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Multiple linear regression

Karl B. Gregory

Multiple regression

• Multiple regression model: Let x1, . . . ,xn be fixed vectors in Rp and let Y1, . . . , Yn be inde-
pendent random variables such that

Yi = f(xi) + εi, i = 1, . . . , n, (1)

for some function f : Rp → R, where ε1, . . . , εn are independent identically distributed random
variables with mean zero and variance σ2.

• We observe a function plus noise, where the function is a “surface” in p-dimensional space. This
is hard to visualize for p > 2, but for p = 2, we can depict the data we observe as points in
3-dimensional space floating above or below the surface given by the function f . For example, the
plot below on the left shows the bunt-cake-like function

f(x) = 1((x21 + x22)
1/2 ≤ 1) cos(π · [(x21 + x22)

1/2 − 1/2])

and the plot on the right plots some points (xi1, xi2, Yi), for i = 1, . . . , n, where Yi = f(xi1, xi2)+εi,
i = 1, . . . , 1000, where ε1, . . . , ε1000 were generated from the Normal(0, .1) distribution and the
covariate values where generated as independent realizations from the Uniform(−1, 1) distribution.
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• We focus on the special case in which the function f is a linear combination of the covariates.

• Multiple linear regression model: Let xi = (xi1, . . . , xip)
T for i = 1, . . . , n be fixed vectors in

Rp and let Y1, . . . , Yn be random variables such that

Yi = β0 + β1xi1 + · · ·+ βpxip + εi, i = 1, . . . , n, (2)

for some real numbers β0, β1, . . . , βp, where ε1, . . . , εn are independent identically distributed ran-
dom variables with mean zero and variance σ2.

• When p = 1 the model in (2) is the simple linear regression model.

• Sometimes we include in the linear regression model nonlinear transformations of the covariates.
For example, we might be interested in fitting the model

Yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + β4x
2
i1 + εi, i = 1, . . . , n.

This is still a linear regression model because, even though it involves some nonlinear transforma-
tions of the covariates, the parameters enter the model in a linear way. We can let

ui1 = xi1

ui2 = xi2

ui3 = xi1xi2

ui4 = x2i1

and then consider the model

Yi = β0 + β1ui1 + β2ui2 + β3ui3 + β4ui4 + εi,

which is equivalent.

Least-squares estimation in multiple linear regression

• We define the least-squares estimators of β0, β1, . . . , βp as

(β̂0, β̂1, . . . , β̂p) = argmin
(β0,β1,...,βp)∈Rp+1

n∑
i=1

[Yi − (β0 + β1xi1 + · · ·+ βpxip)]
2. (3)

It is very complicated to get expressions for β̂0, β̂1, . . . , β̂p when p > 1; that is, unless we use
matrices!

• Matrix representation of the multiple linear regression model: Let Y, X, β, and ε be
defined as

Y =

 Y1
...
Yn

 , X =

 1 x11 . . . x1p
...

...
. . .

...
1 xn1 . . . xnp

 , β =


β0
β1
...
βp

 , and ε =

 ε1
...
εn

 ,
2



so that Y is an n × 1 vector, X is an n × (p + 1) matrix, β is a (p + 1) × 1 vector, and ε is an
n× 1 vector. Then we may express the multiple linear regression model in (2) as

Y = Xβ + ε. (4)

We very often refer to the matrix X as the design matrix and to the observed values of the
covariates x1, . . . ,xn as the design points. This language comes from experimental design; if a
researcher designed an experiment, the covariate values x1, . . . ,xn might be determined by the
design.

• For any vector x ∈ Rd, the quantity ‖x‖2 = (xTx)1/2 = (
∑d

j=1 x
2
j)

1/2 is called the (Euclidean) norm

of the vector x, which is its length in d-dimensional Euclidean space. Its square ‖x‖22 =
∑d

j=1 x
2
j

is the sum of the squared elements in x.

• Let β̂ = (β̂0, β̂1 . . . , β̂p)
T , where β̂0, β̂1 . . . , β̂p are the least-squares estimators of β0, β1, . . . , βp

defined in (3). Our matrix representation in (4) of the multiple linear regression model allows us
to express the least-squares regression coefficients as

β̂ = argmin
β∈Rp+1

‖Y −Xβ‖22.

• We can use calculus methods to find an expression for β̂. Let

Qn(β) = ‖Y −Xβ‖22

and let

∂

∂β
Qn(β) =


∂
∂β0
Qn(β)

∂
∂β1
Qn(β)
...

∂
∂βp
Qn(β)


be the vector of partial derivatives of Qn(β) with respect to β0, β1, . . . , βp. The vector β̂ minimizes
Qn(β) if and only if

∂

∂β
Qn(β)

∣∣∣
β=β̂

= 0,

where 0 is a (p + 1) × 1 vector of zeroes. Using matrix/vector calculus methods, we can get an
expression in matrices for the vector of partial derivatives. We first write

Qn(β) = (Y −Xβ)T (Y −Xβ) = YTY − 2YTXβ + βTXTXβ.

We now use the fact (see pg. 13–14 of [1]) that for d× 1 vectors a and u and a d× d matrix A we
have

∂aTu

∂u
= a and

∂uTAu

∂u
= (A + AT )u.

Applying these formulas gives

∂

∂β
Qn(β) = −2XTY + [XTX + (XTX)T ]β = −2XTY + 2XTXβ,

3



so the least-squares estimator β̂ of β must satisfy

−2XTY + 2XTXβ̂ = 0 ⇐⇒ XTXβ̂ = XTY.

Provided XTX is invertible (non-singular), we can pre-multiply both sides of the above by
(XTX)−1, giving

β̂ = (XTX)−1XTY.

