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Simple linear regression

Karl B. Gregory

Regression

• Regression model: Let x1, . . . , xn be fixed real numbers and let Y1, . . . , Yn be independent
random variables such that

Yi = f(xi) + εi, for i = 1, . . . , n, (1)

for some f : R → R, where ε1, . . . , εn are independent identically distributed random variables
such that Eεi = 0 and Var εi = σ2 for i = 1, . . . , n.

• The idea is that we observe a function plus some random perturbations or “noise”. For example,
we might observe the points in the plots below, but we do not see the curves/lines around which
they are scattered.
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• The random variables ε1, . . . , εn are often called error terms. These random quantities obscure
the true function from us.

• The values x1, . . . , xn are the values of a covariate, a variable which varies randomly or of which the
values are fixed by an experimenter. In our treatment of regression, we will regard the covariate
as fixed (and we lose nothing by doing so).

• Since we assume Eεi = 0, the height of the function f at xi represents the expected value of Yi.
That is, we have EYi = f(xi).
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• There is a vast body of literature about ways to estimate the function f . One generally begins by
assuming that f belongs to some class or space of functions, where the space to which f belongs
places restrictions on how “wiggly” f may be (to avoid getting too much into technicalities). We
focus on the easiest case, in which we assume that the function f is a linear function—not wiggly
at all.

• Simple linear regression model: Let x1, . . . , xn be fixed real numbers and let Y1, . . . , Yn be
independent random variables such that

Yi = β0 + β1xi + εi, for i = 1, . . . , n, (2)

where ε1, . . . , εn are independent identically distributed random variables such that Eεi = 0 and
Var εi = σ2 for i = 1, . . . , n.

• “Simple” refers to there being only a single covariate. We will cover models with multiple covariates
later on.

• There are three unknown parameters in the simple linear regression model: the intercept β0, the
slope β1, and the variance σ2 of the error terms.

• We use the words regression coefficients in reference to β0 and β1.

• We will discuss the following in these notes:

1. Estimation of β0, β1, and σ2 as well as of β0 + β1xnew, where in the latter case we are
interested in estimating the expected value of the random variable Ynew of a “new” observation
(xnew, Ynew).

2. Inference about β0 and β1, focusing in particular on testing H0: β1 = 0 versus H1: β1 6= 0.
We will also discuss the construction of confidence intervals for β0 + β1xnew.

3. Prediction of the value of Ynew of a “new” observation (xnew, Ynew) by constructing an interval
into which Ynew will fall with some desired probability.

To do items 2 and 3, we will assume that ε1, . . . , εn are independent Normal(0, σ2) random vari-
ables. To do item 1, we do not assume any particular distribution for the error terms.

• Sometimes the covariate is regarded as random, as in the following setup.

• Alternate setup with random covariate: Let (X1, Y1), . . . , (Xn, Yn) be pairs of random vari-
ables such that

Yi = f(Xi) + εi, i = 1, . . . , n,

where εi, . . . , εn are independent identically distributed random variables such that E[εi|Xi] = 0
and Var[εi|Xi] = σ2 for all i = 1, . . . , n. Then we have E[Yi|Xi] = f(Xi). In this setup, we
typically carry out all our analyses conditional on the values of X1, . . . , Xn, so that in practice it
makes no difference whether we regard the covariate as random or fixed.
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Least-squares estimation

• Under Model (1), one way to estimate the function f is to choose a space G of functions inside of
which to search for the function that best fits the data in terms of some criterion. The least-squares
criterion gives the estimator f̂ of f defined by

f̂ = argming∈G

n∑
i=1

[Yi − g(xi)]
2,

so that for any candidate function g ∈ G, we consider the sum of the squared differences [Yi−g(xi)]
2,

for i = 1, . . . , n, and choose as our estimator f̂ the function for which the sum of these squared
differences is the smallest.

• Under the simple linear regression model, in which the function f takes the form f(x) = β0 +β1x,
we search over the space of all linear functions to find our estimator. That is, we define our
estimator to be f̂(x) = β̂0 + β̂1x, where

(β̂0, β̂1) = argmin(β0,β1)∈R2

n∑
i=1

[Yi − (β0 + β1xi)]
2.

The function f̂(x) = β̂0 + β̂1x is the line through the data points for which the sum of the squared
vertical distances between the points Y1, . . . , Yn and the line is minimized.

• We may think of it as the line of “best fit”, but really, this is the line of best fit only according to
the least-squares criterion; there are alternative criteria. For example, we could compute

(β̌0, β̌1) = argmin(β0,β1)∈R2

n∑
i=1

|Yi − (β0 + β1xi)|,

where instead of minimizing a sum of squared differences, we minimize a sum of absolute values
of differences. This criterion is sometimes called the least-absolute-deviations (LAD) criterion.
The line given by f̌(x) = β̌0 + β̌1x is called the median regression line, and f̌(xi) is used as an
estimator of the median of Yi rather than of the expected value of Yi.

