statistic
W (X1, . . . , Xn), we may therefore write

LR(X1, . . . , Xn) =
supθ∈Θ0

L(θ;X1, . . . , Xn)

supθ∈Θ L(θ;X1, . . . , Xn)

=
supθ∈Θ0

h(X1, . . . , Xn)g(W (X1, . . . , Xn); θ)

supθ∈Θ h(X1, . . . , Xn)g(W (X1, . . . , Xn); θ)

=
supθ∈Θ0

g(W (X1, . . . , Xn); θ)

supθ∈Θ g(W (X1, . . . , Xn); θ)
.

We see from this that likelihood ratio tests are based on sufficient statistics.

• As we will see in the following exercises, we often do not work with the likelihood ratio LR(X1, . . . , Xn)
directly; instead, we look for tests which are equivalent to rejecting H0 when LR(X1, . . . , Xn) < c
which involve quantities with known distributions.

• Exercise: Let X1, . . . , Xn be a random sample from the Normal(µ, σ2) distribution, where µ is
unknown but σ2 is known, and consider the hypotheses H0: µ ≤ µ0 versus H1: µ > µ0. Show that
the test

Reject H0 iff
√
n(X̄n − µ0)/σ > zα

is the likelihood ratio test of size α.

Answer: We need to set up the likelihood ratio test and show that it is equivalent to this test.
The likelihood function is given by

L(µ;X1, . . . , Xn) =
n∏
i=1

1√
2π

1

σ
exp

[
−1

2

(Xi − µ)2

σ2

]
= (2π)−n/2σ−n exp

[
−1

2

∑n
i=1(Xi − µ)2

σ2

]
,

and the log-likelihood is

`(µ,X1, . . . , Xn) = −(n/2) log(2π)− (n/2) log σ2 −
∑n

i=1(Xi − µ)2/(2σ2).

The likelihood ratio is

LR(X1, . . . , Xn) =
supµ≤µ0 L(µ;X1, . . . , Xn)

supµ L(µ;X1, . . . , Xn)
=
L(µ̂0;X1, . . . , Xn)

L(µ̂;X1, . . . , Xn)
,

where µ̂ is the maximum likelihood estimator of µ, which is µ̂ = X̄n, and µ̂0 is given by

µ̂0 = argmaxµ≤µ0 −(n/2) log(2π)− (n/2) log σ2 −
∑n

i=1(Xi − µ)2/(2σ2)

= argmaxµ≤µ0 −
∑n

i=1(Xi − X̄n)2/(2σ2)− n(X̄n − µ)2/(2σ2)

= argmaxµ≤µ0 −n(X̄n − µ)2/(2σ2)

=

{
X̄n X̄n ≤ µ0

µ0 X̄n > µ0,
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where the last equality is perhaps best seen by drawing a picture; the function is a parabola which
is maximized at X̄n, and its maximizer over µ ≤ µ0 depends on whether X̄n ≤ µ0 or X̄n > µ0.
Plugging these values for µ̂0 and µ̂ into the likelihood ratio, we have

LR(X1, . . . , Xn) =
(2π)−n/2σ−n exp [−

∑n
i=1(Xi − µ̂0)2/(2σ2)]

(2π)−n/2σ−n exp [−
∑n

i=1(Xi − µ̂)2/(2σ2)]

= exp [−
∑n

i=1(Xi − µ̂0)2/(2σ2) +
∑n

i=1(Xi − µ̂)2/(2σ2)]

= exp
[
−(
∑n

i=1(Xi − X̄n)2 + n(X̄n − µ̂0)2)/(2σ2) +
∑n

i=1(Xi − X̄n)2/(2σ2)
]

= exp
[
−n(X̄n − µ̂0)2/(2σ2)

]
=

{
1, X̄n ≤ µ0

exp
[
−n(X̄n − µ0)2/(2σ2)

]
, X̄n > µ0.

For any c ∈ [0, 1], the likelihood ratio test thus looks like

Reject H0 iff exp
[
−n(X̄n − µ0)2/(2σ2)

]
< c,

to which the following test is equivalent:

Reject H0 iff
√
n(X̄n − µ0)/σ >

√
−2 log c,

noting that we need only consider the case X̄n > µ0, for which X̄n − µ0 is positive. Thus the test

Reject H0 iff
√
n(X̄n − µ0)/σ > zα,

which has size α, is the likelihood ratio test with critical value c = exp(−z2
α/2).