• Remark: If XTX is not invertible, we cannot compute the least-squares estimator of β. This
occurs when rank of the matrix X is less than its number of columns, in which case we say that X
is rank-deficient or that it does not have full-column rank (the rank of a matrix is the dimension
of the space spanned by its columns, that is the dimension of the space containing all the points
which can be reached with linear combinations of the columns). If X is rank-deficient, then it is
possible to construct at least one of the columns of X with some linear combination of the other
columns. This implies a kind of redundancy in the covariates. It could occur if one column of
X contained measurements in inches, while another column contained the same measurements in
centimeters; the latter column is equal to 2.54 times the former (there are 2.54 centimeters per
inch), and these columns really contain the same information. In simple linear regression, with a
single covariate, this occurs if the covariate takes only a single value, in which case the column
of X containing x11, . . . , xn1 is just a multiple of the first column, which is a vector of ones. The
problem of rank-deficiency always occurs if the number of columns in X, which is p + 1, exceeds
the sample size n. In this course, we will always assume that p+ 1 is less than n.

• We denote by ε̂ the vector (ε̂1, . . . , ε̂n)T of residuals, which may be computed as

ε̂ = Y −Xβ̂.

We also use the notation Ŷ = Xβ̂ so that Ŷ is the vector of fitted values (Ŷ1, . . . , Ŷn)T .

• Example: The following code shows how to do these matrix calculations in R on a built-in R
dataset called cars. The dataset is brought into the workspace by the command data(cars).
After bringing it into the workspace, type ?cars to read more about the data set. The cbind()

function concatenates matrices or column vectors together. The %*% operator performs matrix
multiplication, the solve() function computes an inverse, and the t() function takes the transpose
of a matrix. We will verify on these data that the previous calculations produce the same values
of least-squares regression coefficients as the matrix calculations.

4



data(cars)

n <- nrow(cars)

Y <- cars$dist

x <- cars$speed

# using previous calculations:

beta1.hat <- cor(x,Y)*sd(Y)/sd(x)

beta0.hat <- mean(Y) - beta1.hat * mean(x)

# Matrices in R:

#

# cbind() binds matrices together side-by-side

# %*% does matrix multiplication

# t() takes transpose

# solve() takes inverse

#

# using matrices:

X <- cbind(rep(1,n),x) # rep(1,n) makes a vector of ones

beta.hat <- solve(t(X)%*%X)%*%t(X)%*%Y

plot(cars)

abline(beta.hat)
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Mean and covariance matrix of least-squares estimators

• We begin this section with some general definitions and results about random vectors: A random
vector is a vector in which each entry is a random variable.

• Definition: Let U = (U1, . . . , Ud)
T be a d × 1 random vector and let µ = (µ1, . . . , µd)

T be the
d × 1 vector with entries given by µj = EUj, for j = 1, . . . , d. Then µ is called the mean vector
(or just the mean) of U, and we will use the notation EU = µ.

• Definition: Let U = (U1, . . . , Ud)
T be a d× 1 random vector and let Σ be the d× d matrix with

entries given by Σij = Cov(Ui, Uj), for 1 ≤ i, j ≤ d. Then Σ is called the covariance matrix of the
random vector U, and we will use the notation Cov(U) = Σ. Note that we have

Cov(U) = E[(U− EU)(U− EU)T ].

• Result: Let U = (U1, . . . , Ud)
T be a d × 1 random vector and let a = (a1, . . . , ad)

T be a d × 1
vector of real numbers. Then

Var(aTU) = aT Cov(U)a. (5)

Derivation: We have

Var(aTU) = Var(
∑d

j=1 ajUj)

= E(
∑d

j=1 ajUj − E
∑d

j=1 ajUj)
2

= E(
∑d

j=1 aj(Uj − EUj))2

= E
∑d

j=1

∑d
k=1 ajak(Uj − EUj)(Uk − EUk)

=
∑d

j=1

∑d
k=1 ajak Cov(Uj, Uk)

= aT Cov(U)a.

• Result: Let U = (U1, . . . , Ud)
T be a d × 1 random vector and let a = (a1, . . . , ad)

T be a d × 1
vector of real numbers and let A be a d× d matrix of real numbers with entries Aij, 1 ≤ j, i ≤ d.
Then

E(a + AU) = a + AEU (6)

Cov(a + AU) = A Cov(U)AT . (7)

Derivation: We prove the second part:

Cov(a + AU) = E[(a + AU− E(a + AU))(a + AU− E(a + AU))T ]

= E[(AU− E(AU))(AU− E(AU))T ]

= E[A(U− EU)(A(U− EU))T ]

= E[A(U− EU)(U− EU)TAT ]

= AE[(U− EU)(U− EU)T ]AT

= A Cov(U)AT .

6



• We now use the above results to show that the least-squares estimator β̂ of the vector of linear
regression coefficients β is unbiased; that is, we will show Eβ̂ = β. We also derive the covariance
matrix Cov(β̂) of β̂.

• Unbiasedness of least-squares estimator: The matrix representation of β̂ makes it very easy
to show its unbiasedness. We have

Eβ̂ = E(XTX)−1XTY = E(XTX)−1XT (Xβ + ε) = β + (XTX)−1XTEε = β,

since Eε = 0.

• In order to find Cov(β̂), we first must find Cov(ε) and Cov(Y).

• The covariance matrix Cov(ε) of the vector of error terms ε is given by

Cov(ε) = σ2In,

where In is the n× n identity matrix, since for 1 ≤ i, j ≤ n we have

Cov(εi, εj) =

{
σ2 for i = j
0 for i 6= j,

from the fact that ε1, . . . , εn are independent.

• The covariance matrix Cov(Y) of the response vector Y is given by

Cov(Y) = σ2In, (8)

since
Cov(Y) = Cov(Xβ + ε) = Cov(ε) = σ2In.

• Covariance matrix of least-squares estimator: We have

Cov(β̂) = (XTX)−1σ2. (9)

Derivation: From (8) and (7) we have

Cov(β̂) = Cov((XTX)−1XTY)

= (XTX)−1XT Cov(Y)X(XTX)−1

= (XTX)−1XT · σ2In ·X(XTX)−1

= (XTX)−1σ2.