• The plots below show, for a single simulated dataset, contours of the least-squares and least-
absolute-deviations criteria with β0 on the horizontal axis and β1 on the vertical axis. We see that
the two criteria result in different estimators. Note also that the contours of the least-absolute-
deviations criterion are not smooth, which reflects the fact that the gradient of the function is not
defined everywhere. This makes the least-absolute-deviations criterion more difficult to maximize,
since we cannot simply set its derivative equal to zero and solve for β0 and β1. The contours of the
least-squares criterion are, in contrast, smooth ellipses, and the gradient is defined everywhere,
allowing us to use simple calculus methods to maximize it.

3



LS intercept

LS
 s

lo
pe

●

LAD intercept

LA
D

 s
lo

pe

●

Least-squares estimators of simple linear regression coefficients

• We obtain β̂0 and β̂1 by minimizing the function

Qn(β0, β1) :=
n∑
i=1

[Yi − (β0 + β1xi)]
2.

We will call the function Qn(β0, β1) the objective function. When our estimators are defined as
the minimizers (or maximizers) of some function, that function is often referred to as the objective
function).

• The pair of values (β̂0, β̂1) minimizes Qn(β0, β1) if and only if

∂

∂β0
Qn(β0, β1)

∣∣∣
(β0,β1)=(β̂0,β̂1)

= 0 and
∂

∂β1
Qn(β0, β1)

∣∣∣
(β0,β1)=(β̂0,β̂1)

= 0.

So to find expressions for β̂0 and β̂1, we set the partial derivatives of Qn(β0, β1) with respect to β0
and β1 equal to zero and solve the resulting system of equations. We have

∂

∂β0
Qn(β0, β1) = −2

n∑
i=1

[Yi − (β0 + β1xi)] = 0

∂

∂β1
Qn(β0, β1) = −2

n∑
i=1

xi[Yi − (β0 + β1xi)] = 0.

The first equation gives

n∑
i=1

Yi − nβ0 − β1
n∑
i=1

xi = 0

⇐⇒ nȲ − nβ0 − nβ1x̄n = 0

⇐⇒ β0 = Ȳn − β1x̄n.
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The second equation gives
n∑
i=1

xiYi −
n∑
i=1

xi(β0 + β1xi) = 0,

which, when we plug in β0 = Ȳn − β1x̄n, gives

n∑
i=1

xiYi −
n∑
i=1

xi(Ȳn − β1x̄n + β1xi) = 0

⇐⇒
n∑
i=1

xiYi − nx̄nȲn + β1nx̄
2
n − β1

n∑
i=1

x2i = 0

⇐⇒
n∑
i=1

xiYi − nx̄nȲn = β1

n∑
i=1

x2i − β1nx̄2n

⇐⇒
n∑
i=1

(xi − x̄n)(Yi − Ȳn) = β1

n∑
i=1

(xi − x̄n)2

⇐⇒ β1 =

∑n
i=1(xi − x̄n)(Yi − Ȳn)∑n

i=1(xi − x̄n)2
,

where we have used the relations

n∑
i=1

(xi − x̄n)(Yi − Ȳn) =
n∑
i=1

xiYi − nx̄nȲn and
n∑
i=1

(xi − x̄n)2 =
n∑
i=1

x2i − nx̄2n.

From here we have

β̂0 = Ȳn − β̂1x̄n (3)

β̂1 =

∑n
i=1(xi − x̄n)(Yi − Ȳn)∑n

i=1(xi − x̄n)2
. (4)

• Remark: If x1, . . . , xn all take the same value, we cannot compute the least-squares estimator of
β̂1, since in this case we would have

∑n
i=1(xi − x̄n)2 = 0. But indeed, of what use is a covariate

which does not vary? This case should not arise in simple linear regression, but in multiple linear
regression (when there is more than one covariate) a situation analogous to this, but more subtle,
may arise and cause problems.

• Define

SxY =
n∑
i=1

(xi − x̄n)(Yi − Ȳn) and Sxx =
n∑
i=1

(xi − x̄n)2 and SY Y =
n∑
i=1

(Yi − Ȳn)2,

as well as

rxY =
SxY√
SxxSY Y

,
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so that rxY is Pearson’s correlation coefficient between x1, . . . , xn and Y1, . . . , Yn. Moreover, let

sY =
SY Y
n− 1

and sX =
Sxx
n− 1

denote the sample standard deviations of Y1, . . . , Yn and x1, . . . , xn, respectively. Equipped with
this notation, we may express β̂1 as

β̂1 =
SxY
Sxx

or β̂1 = rxY

(
SY Y
Sxx

)1/2

or β̂1 = rxY (sY /sx).