• Exercise: Let Y be a single observation from the Geometric(p) distribution, where p ∈ [0, 1] is
unknown, and suppose it is of interest to test H0: p ≤ p0 versus H1: p > p0 for some p0 ∈ [0, 1].

i) Give the likelihood ratio.

ii) For any α ∈ (0, 1), calibrate the rejection region of the likelihood ratio test so that it has size
at most α.

Answers:

i) The likelihood function is L(p;Y ) = (1− p)Y−1p, so that the likelihood ratio is

LR(Y ) =
supp≤p0(1− p)

Y−1p

supp∈[0,1](1− p)Y−1p
.

The denominator is maximized at

p̂ =

{
1 if Y = 1
1/Y if Y > 1,
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where the result for Y > 1 can be seen by analyzing the log-likelihood function with calculus
methods. The numerator is maximized at

p̂0 =

{
1/Y if 1/Y ≤ p0

p0 if 1/Y > p0,

since (1−p)Y−1p is strictly increasing on the interval [0, 1/Y ]. This gives the likelihood ratio

LR(Y ) =

{
[(1− p0)Y−1p0]/[(1− 1/Y )Y−1(1/Y )] if Y < 1/p0

1 if Y ≥ 1/p0.

The following R code plots the likelihood ratio for Y = 1, . . . , 12 under p0 = 1/8:

Y.seq <- 1:12

p0 <- 1/8

LR <- (Y.seq >= 1/p0)

+ (Y.seq < 1/p0)*((1-p0)^(Y.seq-1)*p0)/((1-1/Y.seq)^(Y.seq-1)*(1/Y.seq))

plot(Y.seq,LR,xlab="Y",ylab="LR(Y)")

abline(v=1/p0,lty=3)
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We see that smaller values of Y make the likelihood function smaller and cast more doubt
on H0; keep in mind that for the geometric distribution, larger values of p lead to smaller
values of Y .

ii) The likelihood ratio test is of the form

Reject H0 iff [(1− p0)Y−1p0]/[(1− 1/Y )Y−1(1/Y )] < c.
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If we study the likelihood ratio LR(Y ), we find that it is monotonically increasing in Y for
Y < 1/p0, so that smaller values of Y below 1/p0 make the likelihood ratio smaller. In light
of this fact, there is some c1 such that the test

Reject H0 iff Y < c1

is equivalent to the likelihood ratio test. The size of the test is given by

sup
p≤p0

Pp(Y < c1) = Pp0(Y < c1),

so we may choose c1 to be the lower α quantile of the Geometric(p0) distribution, denoting
this by Geop0,1−α. A likelihood ratio test which has size at most α is thus given by

Reject H0 iff Y < Geop0,1−α.

• Why do we like the likelihood ratio approach to test construction? Besides providing a recipe for
constructing reasonable tests in a wide range of situations, the likelihood ratio approach produces
tests with some desirable properties. We will motivate likelihood ratio tests via the Neyman-
Pearson Lemma.

• Neyman-Pearson Lemma: Let X1, . . . , Xn be a random sample with likelihood function
L(θ;X1, . . . , Xn), and suppose we wish to test H0: θ = θ0 versus H1: θ = θ1. Then the test

Reject H0 iff
L(θ0;X1, . . . , Xn)

L(θ1;X1, . . . , Xn)
< c, some c ∈ [0, 1]

is the most powerful test among tests with the same or smaller size for H0: θ = θ0 versus H1:
θ = θ1.

• In the Neyman-Pearson Lemma, we consider only two candidate values for the parameter θ, so
that the entire parameter space is Θ = {θ0, θ1}. This is oversimplified, but serves as a building
block for more general results about likelihood ratio tests. In our search for high-power, small-size
tests (recall the trade-off between power and size), the Neyman-Pearson Lemma points us in the
direction of ratios of likelihoods.

• Exercise: Let X1, . . . , Xn be a random sample from the Poisson(λ) distribution, where λ in
unknown, and consider the simple hypotheses H0: λ = λ0 versus H1: λ = λ1, where λ0 < λ1.

i) For any α ∈ (0, 1) find a test with size at most α.