7



• Mean and variance of estimated function at a point: Consider a “new” point xnew ∈ Rp

at which we would like to estimate the regression function. Denote by x̃new the vector x̃new =
(1,xTnew)T , so that

β0 + β1xnew,1 + · · ·+ βpxnew,p = x̃Tnewβ.

We will estimate the value of the regression function f at the point xnew with x̃Tnewβ̂. We have

Ex̃Tnewβ̂ = x̃Tnewβ (10)

Var(x̃Tnewβ̂) = x̃Tnew(XTX)−1x̃newσ
2. (11)

Derivations: For the expectation we have

Ex̃Tnewβ̂ = x̃TnewEβ̂ = x̃Tnewβ,

since β̂ is unbiased. For the variance, we use (7) and (9).

• Result: For

σ̂2 =
1

n− p− 1
‖Y −Xβ̂‖22 =

1

n− p− 1
‖ε̂‖22

we have Eσ̂2 = σ2. The proof of this result is beyond the scope of this course.

Inference in multiple linear regression

• In this section we will assume that the response values Y1, . . . , Yn are Normally distributed around
the regression function. More precisely, we will assume that the error terms ε1, . . . , εn are inde-
pendent Normal(0, σ2) random variables. The Normality of the error terms leads to Normality of
the least-squares regression coefficients, which enables inferential methods like hypothesis testing
and the construction of confidence intervals based on Normal quantiles.

• In this section we will make use of the Multivariate Normal distribution, which we define next.
Note that when we talk about the distribution of a random vector, we mean the joint distribution
of the random variables comprising the random vector.

• Multivariate Normal distribution: The pdf of a random vector U having the Multivariate
Normal distribution with mean vector µ and (invertible) covariance matrix Σ is given by

f(u;µ,Σ) = (2π)−d/2|Σ|−1/2 exp

[
−1

2
(u− µ)TΣ−1(u− µ)

]
for all u ∈ Rd, where |Σ| is the determinant of Σ. We will use Normal(µ,Σ) to denote the
Multivariate Normal distribution with mean vector µ and covariance matrix Σ.

• Remark: If a Multivariate Normal random vector U has dimension d = 1, then its pdf reduces to
that of the “univariate” Normal distribution. If d = 1, then Σ is a 1× 1 matrix, that is a scalar,
which we may denote by σ2, and µ is a scalar, which we may denote by µ. In this case U has the
pdf

f(u;µ, σ2) = (2π)−1/2|σ2|−1/2 exp

[
−1

2

(u− µ)2

σ2

]
for all u ∈ R.

8



• If we assume that ε1, . . . , εn are independent Normal(0, σ2) random variables, then the distribution
of the random vector ε = (ε1, . . . , εn)T , that is the joint distribution of ε1, . . . , εn, is given by

n∏
i=1

(2π)−1/2σ−1 exp

[
−1

2

ε2i
σ2

]
= (2π)−n/2|σ2|−n/2 exp

[
−1

2

n∑
i=1

ε2i
σ2

]

= (2π)−n/2|σ2In|−1/2 exp

[
−1

2
εT (σ2In)−1ε

]
,

which we recognize this as the pdf of the Normal(0, Inσ
2) distribution. The second equality comes

from the fact that for a diagonal matrix

D =

 d11 . . . 0
...

. . .
...

0 . . . dnn


we have

|D| =
n∏
i=1

dii and D−1 =

 d−111 . . . 0
...

. . .
...

0 . . . d−1nn

 .
• We will make much use of the following result concerning linear transformations of Multivariate

Normal random vectors.

• Result: Let U be a d× 1 random vector with the Normal(µ,Σ) distribution and for some r × 1
vector a and r × d matrix A let V = a + AU. Then V is an r × 1 random vector such that

V ∼ Normal(a + Aµ,AΣAT ). (12)

Proof: We will make use of multivariate moment generating functions. The mgf of the random
vector U is given by

MU(t) = exp[tTµ+ (1/2)tTΣt],

for all t in a rectangle in Rd that contains the origin. So the mgf of the random vector V is given
by

MV(t) = Ma+AU(t)

= E exp[tT (a + AU)]

= exp[tTa]E exp[(AT t)TU]

= exp[tTa] exp[(AT t)Tµ+ (1/2)(AT t)TΣ(AT t)]

= exp[tT (a + Aµ) + (1/2)tTAΣAT t]

which we recognize as the mgf of the Normal(a + Aµ,AΣAT ) distribution.

• From this result we see that if ε1, . . . , εn are independent Normal(0, σ2) random variables we may
write

Y ∼ Normal(Xβ, Inσ
2).
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• We now present results about the sampling distribution of the least-squares estimator β̂ of β as
well as of the unbiased estimator σ̂2 of σ2.

• Sampling distribution results: If ε1, . . . , εn are independent Normal(0, σ2) random variables,
then

β̂ ∼ Normal(β, (XTX)−1σ2) (13)

aT β̂ ∼ Normal(aTβ, aT (XTX)−1a · σ2) (14)

for any vector a ∈ Rp+1, and
(n− p− 1)σ̂2/σ2 ∼ χ2

n−p−1. (15)

Results (13) and (14) follow from the result in (12). The proof of (15) is beyond the scope of this
course. In addition, we have

aT β̂ − aTβ

σ̂
√

aT (XTX)−1a
∼ tn−p−1, (16)

which follows from (14) and (15) and from the fact that σ̂2 is independent from β̂ when ε1, . . . , εn
are independent Normal(0, σ2) random variables.

• These results can be put to use in the following ways:

• Confidence intervals: From (16), for any a ∈ Rp+1, a (1− α)100% confidence interval for aT β̂
is given by

aT β̂ ± tn−p−1,α/2σ̂
√

aT (XTX)−1a. (17)

Different choices of the vector a lead to confidence intervals for different quantities:

– Choosing a = x̃new = (1,xTnew)T gives a (1−α)100% confidence interval for f(xnew) = x̃Tnewβ:

x̃Tnewβ̂ ± tn−p−1,α/2σ̂
√

x̃Tnew(XTX)−1x̃new.