• Example: The following R code generates some values x1, . . . , xn from the Uniform(0, 10) distri-
bution, then generates ε1, . . . , εn as a random sample from the Normal(0, 1) distribution, and then
sets Yi = β0 + β1xi + εi for i = 1, . . . , n under some choices of β0 and β1. After generating some
data, the least-squares regression coefficients are computed and corresponding line is overlaid on
a scatterplot of the points along with the true function.

n <- 50

x <- runif(n,0,10)

e <- rnorm(n,0,1)

beta0 <- 1

beta1 <- -.5

Y <- beta0 + beta1 * x + e

plot(Y~x)

abline(beta0,beta1) # true function

beta1.hat <- cor(x,Y)*sd(Y)/sd(x)

beta0.hat <- mean(Y) - beta1.hat*mean(x)

abline(beta0.hat,beta1.hat,lty=2) # estimated function
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• Regression parlance: We often refer to the computation of the least-squares coefficients as “fitting”
the least-squares line, and we call the line the “least-squares fit”; it is a line “fitted” to the data.

• After the least-squares line has been fit to the data, we refer to the differences between the values
Y1, . . . , Yn and the heights of the least-squares line at the points x1, . . . , xn as the residuals, and
we denote them by

ε̂i = Yi − (β̂0 + β̂1xi), i = 1, . . . , n.

• In addition, we often refer to the heights of the fitted regression line at the points x1, . . . , xn as
fitted values, denoting them by

Ŷi = β̂0 + β̂1xi, i = 1, . . . , n.

The residuals can then be written as ε̂i = Yi − Ŷi, i = 1, . . . , n.

• Data example: The data for this example are taken from [1], which studied the abundance of
beryllium in stars which host orbiting planets versus stars without orbiting planets. The right-
hand plot below shows the beryllium abundance logBe versus temperature Teff for 38 stars. The
least-squares regression line f̂(x) = β̂0 + β̂1x is overlaid. the left-hand plot shows the values of
the residuals ε̂1, . . . , ε̂38 versus the fitted values Ŷ1, . . . , Ŷ38. Plotting the residuals versus the fitted
values is one way to check whether the linear regression model is a good fit to the data; if we see
a random scatter of points, it suggests that the linear regression model is appropriate.
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# read the data in from PennState Center for Astrostatistics website

data <- read.table(file="https://astrostatistics.psu.edu/datasets/censor.dat",

header=TRUE,sep="")

# remove some censored data points and some outliers, similar to the paper:

rows.rm <- c(which(is.na(data$sig_Be) | data$Teff >= 6100 ),51,44,21)

beryllium <- data[-rows.rm,]

x <- beryllium$Teff # temperature

Y <- beryllium$logN_Be # log of beryllium abundance

beta1.hat <- cor(x,Y)*sd(Y)/sd(x)

beta0.hat <- mean(Y) - beta1.hat*mean(x)

Y.hat <- beta0.hat + beta1.hat * x

e.hat <- Y - Y.hat

par(mfrow=c(1,2))

plot(Y ~ x , xlab="Teff",ylab = "logBe")

abline(beta0.hat,beta1.hat)

plot(e.hat ~ Y.hat, ylab = "residuals",xlab="fitted values")

abline(h=0,lty=3)
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Mean and variance of least-squares estimators in simple linear regression

• In this section we will show that the least-squares regression coefficients β̂0 and β̂1 are unbiased
estimators of β0 and β1. We will also get expressions for Var β̂0, Var β̂1, and Cov(β̂0, β̂1). As a
first step, we will get expressions for β̂0 and β̂1 in terms of their target values β0 and β1 and a
weighted sum of the error terms ε1, . . . , εn.

• Result: We have

β̂0 = β0 +
x̄n
Sxx

n∑
i=1

[
Sxx
nx̄n
− (xi − x̄n)

]
εi (5)

β̂1 = β1 +
1

Sxx

n∑
i=1

(xi − x̄n)εi. (6)

Derivation:

We get these expressions by replacing Yi, Ȳn, and Yi − Ȳn in (3) and (4) with

Yi = β0 + β1xi + εi

Ȳn = β0 + β1x̄n + ε̄n

Yi − Ȳn = β1(xi − x̄n) + εi − ε̄n,

where ε̄n = n−1
∑n

i=1 εi.

For β̂1 we have

β̂1 = S−1xx

n∑
i=1

(xi − x̄n)(Yi − Ȳn)

= S−1xx

n∑
i=1

(xi − x̄n)[β1(xi − x̄n) + εi − ε̄n]

= β1 + S−1xx

n∑
i=1

(xi − x̄n)εi − S−1xx
n∑
i=1

(xi − x̄n)ε̄n

= β1 + S−1xx

n∑
i=1

(xi − x̄n)εi.
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For β̂0 we have

β̂0 = Ȳn − β̂1x̄n
= β0 + β1x̄n + ε̄n − β̂1x̄n
= β0 + ε̄n − (β̂1 − β1)x̄n

= β0 + ε̄n − x̄nS−1xx
n∑
i=1

(xi − x̄n)εi

= β0 + x̄nS
−1
xx

n∑
i=1

Sxx
nx̄n

εi − x̄nS−1xx
n∑
i=1

(xi − x̄n)εi

= β0 +
x̄n
Sxx

n∑
i=1

[
Sxx
nx̄n
− (xi − x̄n)

]
εi.