ii) For λ0 = 2 and λ1 = 3 and a sample of size 5, find the test with size at most 0.05, and argue
that it is the most powerful test among all tests with the same size.
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Answers:

i) The likelihood ratio test is

Reject H0 iff

∏n
i=1 e

−λ0λXi
0 /Xi!∏n

i=1 e
−λ1λXi

1 /Xi!
< c

⇐⇒ e−nλ0λ
∑n

i=1Xi

0

e−nλ1λ
∑n

i=1Xi

1

< c

⇐⇒ (λ0/λ1)
∑n

i=1Xi < en(λ0−λ1)c

⇐⇒
∑n

i=1Xi log(λ0/λ1) < n(λ0 − λ1) + log c

⇐⇒
∑n

i=1Xi > [n(λ0 − λ1) + log c]/ log(λ0/λ1)︸ ︷︷ ︸
c1

,

where the sign changes because log(λ0/λ1) < 0. The size of the test is

Pλ=λ0(
∑n

i=1Xi > c1) = P (Y > c1), Y ∼ Poisson(nλ0),

The smallest value of c1 for which the test will have size at most α is the upper α quantile
of the Poisson(nλ0) distribution.

ii) The upper 0.05 quantile of the Poisson(5 · 2) distribution is qpois(.95,10) = 15. The test

Reject H0 iff X1 + · · ·+X5 > 15

has size Pλ=2(X1 + · · · + X5 > 15) = 1 - ppois(15,10) = 0.0487404, and the Neyman-
Pearson Lemma tells us that this is the most powerful test among all tests of the same
size.

• Exercise: Let X1, . . . , Xn be a random sample from the Exponential(β) distribution and consider
the simple hypotheses H0: β = β0 versus H1: β = β1, where β1 < β0.

i) For any α ∈ (0, 1), find the most powerful test of size α.

ii) For β0 = 3 and β1 = 2 and n = 5, give the most powerful test with size 0.01.

Answers:

i) For any α ∈ (0, 1) the most powerful test is the likelihood ratio test, which rejects H0 iff∏n
i=1(1/β0) exp(−Xi/β0)∏n
i=1(1/β1) exp(−Xi/β1)

< c

⇐⇒ exp(
∑n

i=1 Xi(1/β1 − 1/β0)) < (β0/β1)nc

⇐⇒ (1/β1 − 1/β0)
∑n

i=1Xi < n log(β0/β1) + log c

⇐⇒ n−1
∑n

i=1Xi < [log(β0/β1) + n−1 log c]/(1/β1 − 1/β0)︸ ︷︷ ︸
c1
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Let c1 = [log(β0/β1) + n−1 log c]/(1/β1 − 1/β0). Then the size of the test is given by

Pβ=β0(n
−1
∑n

i=1Xi < c1) = P (Y < c1), where Y ∼ Gamma(n, β0/n).

In order that the size of the test be equal to α, we choose c1 to be the upper α quantile of
the Gamma(n, β0/n) distribution. So the most powerful test with size α is

Reject H0 iff n−1
∑n

i=1Xi < Γn,β0/n,1−α,

where Γn,β0/n,1−α is the upper 1− α quantile of the Gamma(n, β0/n) distribution.

ii) The upper 1−0.01 quantile of the Gamma(5, 3/5) distribution is qgamma(0.01,5,scale=3/5) =
0.7674636. So the test

Reject H0 iff 5−1
∑5

i=1Xi < 0.7674636.

has size 0.01, and according to the Neyman-Pearson Lemma this is the most powerful test
among all tests of the same size.

• We want to find the best tests not only when the alternate hypothesis is a simple hypothesis (the
case addressed by the Neyman-Pearson Lemma), but when the alternate hypothesis is a composite
hypothesis. We now introduce the notion of a test’s having more power than any other test of the
same size uniformly over the alternate space—that is, for all values of the parameter for which we
wish to reject H0.

• Definition: A test of H0: θ ∈ Θ0 versus H1: θ ∈ Θ1 with power function γ(θ) is called uniformly
most powerful if γ(θ) > γ′(θ) for all θ ∈ Θ1, where γ′ is the power function of any other test of
the same hypotheses which has the same size.

• Some results exist which say that in certain situations the likelihood ratio test is the uniformly
most powerful test. In some situations, however, there does not exist any uniformly most powerful
test, so that any test can be beat by some other test for certain parameter values.

• Example: In the case of two-sided hypotheses, there is no uniformly most powerful test. Consider
the case in which X1, . . . , Xn is a random sample from the Normal(µ, σ2) distribution based on
which it is of interest to test H0: µ = µ0 versus H1: µ 6= µ0. Letting Tn =

√
n(X̄n − µ0)/Sn, each

of the following tests is a size-α test of the two-sided set of hypotheses:

Reject H0 iff Tn > tn−1,α

Reject H0 iff Tn < −tn−1,α

Reject H0 iff |Tn| > tn−1,α/2

The power curves look like the following:
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None of the three curves is higher than the others over all values of µ 6= µ0.

LRTs for Normal mean and variance

• In this section we show that the likelihood ratio test recipe gives us two familiar tests.