– Define the basis vectors e1, . . . , ep+1 of Rp+1 as

e1 =


1
0
...
0
0

 e2 =


0
1
...
0
0

 . . . ep+1 =


0
0
...
0
1

 .
Then choosing a = ej gives a (1− α)100% confidence interval for entry j of β, which is

eTj β̂ ± tn−p−1,α/2σ̂
√

eTj (XTX)−1ej.

We may prefer to express this as

β̂j ± tn−p−1,α/2
σ̂√
n

Ω̂
1/2
jj ,

where β̂j is entry j of the vector β̂ and Ω̂jj is entry (j, j) of (n−1XTX)−1.
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• Tests of hypotheses: For some vector a ∈ Rp+1, consider testing hypotheses about the quantity
aTβ with respect to a null value a∗, and define

Tn =
aT β̂ − a∗

σ̂
√

aT (XTX)−1a
.

We have the following:

H0 H1 Reject H0 at α iff p-value

aTβ ≤ a∗ aTβ > a∗ Tn > tn−p−1,α 1− Ftn−p−1(Tn)

aTβ ≥ a∗ aTβ < a∗ Tn < −tn−p−1,α 1− Ftn−p−1(Tn)

aTβ = a∗ aTβ 6= a∗ |Tn| > tn−p−1,α/2 2[1− Ftn−p−1(|Tn|)]

In the above, Ftn−p−1 represents the cdf of the tn−p−1 distribution.

• Example: Consider the model

Yi = β0 + β1xi1 + β2xi2 + εi, i = 1, . . . , n,

where ε1, . . . , εn are independent Normal(0, σ2) random variables. Suppose you wish to test the
hypotheses H0: β2 = 0 versus H1: β2 6= 0. Then we perform the two-sided test from the table
above with a = (0, 0, 1)T and a∗ = 0, since (0, 0, 1)(β0, β1, β2)

T = β2.

• Prediction interval for new observation: Suppose we are to observe the pair (xnew, Ynew), for
a known vector xnew. We would like to construct an interval within which the as-yet-unobserved
response Ynew will fall with probability 1− α for any α ∈ (0, 1).

In order to construct such an interval, we consider the distribution of the residual ε̂new which will
results from our observing the value of Ynew. We have

ε̂new = Ynew − x̃Tnewβ̂,

where x̃new = (1,xTnew)T as before. We may rewrite this as

ε̂new = Ynew − x̃Tnewβ − x̃Tnew(β̂ − β)

= εnew − x̃Tnew(β̂ − β),

where εnew = Ynew − x̃Tnewβ is the error term corresponding to the pair (xnew, Ynew), that is the
difference between Ynew and the height x̃Tnewβ of the true regression function at xnew. Since εnew
behaves just like the other error terms ε1, . . . , εn, it is a Normal(0, σ2) random variable, and since
it is independent of ε1, . . . , εn, it is independent of β̂. From here we have

Eε̂new = Eεnew + x̃TnewE(β̂ − β) = 0

Var ε̂new = Var εnew + Var x̃Tnew(β̂ − β) = σ2 + x̃Tnew(XTX)−1x̃newσ
2.

11



Since ε̂new is a linear combination of Normal random variables, it also has a Normal distribution,
so that

ε̂new ∼ Normal(0, [1 + x̃Tnew(XTX)−1x̃new]σ2).

Combining this result with (15) gives

ε̂new

σ̂
√

1 + x̃Tnew(XTX)−1x̃new

∼ tn−p−1.

This allows us to write

P

(
−tn−p−1,α/2 <

Ynew − x̃Tnewβ̂

σ̂
√

1 + x̃Tnew(XTX)−1x̃new

< tn−p−1,α/2

)
= 1− α

for any α ∈ (0, 1), which is equivalent to

P
(
x̃Tnewβ̂ − tn−p−1,α/2σ̂

√
1 + x̃Tnew(XTX)−1x̃new

< Ynew < x̃Tnewβ̂ + tn−p−1,α/2σ̂
√

1 + x̃Tnew(XTX)−1x̃new

)
= 1− α.

Therefore, if we wish to construct an interval around the fitted regression line at xnew which will
contain the as-yet-unobserved Ynew with probability 1− α, for any α ∈ (0, 1), the above suggests
the interval given by

x̃Tnewβ̂ ± tn−p−1,α/2σ̂
√

1 + x̃Tnew(XTX)−1x̃new.

• Exercise: The following R code pulls into the workspace a built-in R data set called trees, which
contains for each of n = 31 trees the girth, height, and volume of timber (type ?trees into the
console for more information about the data). We consider the multiple linear regression model
in which the volume of timber is the response variable and girth and height are covariates; denote
by Y1, . . . , Yn the timber volumes, by x11, . . . , xn1 the girths, and by x12, . . . , xn2 the heights of the
n trees.

The R code computes the least-squares estimator β̂ of β and produces three plots. The left-most
plot is a scatterplot of the residuals ε̂, . . . , ε̂n against the fitted values Ŷ1, . . . , Ŷn. This plot is used
for diagnostic purposes—to see if the linear regression model is appropriate for the data. The
second and third plots are scatterplots of the points

(x1i, Yi − (β̂0 + β̂2x2i)), for i = 1, . . . , n and

(x2i, Yi − (β̂0 + β̂1x1i)), for i = 1, . . . , n

with the lines given by y = β̂1x and y = β̂2x, respectively, overlaid. The first of these two
plots depicts the relationship between volume and girth after removing from the volumes the
estimated effect of the heights. The second depicts the relationship between volume and height
after removing from the volumes the estimated effect of the girths.