• Unbiasedness of least-squares regression coefficients: We are now in a position to easily
show that β̂0 and β̂1 are unbiased estimators of β0 and β1. Applying the fact that Eεi = 0 for all
i = 1, . . . , n to expressions (5) and (6) gives

Eβ̂0 = β0 +
x̄n
Sxx

n∑
i=1

[
Sxx
nx̄n
− (xi − x̄n)

]
Eεi = β0

and

Eβ̂1 = β1 + S−1xx

n∑
i=1

(xi − x̄n)Eεi = β1.

• Variance and covariance of least-squares regression coefficients: We have

Var β̂0 = (n−1 + x̄2nS
−1
xx )σ2 (7)

Var β̂1 = S−1xx σ
2 (8)

Cov(β̂0, β̂1) = −x̄nS−1xx σ2. (9)
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Derivations: For β̂0 we have

Var β̂0 = Var

(
β0 +

x̄n
Sxx

n∑
i=1

[
Sxx
nx̄n
− (xi − x̄n)

]
εi

)

=
x̄2n
S2
xx

Var

(
n∑
i=1

[
Sxx
nx̄n
− (xi − x̄n)

]
εi

)

=
x̄2n
S2
xx

n∑
i=1

[
Sxx
nx̄n
− (xi − x̄n)

]2
Var εi (by independence of ε1, . . . , εn)

=
x̄2n
S2
xx

[
S2
xx

nx̄2n
− 2

n∑
i=1

(xi − x̄n)
Sxx
nx̄n

+
n∑
i=1

(xi − x̄n)2

]
σ2

=

(
1

n
+

x̄2n
Sxx

)
σ2.

For β̂1 we have

Var β̂1 = Var

(
β1 + S−1xx

n∑
i=1

(xi − x̄n)εi

)

= S−2xx

n∑
i=1

(xi − x̄n)2 Var εi (by independence of ε1, . . . , εn)

= S−1xx σ
2.

For Cov(β̂0, β̂1) we have

Cov(β̂0, β̂1) = E[(β̂0 − Eβ̂0)(β̂1 − Eβ̂1)]
= E[(β̂0 − β0)(β̂1 − β1)]

= E

(
x̄n
Sxx

n∑
i=1

[
Sxx
nx̄n
− (xi − x̄n)

]
εi · S−1xx

n∑
j=1

(xj − x̄n)εj

)

=
x̄n
S2
xx

E

[
n∑
i=1

[
Sxx
nx̄n
− (xi − x̄n)

]
(xi − x̄n)ε2i

+
∑
i 6=j

[
Sxx
nx̄n
− (xi − x̄n)

]
(xj − x̄n)εiεj

]

=
x̄n
S2
xx

E
n∑
i=1

[
Sxx
nx̄n

(xi − x̄n)− (xi − x̄n)2
]
ε2i (by independence of ε1, . . . , εn)

= − x̄n
S2
xx

n∑
i=1

(xi − x̄n)2 Var εi

= − x̄n
Sxx

σ2.
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• Mean and variance of estimated function at a point: We will estimate the value of the
regression function f at a “new” point xnew, given by f(xnew) = β0 + β1xnew, with f̂(xnew) =
β̂0 + β̂1xnew. We have

E(β̂0 + β̂1xnew) = β0 + β1xnew (10)

Var(β̂0 + β̂1xnew) =

[
1

n
+

(xnew − x̄n)2

Sxx

]
σ2. (11)

Derivations: For the expectation, we have

E(β̂0 + β̂1xnew) = Eβ̂0 + Eβ̂1xnew = β0 + β1xnew.

For the variance, we use the fact that for any random variables U and V and constants a and b,
we have

Var(aU + bV ) = a2 VarU + b2 VarV + 2abCov(U, V ).

From (7), (8), and (9), we have

Var(β̂0 + β̂1xnew) = Var β̂0 + x2new Var β̂1 + 2xnew Cov(β̂0, β̂1)

= (x̄2nS
−1
xx + n−1)σ2 + x2newS

−1
xx σ

2 − 2xnewx̄nS
−1
xx σ

2

= [n−1 + S−1xx (xnew − x̄n)2]σ2.

• Lastly in this section we give an estimator for the variance σ2 of the error terms ε1, . . . , εn and
claim that it is unbiased.

Result: For

σ̂2 =
1

n− 2

n∑
i=1

[Yi − (β̂0 + β̂1xi)]
2 =

1

n− 2

n∑
i=1

ε̂2i

we have Eσ̂2 = σ2.