• In each example, we will get an expression for the likelihood ratio test and then search for an
equivalent test which involves a quantity with a known distribution. This allows us to calibrate
the rejection region to achieve a desired size.

• Exercise: Let X1, . . . , Xn be a random sample from the Normal(µ, σ2) distribution, where µ and
σ2 are unknown, and consider the hypotheses H0: µ ≤ µ0 versus H1: µ > µ0. Show that the test

Reject H0 iff
√
n(X̄n − µ0)/Sn > tn−1,α

is the likelihood ratio test with size α.

Answer: There are two unknown parameters, µ ∈ (−∞,∞) and σ2 ∈ [0,∞). The null hypotheses
specifies that the parameters lie in the set {µ, σ2 : µ ≤ µ0, σ

2 ≥ 0}. Let µ̂0 and σ̂2
0 be the values of

µ and σ2 which maximize the likelihood over this restricted set and let µ̂ and σ̂2 be the maximum
likelihood estimators. Then we can write the likelihood ratio as

LR(X1, . . . , Xn) =
sup{µ,σ2:µ≤µ0,σ2≥0} L(µ, σ2;X1, . . . , Xn)

sup{µ,σ2:−∞<µ<∞,σ2≥0} L(µ, σ2;X1, . . . , Xn)
=
L(µ̂0, σ̂

2
0;X1, . . . , Xn)

L(µ̂, σ̂2;X1, . . . , Xn)
,

where the likelihood function is given by

L(µ, σ2;X1, . . . , Xn) =
∏n

i=1(2π)−1/2σ−1 exp[−(1/2)(Xi − µ)2/σ2]

= (2π)−n/2σ−n exp[−(1/2)
∑n

i=1(Xi − µ)2/σ2].
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The maximum likelihood estimators of µ and σ2 are µ̂ = X̄n and σ̂2 = n−1
∑n

i=1(Xi − X̄n)2 (see
STAT 512), and we can find µ̂0 and σ̂2

0 as follows: Working with the log-likelihood, which is

`(µ, σ2;X1, . . . , Xn) = −(n/2) log(2π)− (n/2) log σ2 − (1/2)
∑n

i=1(Xi − µ)2/σ2,

we find the value of σ2 which maximizes the likelihood for any value of µ and denote this by σ̂2(µ).
Taking the derivative of the above expression and setting it equal to zero results in

σ̂2(µ) = n−1
∑n

i=1(Xi − µ)2.

Plugging this back into the likelihood, we have

L(µ, σ̂2(µ);X1, . . . , Xn) = (2π)−n/2[n−1
∑n

i=1(Xi − µ)2]−n/2 exp(−n/2).

The value µ̂0 of µ which maximizes this function over (−∞, µ0] is given by

µ̂0 = argmaxµ≤µ0(2π)−n/2[n−1
∑n

i=1(Xi − µ)2]−n/2 exp(−n/2)

= argmaxµ≤µ0(2π)−n/2[n−1
∑n

i=1(Xi − X̄n)2 − n(X̄n − µ)2]−n/2 exp(−n/2)

=

{
X̄n if X̄n ≤ µ0

µ0 if X̄n > µ0,

which is best seen by drawing a parabola which reaches its maximum at X̄n. The pair of values
(µ, σ2) which maximizes the likelihood over {µ, σ2 : µ ≤ µ0, σ

2 ≥ 0} is thus given by (µ̂0, σ̂
2(µ̂0)),

which we may denote by (µ̂0, σ̂
2
0) if we write σ̂2

0 = σ̂2(µ̂0).

The plot below helps us understand this: It shows the contours of the likelihood function based
on a sample of data with µ on the horizontal axis and σ on the vertical axis. The solid dot shows
the point (µ̂, σ̂) at which the likelihood function is maximized. We see that the data on which
this likelihood function is based support the alternate hypothesis H1: µ ≥ µ0, since µ̂ > µ0.
The dashed line traces the function σ̂(µ), which gives, for each value of µ, the value of σ which
maximizes the likelihood. The values of µ and σ2 which maximize the likelihood over the null
space {µ, σ2 : µ ≤ µ0, σ

2 > 0}, which is shaded, correspond to the point on the plot at (µ0, σ̂0).