12



data(trees)

n <- nrow(trees) # count number of rows in data set

Y <- trees$Volume

X <- cbind( rep(1,n), trees$Girth, trees$Height )

beta.hat <- solve(t(X)%*%X) %*% t(X)%*% Y

par(mfrow=c(1,3)) # puts next three plots in a row

Y.hat <- X %*% beta.hat

e.hat <- Y - Y.hat

plot(e.hat~Y.hat,xlab="Fitted values",ylab="Residuals")

abline(h=0,lty=3)

plot( Y - X[,-2] %*% beta.hat[-2] ~ X[,2], xlab="Girth",

ylab="Volume minus estimated effect of Height")

abline(0,beta.hat[2])

plot(Y - X[,-3] %*% beta.hat[-3] ~ X[,3], xlab="Height",

ylab="Volume minus estimated effect of Girth")

abline(0,beta.hat[3])
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Do the following:

i) Build a 99% confidence interval for β1, the coefficient for girth.

ii) Build a 99% confidence interval for β2, the coefficient for height.

iii) Get the p-value for testing H0: β1 = 0 versus H1: β1 6= 0 and interpret it.

iv) Get the p-value for testing H0: β2 = 0 versus H1: β2 6= 0 and interpret it.

v) Build a 95% confidence interval for the average volume of trees which have girth equal to 15
and height equal to 70.
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vi) Build a 95% prediction interval for the volume of a tree which has girth equal to 15 and
height equal to 70.

Answers:

i) A 99% confidence interval for β1 can be computed in R as follows:

sigma.hat <- sqrt(sum(e.hat^2)/(n - 2 - 1))

Omega.hat <- solve(t(X)%*%X / n) # Omega.hat[j,j] gives (j,j) entry

# 99% CI for Girth coefficient

tval <- qt(.995,n-2-1)

loci.Girth <- beta.hat[2] - tval * sigma.hat / sqrt(n) * sqrt(Omega.hat[2,2])

upci.Girth <- beta.hat[2] + tval * sigma.hat / sqrt(n) * sqrt(Omega.hat[2,2])

This gives the interval (3.977928, 5.438393).

ii) Build a 99% confidence interval for β1, the coefficient for height.

# 99% CI for Height coefficient

loci.Height <- beta.hat[3] - tval * sigma.hat / sqrt(n) * sqrt(Omega.hat[3,3])

upci.Height <- beta.hat[3] + tval * sigma.hat / sqrt(n) * sqrt(Omega.hat[3,3])

This gives the interval (−0.02039064, 0.6988931).

iii) Get the p-value for testing H0: β1 = 0 versus H1: β1 6= 0 and interpret it.

# p-value for testing whether Girth coefficient is equal to zero:

a <- c(0,1,0) # pull beta.hat[2]

Tn <- abs(t(a) %*% beta.hat - 0)/(sigma.hat*sqrt(t(a) %*% solve(t(X)%*%X) %*% a))

Tn <- as.numeric(Tn)

pval <- 2*(1 - pt(Tn,n-2-1))

This gives the p-value ≈ 0.

iv) Get the p-value for testing H0: β2 = 0 versus H1: β2 6= 0 and interpret it.

# p-value for testing whether Height coefficient is equal to zero:

a <- c(0,0,1) # pull beta.hat[3]

Tn <- abs(t(a) %*% beta.hat - 0)/(sigma.hat*sqrt(t(a) %*% solve(t(X)%*%X) %*% a))

Tn <- as.numeric(Tn)

pval <- 2*(1 - pt(Tn,n-2-1))

This gives the p-value 0.01449097.
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v) Build a 95% confidence interval for the average volume of trees which have girth equal to 15
and height equal to 70.

# 95% conf. interval for avg Volume of trees with Girth = 15 and Height = 70

tval <- qt(.975,n-2-1)

a <- c(1,15,70)

loci.xnew <- t(a)%*%beta.hat - tval*sigma.hat/sqrt(n)*sqrt(t(a%*%Omega.hat%*%a)

upci.xnew <- t(a)%*%beta.hat + tval*sigma.hat/sqrt(n)*sqrt(t(a%*%Omega.hat%*%a)

This gives the confidence interval (33.72289, 39.04178).

vi) Build a 95% prediction interval for the volume of a tree which has girth equal to 15 and
height equal to 70.

# 95% pred. interval for Volume of a tree with Girth = 15 and Height = 70

a <- c(1,15,70)

lopi.xnew <- t(a)%*%beta.hat -tval*sigma.hat/sqrt(n)*sqrt(1+t(a)%*%Omega.hat%*%a)

uppi.xnew <- t(a)%*%beta.hat +tval*sigma.hat/sqrt(n)*sqrt(1+t(a)%*%Omega.hat%*%a)

This gives the prediction interval (27.99782, 44.76685).

Power curves for tests about the slope parameter (optional)

• We will assume for this section that the response vector Y and each of the columns of the design
matrix X have been centered by subtracting the mean from each entry. The effect of centering
the covariates and the response is that it makes the least-squares estimate of the intercept term
β0 equal to zero, so that the intercept can be removed from the model, leaving β = (β1, . . . , βp)

T

instead of β = (β0, β1, . . . , βp)
T . Removing the intercept will allow us to retrieve βj from the

vector β = (β1, . . . , βp)
T as eTj β, whereas if we keep the intercept in the model, so that β =

(β0, β1, . . . , βp)
T , we need to retrieve βj from β as eTj+1β. This would make the notation of this

section cumbersome, so we assume a centered response and design, giving us the intercept-free
model

Yi = β1xi1 + · · ·+ βpxip + εi, i = 1, . . . , n.

• Consider testing H0: βj = 0 versus H1: βj 6= 0 for some j = 1, . . . , p in the above model. The
previous section gives the size-α test

Reject H0 iff
√
nΩ̂
−1/2
jj |β̂j|/σ̂ > tn−p,α/2,

where Ω̂jj is the (j, j) element of (n−1XTX)−1. Note that without the intercept in the model, the
degrees of freedom changes from n− p− 1 to n− p.
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• In order to find an expression for the power function of this test, we must use the noncentral
t-distribution; we find that

√
nΩ̂
−1/2
jj β̂j/σ̂ ∼ tn−p,φ, with φ =

√
nΩ̂
−1/2
jj βj/σ,

where βj is the true value of the slope coefficient for covariate j. Note that the noncentrality
parameter φ is equal to zero when βj = 0, that is when H0 is true, so that the test statistic has a
central t-distribution under the null. The power curve is given by

γ(βj) = Pβ(
√
nΩ̂
−1/2
jj |β̂j|/σ̂ > tn−p,α/2)

= Pβ(
√
nΩ̂
−1/2
jj β̂j/σ̂ < −tn−p,α/2) + Pβ(

√
nΩ̂
−1/2
jj β̂j/σ̂ > tn−p,α/2)

= 1− Ftn−p,φ(tn−p,α/2) + Ftn−p,φ(−tn−p,α/2),

where the true value βj of the regression coefficient is hidden in the noncentrality parameter φ.
The power increases as φ moves away from 0 in either direction.