Proof: We begin by rewriting σ̂2 as

σ̂2 =
1

n− 2

n∑
i=1

[
Yi − (β̂0 + β̂1xi)

]2
=

1

n− 2

n∑
i=1

[
εi − (β̂0 − β0)− (β̂1 − β1)xi

]2
=

1

n− 2

n∑
i=1

[
ε2i + (β̂0 − β0)2 + (β̂1 − β1)2x2i

−2εi(β̂0 − β0)− 2εi(β̂1 − β1)xi − 2(β̂0 − β0)(β̂1 − β1)xi
]
.

From here we see that

Eσ̂2 =
1

n− 2

n∑
i=1

[
Eε2i + Var β̂0 + xi Var β̂1 − 2Eεi(β̂0 − β0)− 2Eεi(β̂1 − β1)xi − 2xi Cov(β̂0, β̂1)

]
,
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where

Eεi(β̂0 − β0) = Eεi
x̄n
Sxx

n∑
j=1

[
Sxx
nx̄n
− (xj − x̄n)

]
εj =

[
1

n
+
x̄n(xi − x̄n)

Sxx

]
σ2

Eεi(β̂1 − β1)xi = Eεi
1

Sxx

n∑
j=1

(xj − x̄n)εjxi =
(xi − x̄n)xi

Sxx
σ2,

by (5) and (6). Substituting these expressions as well as those in (7), (8), and (9) and simplifying
gives the result.

Inference in simple linear regression

• In this section we assume that the values Y1, . . . , Yn are Normally distributed around the values
of the regression function. That is, we assume that the error terms ε1, . . . , εn are independent
Normal(0, σ2) random variables. This assumption gives us many useful results which enable
inference, that is the construction of confidence intervals and tests of hypotheses.

• Sampling distribution results: If ε1, . . . , εn are independent Normal(0, σ2) random variables,
then

β̂0 ∼ Normal(β0, (n
−1 + x̄2nS

−1
xx )σ2) (12)

β̂1 ∼ Normal(β1, S
−1
xx σ

2) (13)

β̂0 + β̂1xnew ∼ Normal(β0 + β1xnew, [n
−1 + S−1xx (xnew − x̄n)2]σ2) (14)

and
(n− 2)σ̂2/σ2 ∼ χ2

n−2. (15)

Results (12) and (13) follow from the fact that β̂0 and β̂1 can each be written as a constant plus
a linear combination of the Normal(0, σ2) error terms (recall that in STAT 511 we used moment
generating functions to show that linear combinations of Normal random variables are Normal).
Result (14) follows from the Normality of β̂0 and β̂1 and from (11). The proof of (15) is beyond
the scope of this course, but do note its similarity to results we have seen earlier!

In addition, we have

β̂0 − β0
σ̂
√
n−1 + x̄2nS

−1
xx

∼ tn−2 (16)

β̂1 − β1
σ̂
√
S−1xx
∼ tn−2 (17)

β̂0 + β̂1xnew − (β0 + β1xnew)

σ̂
√
n−1 + S−1xx (xnew − x̄n)2

∼ tn−2. (18)

These results follow from (12)–(15) and from the fact that under Normal error terms, σ̂2 is inde-
pendent of β̂0 and β̂1.
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• These distributional results can be immediately put to use in the ways that follow.

• Confidence intervals:

– From (16) we see that a (1− α)100% confidence interval for β0 is given by

β̂0 ± tn−2,α/2σ̂
√
n−1 + x̄2nS

−1
xx . (19)

– From (17) we see that (1− α)100% confidence interval for β1 is given by

β̂1 ± tn−2,α/2σ̂
√
S−1xx . (20)

– From (18) we see that a (1− α)100% confidence interval for β0 + β1xnew is given by

(β̂0 + β̂1xnew)± tn−2,α/2σ̂
√
n−1 + S−1xx (xnew − x̄n)2. (21)

• Tests of hypotheses for simple linear regression coefficients:

– Consider testing hypotheses about β0 with respect to a null value β∗0 , and define

T0,n =
β̂0 − β∗0

σ̂
√
n−1 + x̄2nS

−1
xx

.

We have the following:

H0 H1 Reject H0 at α iff p-value

β0 ≤ β∗0 β0 > β∗0 T0,n > tn−2,α 1− Ftn−2(T0,n)

β0 ≥ β∗0 β0 < β∗0 T0,n < −tn−2,α Ftn−2(T0,n)

β0 = β∗0 β0 6= β∗0 |T0,n| > tn−2,α/2 2[1− Ftn−2(|T0,n|)]

– Consider testing hypotheses about β1 with respect to a null value β∗1 , and define

T1,n =
β̂1 − β∗1
σ̂
√
S−1xx

. (22)
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We have the following:

H0 H1 Reject H0 at α iff p-value

β1 ≤ β∗1 β1 > β∗1 T1,n > tn−2,α 1− Ftn−2(T1,n)

β1 ≥ β∗1 β1 < β∗1 T1,n < −tn−2,α Ftn−2(T1,n)

β1 = β∗1 β1 6= β∗1 |T1,n| > tn−2,α/2 2[1− Ftn−2(|T1,n|)]

In the above tables, Ftn−2 represents the cdf of the tn−2 distribution.

