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Building tests of hypotheses

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Building tests of hypotheses with the likelihood ratio

Let X1, . . . ,Xn be iid with pdf or pmf f (x ; θ).

The likelihood function for θ is given by

L(θ;X1, . . . ,Xn) =
n∏

i=1

f (Xi ; θ).

The log-likelihood function is

`(θ;X1, . . . ,Xn) =
n∑

i=1

log f (Xi ; θ).

The maximum likelihood estimator (MLE) of θ is given by

θ̂ = argmaxθ∈Θ L(θ;X1, . . . ,Xn) = argmaxθ∈Θ `(θ;X1, . . . ,Xn)

So θ̂ is like the value of θ that makes the prob. of the observed data the highest.

Karl B. Gregory (U. of South Carolina) STAT 513 fa 2020 Lec 06 slides 3 / 31



Building tests of hypotheses with the likelihood ratio

Review: Let X1, . . . ,Xn
ind∼ Normal(µ, σ2), with σ2 known.

1 Write down the likelihood function for µ.
2 Give the log-likelihood.
3 Find the MLE for µ.
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Building tests of hypotheses with the likelihood ratio

Likelihood ratio

For X1, . . . ,Xn having likelihood L(θ;X1, . . . ,Xn) and for some hypotheses

H0: θ ∈ Θ0 versus H1: θ ∈ Θ1,

the likelihood ratio (LR) is defined as

LR(X1, . . . ,Xn) =
supθ∈Θ0

L(θ;X1, . . . ,Xn)

supθ∈Θ L(θ;X1, . . . ,Xn)
.

The likelihood ratio must take values in the interval .

A (larger/smaller) likelihood ratio casts (more/less) doubt on H0.
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Building tests of hypotheses with the likelihood ratio

Likelihood ratio test
A likelihood ratio test (LRT) is a test of the form

Reject H0 iff LR(X1, . . . ,Xn) < c

for some c ∈ [0, 1].

A value of c gives the test power and size.

The critical value c can be chosen to give the test a desired size.
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Building tests of hypotheses with the likelihood ratio

Exercise: Let X1, . . . ,Xn
ind∼ Normal(µ, σ2), σ2 known. For

H0: µ = µ0 versus H1: µ 6= µ0

1 Give the LR.
2 Calibrate the LRT to have size α for any α ∈ (0, 1).
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Building tests of hypotheses with the likelihood ratio

Help me compute the LR!

We can write the likelihood ratio as

LR(X1, . . . ,Xn) =
supθ∈Θ0

L(θ;X1, . . . ,Xn)

supθ∈Θ L(θ;X1, . . . ,Xn)
=

L(θ̂0;X1, . . . ,Xn)

L(θ̂;X1, . . . ,Xn)
,

where
θ̂0 = argmaxθ∈Θ0

`(θ;X1, . . . ,Xn)

θ̂ = argmaxθ∈Θ `(θ;X1, . . . ,Xn)

So we just need to find these and plug them in:
θ̂0 is a restricted maximum likelihood estimator ; best estimator in null space.
θ̂ is the MLE.

Note: If the null is a simple hypothesis, i.e. H0: θ = θ0, then θ̂0 = θ0.

Also: If θ̂ ∈ Θ0, then θ̂ = θ̂0, so that LR(X1, . . . ,Xn) = 1.
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Building tests of hypotheses with the likelihood ratio

Exercise: Let X1, . . . ,Xn
ind∼ Normal(µ, σ2), σ2 known. For

H0: µ ≤ µ0 versus H1: µ > µ0

1 Find the restricted MLE µ̂0.
2 Give the LR.
3 Calibrate the LRT to have size α for any α ∈ (0, 1).
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Building tests of hypotheses with the likelihood ratio

Exercise: Let Y ∼ Geometric(p) distribution, p ∈ [0, 1] unknown. Suppose we
wish to test

H0: p ≤ p0 versus H1: p > p0

for some p0 ∈ [0, 1].
1 Give the likelihood.
2 Give the log-likelihood.
3 Find the MLE p̂ of p.
4 Find the restricted MLE p̂0.
5 Find an expression for the likelihood ratio.
6 For any α ∈ (0, 1), calibrate the rejection region of the likelihood ratio test so

that it has size at most α.
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Why we like likelihood ratio tests (Neyman-Pearson)
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Why we like likelihood ratio tests (Neyman-Pearson)

Why do we like likelihood ratio tests?