• To study what affects the power, we study the noncentrality parameter, which is a function of the
true value of the regression coefficient βj, the standard deviation σ of the error terms, and the

somewhat enigmatic quantity Ω̂jj. We find that understanding the quantity Ω̂jj can richly inform
our discussions about power.

It turns out that we can construct of the value of Ω̂jj as follows: Let Xj be column j of the matrix
X and let X−j be the matrix X after removing column j. Then define

γ̂−j = argmin
γ−j∈Rp

‖Xj −X−jγ−j‖22,

which is the least-squares estimator of the coefficients in the regression of Xj onto all the other

columns of the design matrix X. Then the value of Ω̂jj is given by

Ω̂jj =

(
1

n
‖Xj −X−jγ̂−j‖22

)−1
, (18)

which is one divided by the mean of the squared residuals of the least-squares regression in which
the columns of X−1 are used to predict the values in Xj. Plugging this into the expression for the
non-centrality parameter, we have

φ =
√
nΩ̂
−1/2
jj βj/σ = ‖Xj −X−jγ̂−j‖2βj/σ. (19)

This may not seem very informative so far, but we find that we can learn a great deal from the
above expression. If the values of covariate j are highly correlated with the values of the other
covariates, the residuals from regressing it onto the others will be small, so that the quantity
‖Xj −X−jγ̂−j‖2 with be small, leading to low power (a small non-centrality parameter). On the
other hand, if covariate j has very small correlations with the other covariates, ‖Xj −X−jγ̂−j‖2
will be large, leading to high power (a large non-centrality parameter).

On a more intuitive level, we may regard the size of ‖Xj−X−jγ̂−j‖2 as representing the amount of
new information contributed to the model by covariate j beyond the information contributed by
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the other covariates. If covariate j is highly correlated with the other covariates, then much of the
information it carries is redundant information—information also carried by the other covariates.
However, if covariate j is very weakly correlated with the other covariates, then most of the
information it carries is unique information not possessed by the other covariates.

These observations point us toward a fundamental principal in multiple regression: When a co-
variate is closely related to the other covariates in the model, it is hard to distinguish its effect on
the response from the effects of the other covariates; if it is less related to the other covariates in
the model, its effects are easier to distinguish.

Effect of dimension on the power: Another very important observation we can make about
the quantity ‖Xj−X−jγ̂−j‖2 is that is it a strictly decreasing function of the number of covariates
p in the model; every time we add a covariate to the model, this quantity must decrease (provided
we are adding covariates which are not perfectly correlated with the ones already in the model)!
This means that the power to reject H0: βj = 0 when it is false decreases as the total number of
covariates in the model grows, regardless of the true value of βj.

• The plot below shows, for testing H0: β1 = 0 versus H1: β1 6= 0, the power curves of the test

Reject H0 iff
√
nΩ̂
−1/2
11 |β̂1|/σ̂ > tn−p,0.025

for n = 100 over the different total numbers of covariates p = 10, p = 50, p = 80, and p = 98
when the rows of the design matrix X are drawn from the Normal(0, Ip) distribution. The power
curve is given by

γ(β1) = 1− Ftn−p,φ(tn−p,0.025) + Ftn−p,φ(−tn−p,0.025),

where φ =
√
nΩ̂
−1/2
11 β1/σ. Note that the value of Ω̂11 depends on the design matrix X, the rows of

which we are generating as realizations from a multivariate Normal distribution. Therefore, under
each setting, 200 datasets were generated, which resulted in 200 values of Ω̂11, and thus 200 power
curves. Each of the power curves plotted in the figure is the average of the 200 power curves based
on the 200 values of Ω̂11 under the corresponding setting. The value of σ was set equal to 1.
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Note that as p increases, the power of the test over β1 6= 0 decreases; the decrease in power
becomes very dramatic as p approaches n. This is because as more and more covariates are added
to the model, the column X1 can be more and more accurately reconstructed using the columns
of X−1, making the quantity ‖X1−X−1γ̂−1‖2, and thus the noncentrality parameter, smaller and
smaller. In fact, as p approaches n, this quantity will approach zero, so that the test will tend
towards having only trivial power (power no greater than the size) over β1 6= 0.

• Deriving the expression for Ω̂jj given in (18) takes a bit of work as well as some more advanced
knowledge of linear algebra; specifically, one needs to know about projection matrices, which we
do not cover in this class. We nevertheless present the details here.

First partition the matrix X such that X = [X1 X−1], where X1 is the first column of X and X−1
is the matrix with the remaining columns of X. Then we may write XTX as the block matrix

XTX =

[
XT

1 X1 XT
1 X−1

XT
−1X1 XT

−1X−1

]
.

We will show
Ω̂11 =

n

‖(I−P−1)X1‖22
, (20)

where P−1 is the projection matrix P−1 = X−1(X
T
−1X−1)

−1XT
−1. The vector (I − P−1)X1 is the

vector of residuals from regression the column X1 on the columns of X−1, so that our expression
for Ω̂11 in (20) matches the expression in (18). Since we can permute the columns of X to put
any one of the columns as the first column, it is sufficient to find expression for Ω̂11.