• Data example: For the beryllium abundance versus temperature of stars data, we can build 95%
confidence intervals for the linear regression coefficients β0 and β1 as well as test hypotheses about
them using the results in this section provided the values of Y1, . . . , Yn are Normally distributed
around the regression function. To check whether we can assume this, we typically look at a
Normal quantile-quantile plot of the residuals. The following R code generates this plot:

qqnorm(scale(e.hat),main="",

xlab="standard Normal quantiles",

ylab="quantiles of standardized data")

abline(0,1)
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Recall that if the points arrange themselves along a straight line, we may assume that they
are realizations from a Normal distribution. Besides one outlier, there do not appear to be huge
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deviations from Normality, so we will proceed under the assumption that the error terms ε1, . . . , ε38
are Normally distributed for the beryllium data.

The following R code computes the upper and lower bounds of the confidence intervals given in
expressions (19) and (20).

n <- length(Y)

sigma.hat <- sqrt( sum(e.hat^2)/(n-2) )

x.bar <- mean(x)

Sxx <- sum( (x - x.bar)^2 )

alpha <- 0.05

tval <- qt(1-alpha/2,n-2)

# compute lower and upper limit of confidence interval for beta.0

se.beta.0.hat <- sigma.hat * sqrt( 1/n + x.bar^2 / Sxx )

beta0.hat - tval * se.beta.0.hat

beta0.hat + tval * se.beta.0.hat

# compute lower and upper limit of confidence interval for beta.1

se.beta.1.hat <- sigma.hat * sqrt(1/Sxx)

beta1.hat - tval * se.beta.1.hat

beta1.hat + tval * se.beta.1.hat

The 95% confidence interval

– for β0 is (−2.998309,−1.668342).

– for β1 is (0.0004749841, 0.0007102168).

The following R code computes the p-value based on the test statistic in (22) for testing H0:
β1 = 0 versus H1: β1 6= 0.

T1 <- beta1.hat/ (sigma.hat*sqrt(1/Sxx))

pval <- 2*(1 - pt(abs(T1),n-2))

The value of T1,n is 10.21839 and the associated p-value is 3.477219× 10−12, so we would conclude
at very small values of the significance level α that the slope parameter is nonzero and, moreover,
positive, since the sign of β̂1 is positive, indicating a significant positive linear relationship between
the beryllium levels and temperature of stars.
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Prediction interval for new observation

• For a given xnew, we would like to construct an interval in which the as-yet-unobserved value of
Ynew will fall with probability 1− α.

We begin by finding the distribution of the residual corresponding to the pair (xnew, Ynew), which
we define as

ε̂new = Ynew − (β̂0 + β̂1xnew).

We may rewrite this as

ε̂new = Ynew − (β0 + β1xnew) + (β0 + β1xnew)− (β̂0 + β̂1xnew)

= εnew − [(β̂0 − β0) + xnew(β̂1 − β1)],

where εnew = Ynew − (β0 + β1xnew) is the deviation of Ynew from the height of the true regression
line β0 + β1xnew, which is a Normal(0, σ2) random variable independent of β̂0 and β̂1. From here
we have

Eε̂new = Eεnew − [E(β̂0 − β0) + xnewE(β̂1 − β1)] = 0

Var ε̂new = Var εnew + Var(β̂0 + β̂1xnew) = [1 + n−1 + S−1xx (xnew − x̄n)2]σ2.

Moreover, ε̂new has a Normal distribution, since it is a linear combination of Normally distributed
random variables. Thus

ε̂new ∼ Normal(0, [1 + n−1 + S−1xx (xnew − x̄n)2]σ2).

Combining this result with (15) gives

ε̂new

σ̂
√

1 + n−1 + S−1xx (xnew − x̄n)2
∼ tn−2. (23)

This allows us to write

P

(
−tn−2,α/2 <

Ynew − (β̂0 + β̂1xnew)

σ̂
√

1 + n−1 + S−1xx (xnew − x̄n)2
< tn−2,α/2

)
= 1− α

for any α ∈ (0, 1), which is equivalent to

P
(
β̂0 + β̂1xnew − tn−2,α/2σ̂

√
1 + n−1 + S−1xx (xnew − x̄n)2

< Ynew < β̂0 + β̂1xnew + tn−2,α/2σ̂
√

1 + n−1 + S−1xx (xnew − x̄n)2
)

= 1− α.

