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Simple linear regression

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Regression

Regression model

For data pairs (Y1, x1), . . . , (Yn, xn), suppose

Yi = f (xi ) + εi

for i = 1, . . . , n, where
x1, . . . , xn are fixed real numbers
Y1, . . . ,Yn are independent random variables
f : R→ R is an unknown function
ε1, . . . , εn are iid rvs called errors with

I Eεi = 0
I Var εi = σ2

for i = 1, . . . , n.

Goal: Estimate the unknown function f and the error variance σ2.
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Regression

We observe a function plus noise:
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Regression

Simple linear regression model

For data pairs (Y1, x1), . . . , (Yn, xn), suppose

Yi = β0 + β1xi + εi

for i = 1, . . . , n, where
x1, . . . , xn are fixed real numbers
Y1, . . . ,Yn are independent random variables
β0 and β1 are unknown constants
ε1, . . . , εn are iid errors with

I Eεi = 0
I Var εi = σ2

for i = 1, . . . , n.

Goal: Estimate the unknown constants β0 and β1 and the error variance σ2.
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Regression

Topics:

1 Estimation of β0, β1, and σ2 as well as of β0 + β1xnew.
2 Inference about β0 and β1, e.g. testing H0: β1 = 0 versus H1: β1 6= 0.

Also confidence intervals for β0 + β1xnew.
3 Prediction of Ynew of a “new” obs. (xnew,Ynew) with a prediction interval .
4 Likelihood approach under Normal errors.
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Least-squares estimation in simple linear regression

Least-squares estimators of simple linear regression coefficients
Provided

∑n
i=1(xi − x̄n)2 > 0, the function

Qn(β0, β1) :=
n∑

i=1

[Yi − (β0 + β1xi )]2

is (uniquely) minimized at

β̂0 = Ȳn − β̂1x̄n

β̂1 =

∑n
i=1(xi − x̄n)(Yi − Ȳn)∑n

i=1(xi − x̄n)2

Exercise: Derive this result.
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Least-squares estimation in simple linear regression

LS intercept
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Least-squares estimation in simple linear regression

Define some new quantities:

SxY =
n∑

i=1

(xi − x̄n)(Yi − Ȳn), Sxx =
n∑

i=1

(xi − x̄n)2, SYY =
n∑

i=1

(Yi − Ȳn)2,

rxY =
SxY√
SxxSYY

, sY =
SYY
n − 1

, sX =
Sxx
n − 1

.

Then we have the following simpler expressions for β̂1:

β̂1 =
SxY
Sxx

or β̂1 = rxY

(
SYY
Sxx

)1/2

or β̂1 = rxY (sY /sx).

Exercise: Generate a toy data set in R and plot the least-squares line.
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Least-squares estimation in simple linear regression

The fitted values are

Ŷi = β̂0 + β̂1xi for i = 1, . . . , n.

The residuals are
ε̂i = Yi − Ŷi for i = 1, . . . , n.
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Least-squares estimation in simple linear regression

Log of beryllium abundance versus temperature of 38 stars with least-squares line.
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Least-squares estimation in simple linear regression

Some moments of the least-squares estimators

We have Eβ̂0 = β0 and Eβ̂1 = β1 as well as

Var β̂0 = (n−1 + x̄2
nS

−1
xx )σ2

Var β̂1 = S−1
xx σ

2

Cov(β̂0, β̂1) = −x̄nS−1
xx σ

2.

Exercise: Derive these, beginning by showing that β̂0 and β̂1 can be written as

β̂0 = β0 +
x̄n
Sxx

n∑
i=1

[
Sxx
nx̄n
− (xi − x̄n)

]
εi

β̂1 = β1 +
1
Sxx

n∑
i=1

(xi − x̄n)εi .
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Least-squares estimation in simple linear regression

Unbiased estimator of σ2

The estimator

σ̂2 =
1

n − 2

n∑
i=1

ε̂2i

is unbiased for σ2.