We can obtain an expression for the (1, 1) element of the inverse of XTX using the following
block-matrix inversion formula: We have[

A B
C D

]−1
=

[
F−1 −F−1BD−1

−D−1CF−1 D−1 + D−1CF−1BD−1

]
,
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where F = A−BD−1C, provided the inverse exists. This formula gives

[(XTX)−1](1,1) =
(
XT

1 X1 −XT
1 X−1(X

T
−1X−1)

−1XT
−1X1

)−1
=
(
XT

1 (I−P−1)X1

)−1
=
(
XT

1 (I−P−1)
T (I−P−1)X1

)−1
(idempotence and symmetry of I−P−1)

=
(
[(I−P−1)X1]

T (I−P−1)X1

)−1
= 1/‖(I−P−1)X1‖22).

Now we have

Ω̂11 = [(n−1XTX)−1](1,1) = n[(XTX)−1](1,1) =
n

‖(I−P−1)X1‖22
.

This completes the derivation of the expression in (18) for Ω̂jj. Letting P−j = X−j(X
T
−jX−j)

−1XT
−j,

we have that (I − P−j)Xj is the vector of residuals from regressing the column Xj onto the re-
maining columns X−j. Then we can rewrite expression in (19) for the noncentrality parameter
as

φ =
√
nΩ̂
−1/2
jj βj/σ =

βj
σ
‖(I−P−j)Xj‖2.

Likelihood ratio test for “significance” of a subset of covariates

• We introduce in this section a test which is known as the full-reduced model F -test. To set things
up, we first re-introduce the multiple linear regression model with Normal error terms:

• Multivariate linear regression model with Normal errors: Let xi = (xi1, . . . , xip)
T for

i = 1, . . . , n be fixed vectors in Rp and let Y1, . . . , Yn be random variables such that

Yi = β0 + β1xi1 + · · ·+ βpxip + εi, i = 1, . . . , n, (21)

for some real numbers β0, β1, . . . , βp, with p+1 < n, where ε1, . . . , εn are independent Normal(0, σ2)
random variables.

• In multivariate linear regression, it is often of interest to discover which of the covariates have
an effect on the response. If a covariate has no effect on the response, then the corresponding
regression coefficient will be equal to zero. In the case that only some of the covariates affect
the response, several of the coefficients among β1, . . . , βp will be equal to zero. This leads to an
interest in sets of hypotheses of a certain form which we describe next.

• Hypotheses for significance of a subset of covariates: For some r ∈ {1, . . . , p− 1} we wish
to test

H0: βr+1 = · · · = βp = 0 versus H1: βj 6= 0 for some j ∈ {r + 1, . . . , p}. (22)

If the null hypotheses is true, then all the relevant covariates are found among the covariates
1, . . . , r and all the covariates r + 1, . . . , p are irrelevant.
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Note that we can always re-order the covariates, so that sets of hypotheses of this form can be
used to test whether any subset of coefficients is equal to zero.

If we knew which covariates were irrelevant, we could ignore them. This would be advantageous,
because the more covariates we include in the model, the more poorly we will estimate each one!

• The likelihood ratio test for significance of a subset of covariates: For any r ∈ {1, . . . , p−
1}, we will derive the likelihood ratio test for the hypotheses in (22).

Defining x̃i = (1,xTi )T for i = 1, . . . , n and the matrix X = [x̃1, . . . , x̃n]T as well as the vectors
β = (β0, β1, . . . , βp)

T and Y = (Y1, . . . , Yn)T , we may express the likelihood function as

L(β, σ2;Y1, . . . , Yn,x1, . . . ,xn) =
n∏
i=1

(2π)−1/2(σ2)−1/2 exp

[
− 1

2σ2
(Yi − x̃Ti β)2

]
= (2π)−n/2(σ2)−n/2 exp

[
− 1

2σ2
‖Y −Xβ‖22

]
and the log-likelihood as

`(β, σ2;Y1, . . . , Yn,x1, . . . ,xn) = −n
2

log(2π)− n

2
log σ2 − 1

2σ2
‖Y −Xβ‖22.

Obtaining an expression for the likelihood ratio involves maximizing the likelihood over i) the null
space, given by

{(β, σ2) : βj ∈ R for j ∈ {0, 1, . . . , r} and βj = 0 for j ∈ {r + 1, . . . , p}, σ2 ≥ 0},

and ii) the entire parameter space

{(β, σ2) : β ∈ Rp+1, σ2 ≥ 0}.

Let (β̂
∗
, σ̂∗2) be the (β, σ2) pair which maximizes the likelihood over the null space. Then we have

β̂
∗

= (β̂∗0 , β̂
∗
1 , . . . , β̂

∗
p)
T , where

(β̂∗0 , β̂
∗
1 , . . . , β̂

∗
p) = argmin

{(β0,β1,...,βp)∈Rp+1:βj=0 for j∈{r+1,...,p}}

n∑
i=1

[Yi − (β0 + xi1β1 + · · ·+ xipβp)]
2.

We can easily compute β̂
∗

as follows: Let XR be the matrix X after removing the columns
associated with the covariates r+1, . . . , p, which are specified to be irrelevant in the null hypothesis,
and define the (r + 1)× 1 vector β̂R as

β̂R = (XT
RXR)−1XT

RY.

Then β̂
∗

is given by

β̂
∗

=

[
β̂R
0

]
,

where 0 is an (p− r − 1)× 1 vector of zeroes. Then σ̂∗2 is given by

σ̂∗2 =
1

n
‖Y −Xβ̂

∗
‖22 =

1

n
‖Y −XRβ̂R‖22,
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noting that Xβ̂
∗

= XRβ̂R.

The (β, σ2) pair which maximizes the likelihood over the entire parameter space is (β̂, σ̂2
mle), where

β̂ = (β̂0, β̂1, . . . , β̂p)
T , with

(β̂0, β̂1, . . . , β̂p) = argmin
(β0,β1,...,βp)∈Rp+1

n∑
i=1

[Yi − (β0 + xi1β1 + · · ·+ xipβp)]
2,

which we recognize as the least-squares estimator of β and

σ̂2
mle =

1

n
‖Y −Xβ̂‖22.