Therefore, if we wish to construct an interval around the fitted regression line at xnew which will
contain the as-yet-unobserved Ynew with probability 1 − α for any α ∈ (0, 1), the above suggests
the interval given by

β̂0 + β̂1xnew ± tn−2,α/2σ̂
√

1 + n−1 + S−1xx (xnew − x̄n)2.
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• Data example: We now compute for the beryllium data 95% confidence intervals for β0 +β1xnew
as well as 95% prediction intervals for Ynew of a new observation (Ynew, xnew) for a sequence of
values of xnew within the range of the observed values of the covariate. The following R code
computes and plots for each value xnew the upper and lower bounds of two intervals.

plot(Y ~ x , xlab="Teff",ylab = "logBe")

abline(beta0.hat,beta1.hat)

alpha <- .05

tval <- qt(1-alpha/2,n-2)

x.seq <- seq(min(x),max(x),length=99)

se.Y.hat.new <- sigma.hat * sqrt( 1/n + (x.seq - x.bar)^2 / Sxx )

loconf <- beta0.hat+beta1.hat*x.seq - tval * se.Y.hat.new

upconf <- beta0.hat+beta1.hat*x.seq + tval * se.Y.hat.new

lines(loconf~x.seq,lty=2)

lines(upconf~x.seq,lty=2)

sd.e.hat.new <- sigma.hat *sqrt( 1 + 1/n + (x.seq - x.bar)^2 / Sxx )

lopred <- beta0.hat + beta1.hat * x.seq - tval * sd.e.hat.new

uppred <- beta0.hat + beta1.hat * x.seq + tval * sd.e.hat.new

lines(lopred~x.seq,lty=3)

lines(uppred~x.seq,lty=3)
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We see that the prediction intervals for new observations are wider than the confidence intervals
for the height of the regression line. Moreover, we see that the intervals are narrower for values of
xnew closer to x̄n.

Least-squares estimators as MLEs under Normal error terms

• If we assume
Yi = β0 + β1xi + εi, i = 1, . . . , n,

where ε1, . . . , εn are independent Normal(0, σ2) random variables, it is the same as

Yi ∼ Normal(β1 + β1xi, σ
2), i = 1, . . . , n,

with Y1, . . . , Yn independent.

• In this case the likelihood function based on the data Y1, . . . , Yn and x1, . . . , xn is given by

L(β0, β1, σ
2;Y1, . . . , Yn, x1, . . . , xn) =

n∏
i=1

1√
2π

1

σ
exp

(
− 1

2σ2
[Yi − (β0 + β1xi)]

2

)

= (2π)−n/2(σ2)−n/2 exp

(
− 1

2σ2

n∑
i=1

[Yi − (β0 + β1xi)]
2

)

and the log-likelihood is

`(β0, β1, σ
2;Y1, . . . , Yn, x1, . . . , xn) = −n

2
log(2π)− n

2
log σ2 − 1

2σ2

n∑
i=1

[Yi − (β0 + β1xi)]
2.

We see that the pair (β̂0, β̂1) which maximizes the likelihood function is the pair which minimizes
the least-squares objective function

Qn(β0, β1) =
n∑
i=1

[Yi − (β0 + β1xi)]
2.

So in the simple linear regression model with Normal error terms, the maximum likelihood esti-
mators of β0 and β1 are the same as the least-squares estimators.

Likelihood ratio test for slope parameter

• In this section we find the form of the likelihood ratio test for H0: β1 = 0 versus H1: β1 6= 0 and
show that when it is calibrated to have size α ∈ (0, 1), it is equivalent to the test

Reject H0 iff
|β̂1|

σ̂
√
S−1xx

> tn−2,α/2, (24)

which is the test introduced previously.
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• Obtaining an expression for the likelihood ratio will require finding the value of the triplet
(β0, β1, σ

2) which maximizes the likelihood function over i) the space dictated for the parame-
ters by the null hypotheses, which is {(β0, β1, σ2) : β0 ∈ R, β1 = 0, σ2 ≥ 0} and ii) over the entire
parameter space, which is {(β0, β1, σ2) : (β0, β1) ∈ R2, σ2 ≥ 0}. Let (β̂∗0 , β̂

∗
1 , σ̂

∗2) be the triplet
which maximizes the likelihood over the null space. Then we have

(β̂∗0 , β̂
∗
1 , σ̂

∗2) = argmax
{(β0,β1,σ2):β0∈R,β1=0,σ2≥0}

− n

2
log(2π)− n

2
log σ2 − 1

2σ2

n∑
i=1

[Yi − (β0 + β1xi)]
2

= argmax
{(β0,β1,σ2):β0∈R,β1=0,σ2≥0}

− n

2
log σ2 − 1

2σ2

n∑
i=1

(Yi − β0)2

=

(
Ȳn, 0, n

−1
n∑
i=1

(Yi − Ȳn)2

)
,

where the second equality is obtained by substituting β1 = 0 and where the third equality can
be established with calculus methods. The triplet which maximizes the likelihood over the entire
parameter space is (β̂0, β̂1, σ̂

2
mle), where β̂0 and β̂1 are the least-squares estimators of β0 and β1

and where

σ̂2
mle =

1

n

n∑
i=1

[Yi − (β̂0 + β̂1xi)]
2 =

1

n

n∑
i=1

ε̂2i .