Neyman-Pearson Lemma
Let X1, . . . ,Xn have the likelihood L(θ;X1, . . . ,Xn), and suppose we wish to test

H0: θ = θ0 versus H1: θ = θ1.

Then the test

Reject H0 iff
L(θ0;X1, . . . ,Xn)

L(θ1;X1, . . . ,Xn)
< c , some c ∈ [0, 1]

is the most powerful test among tests of same hyps with the same or smaller size.

We want powerful tests with controlled size: N-P Lemma points us toward LRTs.
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Why we like likelihood ratio tests (Neyman-Pearson)

Exercise: Let X1, . . . ,Xn
ind∼ Poisson(λ), λ unknown, and consider

H0: λ = λ0 versus H1: λ = λ1,

where λ0 < λ1.
1 For any α ∈ (0, 1) find a test with size at most α.
2 For λ0 = 2 and λ1 = 3 and a sample of size 5, give the most powerful test

with size at most 0.05.
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Why we like likelihood ratio tests (Neyman-Pearson)

Exercise: Let X1, . . . ,Xn
ind∼ Exponential(β), β unknown, and consider

H0: β = β0 versus H1: β = β1,

where β1 < β0.
1 For any α ∈ (0, 1), find the most powerful test of size α.
2 For β0 = 3 and β1 = 2 and n = 5, give the most powerful test with size 0.01.
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Why we like likelihood ratio tests (Neyman-Pearson)

Uniformly most powerful test

A test of
H0: θ ∈ Θ0 versus H1: θ ∈ Θ1

with power function γ(θ) is called uniformly most powerful if

γ(θ) > γ′(θ) for all θ ∈ Θ1,

where γ′ is the power function of any other same-sized test of the same hyps.

We can sometimes show that the LRT is the uniformly most powerful test.

The Neyman-Pearson Lemma provides the basis for proving those results.
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Why we like likelihood ratio tests (Neyman-Pearson)

For two-sided hypotheses there is no uniformly most powerful test!

Example: Let X1, . . . ,Xn
ind∼ Normal(µ, σ2) based on which it is of interest to test

H0: µ = µ0 versus H1: µ 6= µ0.

Letting
Tn =

√
n(X̄n − µ0)/Sn,

each of the following tests is a size-α test of the two-sided set of hypotheses:

Reject H0 iff Tn > tn−1,α

Reject H0 iff Tn < −tn−1,α

Reject H0 iff |Tn| > tn−1,α/2

The power curves of these tests are shown on the next slide.
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Why we like likelihood ratio tests (Neyman-Pearson)
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LRTs for Normal mean and variance
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LRTs for Normal mean and variance

Exercise: Let X1, . . . ,Xn
ind∼ Normal(µ, σ2), µ and σ2 unknown, and consider

H0: µ ≤ µ0 versus H1: µ > µ0.

Show that the test

Reject H0 iff
√
n(X̄n − µ0)/Sn > tn−1,α

is the LRT with size α. Steps:
1 Find the MLEs µ̂ and σ̂2.
2 Find the restricted MLEs µ̂0 and σ̂2

0 under H0: µ ≤ µ0.
3 Show that LR < c is equivalent to

√
n(X̄n − µ0)/Sn > c1.
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LRTs for Normal mean and variance
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LRTs for Normal mean and variance

Exercise: Let X1, . . . ,Xn
ind∼ Normal(µ, σ2), µ and σ2 unknown, and consider

H0: σ2 = σ2
0 versus H1: σ2 6= σ2

0 .