The proof is omitted. The best way to prove this is with matrix algebra.
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Least-squares estimation in simple linear regression

Mean and variance of estimated function at a point
We have

E(β̂0 + β̂1xnew) = β0 + β1xnew

Var(β̂0 + β̂1xnew) =

[
1
n

+
(xnew − x̄n)2

Sxx

]
σ2.

Exercise: Derive the above.
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Inference concerning regression coefficients

Sampling distribution results under Normal errors

If ε1, . . . , εn
ind∼ Normal(0, σ2), then

β̂0 ∼ Normal(β0, (n
−1 + x̄2

nS
−1
xx )σ2)

β̂1 ∼ Normal(β1,S
−1
xx σ

2)

β̂0 + β̂1xnew ∼ Normal(β0 + β1xnew, [n
−1 + S−1

xx (xnew − x̄n)2]σ2)

(n − 2)σ̂2/σ2 ∼ χ2
n−2.

Moreover, the above gives

β̂0 − β0

σ̂
√
n−1 + x̄2

nS
−1
xx

∼ tn−2,
β̂1 − β1

σ̂
√

S−1
xx

∼ tn−2,

and
β̂0 + β̂1xnew − (β0 + β1xnew)

σ̂
√
n−1 + S−1

xx (xnew − x̄n)2
∼ tn−2.
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Inference concerning regression coefficients

Confidence intervals
We may construct (1− α)100% CIs for β0, β1, and β0 + β1xnew as

β̂0 ± tn−2,α/2σ̂

√
n−1 + x̄2

nS
−1
xx

β̂1 ± tn−2,α/2σ̂

√
S−1
xx

(β̂0 + β̂1xnew)± tn−2,α/2σ̂

√
n−1 + S−1

xx (xnew − x̄n)2

Exercise: Get the beryllium data and under α = 0.05:

1 Build CIs for β0 and β1.
2 Build CIs for β0 + β1xnew across a range of xnew values and plot them.
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Inference concerning regression coefficients

Testing hypotheses about β1
Consider testing hypotheses about β1 with respect to a null value β∗

1 , and define

T1,n =
β̂1 − β∗

1

σ̂
√
S−1
xx

.

We have the following:

H0 H1 Reject H0 at α iff p-value

β1 ≤ β∗
1 β1 > β∗

1 T1,n > tn−2,α 1− Ftn−2(T1,n)

β1 ≥ β∗
1 β1 < β∗

1 T1,n < −tn−2,α Ftn−2(T1,n)

β1 = β∗
1 β1 6= β∗

1 |T1,n| > tn−2,α/2 2[1− Ftn−2(|T1,n|)]

Exercise: Get the p-value for testing H0: β1 = 0 for the beryllium data.
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Predicting response values at new predictor values

Prediction interval for a new observation
A (1−α)×100% prediction interval for Ynew of a new obs. (Ynew, xnew) is given by

β̂0 + β̂1xnew ± tn−2,α/2σ̂

√
1 + n−1 + S−1

xx (xnew − x̄n)2.

Exercise: Derive the above using the distribution of ε̂new = Ynew − (β̂0 + β̂1xnew).

Exercise: With the Beryllium data, construct PIs over a range of xnew values.
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Predicting response values at new predictor values

CIs for the height of the regression function as well as PIs for new obs.
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MLEs and LRT under Normal errors

Exercise: Let
Yi = β0 + β1xi + εi , i = 1, . . . , n,

where ε1, . . . , εn
ind∼ Normal(0, σ2).

1 Give the likelihood function for β0, β1, and σ2.
2 Give the log-likelihood function for β0, β1, and σ2.
3 Show that the size-α LRT for H0: β1 = 0 vs H1: β1 6= 0 is

Reject H0 iff S1/2
xx |β̂1|/σ̂ > tn−2,α/2.
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MLEs and LRT under Normal errors

Nuno C Santos, G Israelian, RJ Garćıa López, M Mayor, R Rebolo,
S Randich, A Ecuvillon, and C Doḿınguez Cerdeña.
Are beryllium abundances anomalous in stars with giant planets?
Astronomy & Astrophysics, 427(3):1085–1096, 2004.
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