µ0 µ̂

σ̂
σ̂ 0

σ̂(µ)

●

●●
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So finally the likelihood ratio is

L(µ̂0, σ̂
2
0;X1, . . . , Xn)

L(µ̂, σ̂2;X1, . . . , Xn)
=

(2π)−n/2e−n/2[n−1
∑n

i=1(Xi − µ̂0)2]−n/2

(2π)−n/2e−n/2[n−1
∑n

i=1(Xi − µ̂)2]−n/2

=

[∑n
i=1(Xi − X̄n)2∑n
i=1(Xi − µ̂0)2

]n/2
=

{
1 if X̄n ≤ µ0[∑n

i=1(Xi−X̄n)2∑n
i=1(Xi−µ0)2

]n/2
if X̄n > µ0.

Now if we reject H0 iff the likelihood ratio is less than some c ∈ [0, 1], we can find an equivalent
test by noting [∑n

i=1(Xi − X̄n)2∑n
i=1(Xi − µ0)2

]n/2
< c

⇐⇒
∑n

i=1(Xi − µ0)2∑n
i=1(Xi − X̄n)2

> (1/c)2/n

⇐⇒
∑n

i=1(Xi − X̄n)2 + n(X̄n − µ0)2∑n
i=1(Xi − X̄n)2

> (1/c)2/n

⇐⇒ 1 +
n(X̄n − µ0)2

(n− 1)S2
n

> (1/c)2/n

⇐⇒
√
n(X̄n − µ0)/Sn >

√
(n− 1)[(1/c)2/n − 1],

noting that we need only consider the case X̄n > µ0, so that X̄n−µ0 is positive. The critical value
c can be chosen such that the right-hand side is equal to tn−1,α, which gives the test size α.

• Exercise: Let X1, . . . , Xn be a random sample from the Normal(µ, σ2) distribution, where µ and
σ2 are unknown, and consider the hypotheses H0: σ2 = σ2

0 versus H1: σ2 6= σ2
0. Show that the

likelihood ratio test has the form

Reject H0 iff
(n− 1)S2

n

σ2
0

< c1 or
(n− 1)S2

n

σ2
0

> c2. (1)

Answer: The null hypotheses specifies that the parameters µ and σ2 lie in the set {µ, σ2 : −∞ <
µ <∞, σ2 = σ2

0}. The likelihood ratio is thus given by

LR(X1, . . . , Xn) =
sup{µ,σ2,−∞<µ<∞,σ2=σ2

0} L(µ, σ2;X1, . . . , Xn)

sup{µ,σ2,−∞<µ<∞,σ2≥0} L(µ, σ2;X1, . . . , Xn)
=
L(µ̂0, σ

2
0;X1, . . . , Xn)

L(µ̂, σ̂2;X1, . . . , Xn)
,

where µ̂ = X̄n and σ̂2 = n−1
∑n

i=1(Xi − X̄n)2 and µ̂0 is given by

µ̂0 = argmaxµ L(µ, σ2
0;X1, . . . , Xn)

= argmaxµ `(µ, σ
2
0;X1, . . . , Xn)

= argmaxµ−(n/2) log(2π)− (n/2) log σ2
0 − (1/2)

∑n
i=1(Xi − µ)2/σ2

0

= X̄n.

11



Plugging these into the likelihood ratio, we have

LR(X1, . . . , Xn) =

∏n
i=1(2π)−1/2σ−1

0 exp[−(1/2)(Xi − X̄n)2/σ2
0]∏n

i=1(2π)−1/2σ̂−1 exp[−(1/2)(Xi − X̄n)2/σ̂2]

=
σ−n0 exp[−(1/2)

∑n
i=1(Xi − X̄n)2/σ2

0]

σ̂−n exp[−(1/2)
∑n

i=1(Xi − X̄n)2/σ̂2]

= (σ̂2/σ2
0)n/2 exp[−(n/2)(σ̂2/σ2

0) + (n/2)]

= ((σ̂2/σ2
0) exp[−(σ̂2/σ2

0)])n/2 exp(n/2).

The likelihood ratio test is to reject H0 iff for some c ∈ [0, 1]

((σ̂2/σ2
0) exp[−(σ̂2/σ2

0)])n/2 exp(n/2) < c

⇐⇒ (σ̂2/σ2
0) exp[−(σ̂2/σ2

0)] < c2/n/e

⇐⇒ σ̂2/σ2
0 < c∗1 or σ̂2/σ2

0 > c∗2 for some c∗1 < c∗2
⇐⇒ (n− 1)S2

n/σ
2
0 < nc∗1︸︷︷︸

c1

or (n− 1)S2
n/σ

2
0 > nc∗2︸︷︷︸

c2

,

where the second equivalence comes from the fact that the function ze−z is increasing for 0 < z < 1
and decreasing for 1 < z <∞. Letting c1 = nc∗1 and c2 = nc∗2 gives the result.