We recognize that the maximum likelihood estimator σ̂2
mle is biased, since we have discussed earlier

the unbiased estimator σ̂2 of σ2 which has the factor (n− 2)−1 instead of n−1 in front.

• The likelihood ratio is thus given by

LR(Y1, . . . , Yn, x1, . . . , xn) =
L(β̂∗0 , β̂

∗
1 , σ̂

∗2;Y1, . . . , Yn, x1, . . . , xn)

L(β̂0, β̂1, σ̂2
mle;Y1, . . . , Yn, x1, . . . , xn)

=
(2π)−n/2

[
n−1

∑n
i=1(Yi − Ȳn)2

]−n/2
exp(−n/2)

(2π)−n/2 [n−1
∑n

i=1 ε̂
2
i ]
−n/2

exp(−n/2)

=

[∑n
i=1(Yi − Ȳn)2∑n

i=1 ε̂
2
i

]−n/2
,

and the likelihood ratio test is of the form

Reject H0 iff

[∑n
i=1(Yi − Ȳn)2∑n

i=1 ε̂
2
i

]−n/2
< c (25)

for some c ∈ [0, 1].

• Let ¯̂εn = n−1
∑n

i=1 ε̂i denote the mean of the residuals, and note that this is equal to zero, since

1

n

n∑
i=1

ε̂i =
1

n

n∑
i=1

Yi − (β̂0 + β̂1xi) = Ȳn − (β̂0 + β̂1x̄n) = Ȳn − [(Ȳn − β̂1x̄n) + β̂1x̄n] = 0.

20



Now define the quantity Sε̂ε̂ =
∑n

i=1(ε̂i− ¯̂εn)2 =
∑n

i=1 ε̂
2
i and recall the notation SY Y =

∑n
i=1(Yi−

Ȳn)2. Then the rejection criterion of the likelihood ratio test may be rewritten as[
SY Y
Sε̂ε̂

]−n/2
< c

⇐⇒ SY Y
Sε̂ε̂

> c−2/n

⇐⇒ Sε̂ε̂ + SY Y − Sε̂ε̂
Sε̂ε̂

> c−2/n

⇐⇒ SY Y − Sε̂ε̂
Sε̂ε̂

> c−2/n − 1.

At this point we will use the fact that

SY Y − Sε̂ε̂ = β̂2
1Sxx, (26)

which we will establish later. We now have that the rejection criterion of the likelihood ratio test
is equivalent to

β̂2
1Sxx
Sε̂ε̂

> c−2/n − 1

⇐⇒ β̂2
1Sxx

Sε̂ε̂/(n− 2)
> (c−2/n − 1)(n− 2)

⇐⇒ β̂2
1

σ̂2/Sxx
> (c−2/n − 1)(n− 2)

⇐⇒ |β̂1|
σ̂
√
S−1xx

> [(c−2/n − 1)(n− 2)]1/2,

where we have used the fact that
σ̂2 = Sε̂ε̂/(n− 2).

We see that the test in (24) and the likelihood ratio test in (25) are equivalent when

tn−2,α/2 = [(c−2/n − 1)(n− 2)]1/2 ⇐⇒ c = [t2n−2,α/2/(n− 2) + 1]−n/2.
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• We now show that SY Y − Sε̂ε̂ = β̂2
1Sxx from (26). We have

SY Y − Sε̂ε̂ =
n∑
i=1

(Yi − Ȳn)2 −
n∑
i=1

(ε̂i − ¯̂εn)2

=
n∑
i=1

(Yi − Ȳn)2 −
n∑
i=1

(Yi − (β̂0 + β̂1xi)− [Ȳn − (β̂0 + β̂1x̄n)])2

=
n∑
i=1

(Yi − Ȳn)2 −
n∑
i=1

[(Yi − Ȳn)− β̂1(xi − x̄n)]2

=
n∑
i=1

(Yi − Ȳn)2 −
n∑
i=1

(Yi − Ȳn)2 + 2β̂1

n∑
i=1

(Yi − Ȳn)(xi − x̄n)− β̂2
1

n∑
i=1

(xi − x̄n)2

= 2β̂1SxxS
−1
xx

n∑
i=1

(Yi − Ȳn)(xi − x̄n)− β̂2
1Sxx

= 2β̂2
1Sxx − β̂2

1Sxx

= β̂2
1Sxx.
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