Show that the likelihood ratio test has the form

Reject H0 iff
(n − 1)S2

n

σ2
0

< c1 or
(n − 1)S2

n

σ2
0

> c2.

Steps:
1 Find the MLEs µ̂ and σ̂2.
2 Find the restricted MLEs µ̂0 and σ̂2

0 under H0: σ2 = σ2
0 .

3 Show that LR < c is equivalent to above.
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The asymptotic likelihood ratio test
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The asymptotic likelihood ratio test

Wilk’s Theorem
Let X1, . . . ,Xn be a rs with likelihood L(θ;X1, . . . ,Xn), θ ∈ Θ, and consider

H0: θ ∈ Θ0 versus H1: θ ∈ Θ1,

where dim(Θ) = d and dim(Θ0) = d0 < d . Then under H0, we have

−2 log
supθ∈Θ0

L(θ;X1, . . . ,Xn)

supθ∈Θ L(θ;X1, . . . ,Xn)
→ χ2

d−d0
in distribution

as n→∞, provided some conditions (beyond scope of this course) hold.
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The asymptotic likelihood ratio test

Wilk’s Theorem allows us to define the following test:

Definition (Asymptotic likelihood ratio test)
The size-α asymptotic likelihood ratio test is

Reject H0 iff −2 log
supθ∈Θ0

L(θ;X1, . . . ,Xn)

supθ∈Θ L(θ;X1, . . . ,Xn)
> χ2

d−d0,α,

and this test has size approximately equal to α for large n.

d0 = dim(Θ0) is the number of parameters left unspecified by H0.
d = dim(Θ) is the total number of unknown parameters.
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The asymptotic likelihood ratio test

Exercise: Let X1, . . . ,Xn
ind∼ Normal(µ, σ2), µ and σ2 unknown, and consider

H0: µ = µ0 versus H1: µ 6= µ0.

1 Find the size-α asymptotic LRT.
2 Run a simulation to compare the power curve of the asymptotic LRT to that

of the (non-asymptotic) LRT

Reject H0 iff |
√
n(X̄n − µ0)/Sn| > tn−1,α/2.

Use the settings n = 20 and α = 0.05.
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The asymptotic likelihood ratio test
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The asymptotic likelihood ratio test

Exercise: Let X1, . . . ,Xn
ind∼ Poisson(λ), λ unknown, and consider testing

H0: λ = λ0 versus H1: λ 6= λ0.

1 Find an expression for the likelihood ratio.
2 For any α ∈ (0, 1), find a test which has size approaching α as n→∞.
3 Let λ0 = 3 and run a simulation to get power curves for the test under the

sample sizes n = 5, 10, 20, 40 using α = 0.05.
4 Problems with the test? For what n does it have the desired size?
5 Find the p-value of the asymptotic likelihood ratio test of

H0: λ = 3 versus H1: λ 6= 3

associated with a sample of size n = 25 with sample mean equal to 3.5.
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The asymptotic likelihood ratio test
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The asymptotic likelihood ratio test

Exercise: Let Xk1, . . . ,Xknk
ind∼ Exponential(λk), k = 1, 2 and consider

H0: λ1 = λ2 versus H1: λ1 6= λ2.

Find an expression for the likelihood ratio.
For any α ∈ (0, 1), find a test which has size approaching α as n→∞.
Plot power curves of the test with α = 0.05 under

(n1, n2) = (10, 20), (20, 40), (50, 100), (100, 200)

when λ1 = 3 with λ2 varying from 1 to 5.
Find the p-value of the asymptotic LRT associated with observing X̄1 = 4.1
and X̄2 = 3.2 when n1 = 30 and n2 = 34.
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The asymptotic likelihood ratio test

λ̂0 λ̂1

λ̂ 2
λ̂ 0

Karl B. Gregory (U. of South Carolina) STAT 513 fa 2020 Lec 06 slides 30 / 31



The asymptotic likelihood ratio test
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