• Remark: Note that choosing c1 = n−1χ2
n−1,1−α/2 and c2 = n−1χ2

n−1,α/2 in (1) gives a size-α test

(though it is not exactly equivalent to the likelihood ratio test), due to the fact that under the
null hypothesis we have (n− 1)S2

n/σ
2
0 ∼ χ2

n−1.

The asymptotic likelihood ratio test

• Sometimes we cannot find a test equivalent to the likelihood ratio test which involves a quantity
with a known distribution. In such cases we can rely on the following large-sample result to
calibrate rejection regions for likelihood ratio tests.

• Result: Let X1, . . . , Xn be a random sample with likelihood function L(θ;X1, . . . , Xn), where
θ ∈ Θ is a parameter with dimension d, and consider null and alternate hypotheses H0: θ ∈ Θ0

versus H1: θ ∈ Θ1, where the dimension of Θ0 is d0 < d. Then under certain conditions (the
discussion of which is beyond the scope of this course), under H0 we have

−2 log
supθ∈Θ0

L(θ;X1, . . . , Xn)

supθ∈Θ L(θ;X1, . . . , Xn)
→ χ2

d−d0 in distribution

as n→∞.

• The asymptotic likelihood ratio test with size α is

Reject H0 iff −2 log
supθ∈Θ0

L(θ;X1, . . . , Xn)

supθ∈Θ L(θ;X1, . . . , Xn)
> χ2

d−d0,α,

and this test has size approximately equal to α for large n.

12



• If our sample size n is large, this result can be used to calibrate a rejection region for the likelihood
ratio test in order to achieve a desired size; note that the targeted size will not be achieved exactly,
because for any finite n the distribution of −2 log LR(X1, . . . , Xn) is only approximated by the
χ2
d−d0 distribution, but the approximation is better for larger n.

• Exercise: Let X1, . . . , Xn be a random sample from the Normal(µ, σ2) distribution, where µ and
σ2 are unknown, and suppose we are interested in the hypotheses H0: µ = µ0 versus H1: µ 6= µ0.

i) Find the size-α asymptotic likelihood ratio test.

ii) Run a simulation to compare the power curve of the asymptotic likelihood ratio test to that
of the test which rejects H0 iff |

√
n(X̄n − µ0)/Sn| > tn−1,α/2; use n = 20 and α = 0.05.

Answers:

i) The asymptotic result tells us that if µ = µ0, then

−2 log
sup{µ,σ2:µ=µ0,σ2≥0} L(µ0, σ

2;X1, . . . , Xn)

sup{µ,σ2:∞<µ<∞,σ2≥0} L(µ, σ2;X1, . . . , Xn)
→ χ2

1 in distribution

as n→∞, where the degrees of freedom of the limiting chi-squared distribution is equal to 1,
since the space {µ, σ2 : µ = µ0, σ

2 ≥ 0} has dimension d0 = 1, that is, there is one parameter
which is “free”, and the space {µ, σ2 : ∞ < µ < ∞, σ2 ≥ 0} has dimension d = 2. After
some algebra we get

−n log

[∑n
i=1(Xi − X̄n)2∑n
i=1(Xi − µ0)2

]
→ χ2

1 in distribution

as n → ∞ when µ = µ0. We can use this result to calibrate the size of the likelihood ratio
test; a test with size approximately equal to α is

Reject H0 iff −n log

[∑n
i=1(Xi − X̄n)2∑n
i=1(Xi − µ0)2

]
> χ2

1,α.

ii) The following R code runs a simulation to compare the power curve of this asymptotic test
to that of the exact likelihood ratio test, which rejects H0 iff |

√
n(X̄n − µ0)/Sn| > tn−1,α/2.

We see in the plot that the size of the asymptotic likelihood ratio when n = 20 is greater
than the targeted α = 0.05. If we were to make this plot for larger and larger values of n the
dashed curve would be closer and closer to the solid curve.

13



mu.seq <- seq(3,7,length=51)

mu.0 <- 5

n <- 20

S <- 5000

sigma <- 2

alpha <- 0.05

power.exact <- 1-(pt(qt(.975,n-1),n-1,sqrt(n)*(mu.seq-mu.0)/sigma)

-pt(-qt(.975,n-1),n-1,sqrt(n)*(mu.seq-mu.0)/sigma))

power.asympLRT <- numeric()

for(j in 1:length(mu.seq))

{

minus2logLR <- numeric()

for(s in 1:S)

{

X <- rnorm(n,mu.seq[j],sigma)

minus2logLR[s] <- -n*log(sum((X - mean(X))^2) / sum((X - mu.0)^2))

}

power.asympLRT[j] <- mean(minus2logLR > qchisq(1-alpha,1))

}

plot(mu.seq, power.exact,type="l",ylim=c(0,1),xlab="mu",ylab="power")

lines(mu.seq, power.asympLRT,lty=2)

abline(v=mu.0,lty=3) # vert line at null value

abline(h=alpha,lty=3) # horiz line a targeted size

14
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• Exercise: Let X1, . . . , Xn be a random sample from the Poisson(λ) distribution, where λ is un-
known, and consider testing the hypotheses H0: λ = λ0 versus H1: λ 6= λ0.

i) Find an expression for the likelihood ratio.

ii) For any α ∈ (0, 1), find a test which has size approaching α as n→∞.

iii) Let λ0 = 3 and run a simulation to get power curves for the test under the sample sizes
n = 5, 10, 20, 40 using α = 0.05.

iv) Are there any problems with the test? At what values of n does the test appear to have the
desired size?

v) Find the p-value of the asymptotic likelihood ratio test of H0: λ = 3 versus H1: λ 6= 3
associated with a sample of size n = 25 with sample mean equal to 3.5.

Answers:

i) The likelihood function is

L(λ;X1, . . . , Xn) =
∏n

i=1 e
−λλXi/Xi! = e−nλλnX̄n/(

∏n
i=1 Xi!),

and the likelihood ratio is given by

LR(X1, . . . , Xn) =
supλ∈{λ0} L(λ;X1, . . . , Xn)

supλ L(λ,X1, . . . , Xn)
=
L(λ0, X1, . . . , Xn)

L(λ̂, X1, . . . , Xn)
,

where λ̂ is the maximum likelihood estimator of λ, which is λ̂ = X̄n. Plugging X̄n into the
likelihood ratio, we have

LR(X1, . . . , Xn) = [e−nλ0λnX̄n
0 /(

∏n
i=1Xi!)]/[e

−nX̄nX̄nX̄n
n /(

∏n
i=1Xi!)]

= exp[−n(λ0 − X̄n)](λ0/X̄n)nX̄n .
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ii) The asymptotic likelihood ratio test is

Reject H0 iff 2n
[
(λ0 − X̄n) + X̄n log(X̄n/λ0)

]
> χ2

1,α.

iii) The following R code runs the simulation and generates a plot showing the power curves:

lambda.seq <- seq(1,5,length=51)

lambda.0 <- 3

nn <- c(5,10,20,40)

S <- 10000

alpha <- 0.05

power <- matrix(NA,length(lambda.seq),length(nn))

for(i in 1:length(lambda.seq))

for(j in 1:length(nn))

{

X.bar <- rpois(S,lambda.seq[i]*nn[j])/nn[j] # get S sample means

minus2logLR <-2*nn[j]*((lambda.0-X.bar)+X.bar*log(X.bar/lambda.0))

power[i,j] <- mean(minus2logLR > qchisq(1-alpha,1))

}

plot(NA,ylim=c(0,1),xlim=range(lambda.seq),xlab="lambda",ylab="power",xaxt="n")

for(j in 1:length(nn))

{

lines(lambda.seq,power[,j],lty=j)

}

axis(side=1)

abline(v=lambda.0,lty=3) # vert line at null value

abline(h=alpha,lty=3)
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iv) Sometimes with n = 5 we get X̄n = 0. In this case we cannot compute the test statistic (we
need to take log(X̄n/λ0)). This is why the solid line is not completely drawn; there are some
missing values. It looks like sample sizes of 10 or greater give the test the desired size.

v) The value of minus 2 times the log of the likelihood ratio is

2(25)[(3− 3.5) + (3.5) log(3.5/3)] = 1.976369,

and the p-value is the smallest significance level at which the asymptotic likelihood ratio test
would reject H0. That is, the p-value is

inf{α : 1.976369 > χ2
1,α}.

This is equal to the area under the pdf of the χ2
1 distribution to the right of 1.976369, which

is 1 - pchisq(1.976369,1) = 0.1597734.

• Exercise: Let X1, . . . , Xn and Y1, . . . , Ym be independent random sample from the Exponential(λ1)
and Exponential(λ2) distributions, respectively, and suppose it is of interest to test the hypotheses
H0: λ1 = λ2 versus H1: λ1 6= λ2.

i) Give the asymptotic likelihood ratio test of size α.

ii) Plot the power curves of the test with α = 0.05 under (n,m) = (10, 20), (20, 40), (50, 100), (100, 200)
when λ1 = 3 with λ2 varying from 1 to 5.

iii) Find the p-value of the asymptotic likelihood ratio test for H0: λ1 = λ2 versus H1: λ1 6= λ2

associated with observing the sample means X̄n = 4.1 and Ȳm = 3.2 when n = 30 and m = 34.
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Answers:

i) The likelihood ratio is

LR(X1, . . . , Xn, Y1, . . . , Ym) =
sup{λ1,λ2:λ1=λ2=λ≥0}

∏n
i=1 λ

−1
1 exp(−Xi/λ1)

∏m
j=1 λ

−1
2 exp(−Yj/λ2)

sup{λ1,λ2:λ1≥0,λ2≥0}
∏n

i=1 λ
−1
1 exp(−Xi/λ1)

∏m
j=1 λ

−1
2 exp(−Yj/λ2)

=
sup{λ≥0} λ

−n exp(−
∑n

i=1Xi/λ)λ−m exp(−
∑m

j=1 Yj/λ)

sup{λ1,λ2:λ1≥0,λ2≥0} λ
−n
1 exp(−

∑n
i=1 Xi/λ1)λ−m2 exp(−

∑m
j=1 Yj/λ2)

=
[(nX̄n +mȲm)/(n+m)]−(n+m) exp[−(n+m)]

(X̄n)−n exp(−n)(Ȳm)−m exp(−m)

= [(nX̄n +mȲm)/(n+m)]−(n+m)(X̄n)n(Ȳm)m,

since the maximizer of the likelihood in the numerator over λ1 = λ2 = λ ≥ 0 is

λ̂ = (nX̄n +mȲm)/(n+m)

and the values of λ1 and λ2 which maximize the denominator are

λ̂1 = X̄n and λ̂2 = Ȳm,

respectively. So the asymptotic likelihood ratio test of size α is

Reject H0 iff 2(n+m) log[(nX̄n +mȲm)/(n+m)]− 2n log X̄n − 2m log Ȳm > χ2
1,α.

Note that the dimension of the null space is 1 and the dimension of the entire parameter
space is 2, so the degrees of freedom of the limiting chi-squared distribution is equal to 1.

The plot below helps us understand how the numerator and the denominator of the likelihood
ratio are maximized. It shows contours of the log-likelood function with λ1 on the horizontal
axis and λ2 on the vertical axis. The null space is the set of (λ1, λ2) pairs falling on the
dotted line, which is the y = x line. The function is maximized at the point (λ̂1, λ̂2), but
along the dotted line it is maximized at the point (λ̂0, λ̂0).

●

●●

λ̂0 λ̂1

λ̂ 2
λ̂ 0
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ii) The following R code runs the simulation and generates the plot.

lambda.1 <- 3

lambda.2.seq <- seq(lambda.1 - 2,lambda.1+2,length=51)

S <- 10000

nn <- c(10,20,50,100)

alpha <- 0.05

power <- matrix(NA,length(lambda.2.seq),length(nn))

for(i in 1:length(lambda.2.seq))

{

lambda.2 <- lambda.2.seq[i]

for(j in 1:length(nn))

{

n1 <- nn[j]

n2 <- nn[j]*2

X.bar <- rgamma(S,n1,scale=lambda.1/n1) # generate S sample means

Y.bar <- rgamma(S,n2,scale=lambda.2/n2) # generate S sample means

minus2logLR <- 2*(n1+n2)*log((n1*X.bar+n2*Y.bar)/(n1+n2))

-2*n1*log(X.bar)-2*n2*log(Y.bar)

power[i,j] <- mean(minus2logLR > qchisq(1-alpha,1))

}

}

plot(NA,ylim=c(0,1),xlim=range(lambda.2.seq),xlab="lambda2 (lambda1 = 3)",

ylab="power",xaxt="n")

for(j in 1:length(nn))

{

lines(lambda.2.seq,power[,j],lty=j)

}

axis(side=1)

abline(v=lambda.1,lty=3) # vert line at null value

abline(h=alpha,lty=3) # vert line at targeted size
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iii) If X̄n = 4.1 and Ȳm = 3.2 based on sample sizes n = 30 and m = 34, the minus 2 times the
log of the likelihood ratio is

2(30 + 34) log[(30(4.1) + 34(3.2))/(30 + 34)]− 2(30) log(4.1)− 2(34) log(34) = 0.981483.

The p-value is the area under the χ2
1 distribution to the right of this value, which is

1 - pchisq(0.981483,1) = 0.321833.

20