The likelihood ratio is thus given by

LR(Y1, . . . , Yn,x1, . . . ,xn) =
L(β̂

∗
, σ̂∗2;Y1, . . . , Yn,x1, . . . ,xn)

L(β̂, σ̂2
mle;Y1, . . . , Yn,x1, . . . ,xn)

=
(2π)−n/2(σ̂∗2)−n/2 exp

[
−‖Y −Xβ̂

∗
‖22/(2σ̂∗2)

]
(2π)−n/2(σ̂2

mle)
−n/2 exp

[
−‖Y −Xβ̂‖22/(2σ̂2

mle)
]

=

[
σ̂∗2

σ̂2
mle

]−n/2
=

[
‖Y −Xβ̂

∗
‖22

‖Y −Xβ̂‖22

]−n/2
.

With the substitution Xβ̂
∗

= XRβ̂R, the likelihood ratio test is of the form

Reject H0 iff

[
‖Y −XRβ̂R‖22
‖Y −Xβ̂‖22

]−n/2
< c

for some c ∈ [0, 1].

• The full-reduced model F -test: The full-reduced model F -test is equivalent to the likelihood
ratio test of the hypotheses in (22). Let

SSERed = ‖Y −XRβ̂R‖22 be the “sum of squared errors for the reduced model”, and

SSEFull = ‖Y −Xβ̂‖22 be the “sum of squared errors for the full model”.

To give an interpretation to these quantities, SSEFull is the sum of the squared residuals resulting
from fitting the linear regression model with all the covariates included, i.e. the “full model”,
while SSERed is the sum of the squared residuals from fitting the linear regression model with only
the covariates 1, . . . , r included, i.e., the model “reduced” to having only the first r covariates.

The likelihood ratio test is based on the difference between SSERed and SSEFull. It asks how much
we lose in terms of being able to predict the response when we omit the covariates r+ 1, . . . , p. It
is important to note that we always (when X is full-rank, which we are assuming) have

SSERed > SSEFull .
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That is, removing variables from the model will always increase the sum of the squared residuals,
even if by a small amount. If SSERed is much larger than SSEFull, then we will suspect that some
important covariates have been omitted in the reduced model. If SSERed is only a little bit larger
than SSEFull, we will suspect that the covariates omitted in the reduced model were not important.

The full-reduced model F -test of the hypotheses

H0: βr+1 = · · · = βp = 0 versus H1: βj 6= 0 for some j ∈ {r + 1, . . . , p}
for any r ∈ {1, . . . , p− 1} is

Reject H0 iff
(SSERed− SSEFull)/(p− r)

SSEFull /(n− p− 1)
> Fp−r,n−p−1,α. (23)

• The full-reduced model F -test as an LRT: We now show that the full-reduced model F -test
is equivalent to the size-α likelihood ratio test of the same hypotheses.

Beginning from the rejection criterion of the likelihood ratio test, we make some manipulations to
show that it is equivalent to that of the full-reduced model F -test. We have[

‖Y −XRβ̂R‖22
‖Y −Xβ̂‖22

]−n/2
< c

⇐⇒ ‖Y −XRβ̂R‖22
‖Y −Xβ̂‖22

> c−2/n

⇐⇒ ‖Y −Xβ̂‖22 + ‖Y −XRβ̂R‖22 − ‖Y −Xβ̂‖22
‖Y −Xβ̂‖22

> c−2/n

⇐⇒ ‖Y −XRβ̂R‖22 − ‖Y −Xβ̂‖22
‖Y −Xβ̂‖22

> c−2/n − 1

⇐⇒ (‖Y −XRβ̂R‖22 − ‖Y −Xβ̂‖22)/(p− r)
‖Y −Xβ̂‖22/(n− p− 1)

> (c−2/n − 1)(n− p− 1)/(p− r).

It turns out (we will not prove these results in this course) that if H0 is true, we have

‖Y −XRβ̂R‖22/σ2 ∼ χ2
n−r−1 (24)

‖Y −Xβ̂‖22/σ2 ∼ χ2
n−p−1 (25)

(‖Y −XRβ̂R‖22 − ‖Y −Xβ̂‖22)/σ2 ∼ χ2
p−r, (26)

and that the quantities in (25) and (26) are independent. It follows that

(‖Y −XRβ̂R‖22 − ‖Y −Xβ̂‖22)/(p− r)
‖Y −Xβ̂‖22/(n− p− 1)

∼ Fp−r,n−p−1. (27)

We can use this result to calibrate the rejection region of the likelihood ratio test so that it has a
desired size; for any α ∈ (0, 1), the size-α likelihood ratio test of the hypotheses in (22) is

Reject H0 iff
(‖Y −XRβ̂R‖22 − ‖Y −Xβ̂‖22)/(p− r)

‖Y −Xβ̂‖22/(n− p− 1)
> Fp−r,n−p−1,α,

which is the same rejection criterion as that of the full-reduced model F -test.
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• Exercise: This exercise will use the built-in data set swiss, which contains for 47 French-
speaking areas in Switzerland the following variables from ca. 1888: Fertility, Agriculture, Ex-
amination, Education, Catholic, and Infant Mortality. To bring the data set into the workspace,
type data(swiss), and type ?swiss into the console for more information about the data. We
will treat Fertility as the response variable and the other variables as covariates.

Do the following:

i) Give the least-squares regression coefficients for the full model.

ii) Compute the value of SSEFull.

iii) Suppose we wish to test whether the covariates Examination and Education belong in the
model, that is, whether their coefficients are equal to zero. Give the least-squares regression
coefficients for the reduced model after omitting the covariates Examination and Education.

iv) Compute the value of SSERed after omitting the covariates Examination and Education.

v) Compute test statistic for the full-reduced model F -test for testing

H0: βExamination = βEducation = 0

against its alternative.

vi) Decide whether to reject the null hypothesis at the α = 0.05 significance level.

vii) Compute the p-value for the full-reduced model F -test.

Answers:

i) The least squares regression coefficients are found with the following R code:

n <- nrow(swiss)

Y <- swiss$Fertility

X <- cbind( rep(1,n),

swiss$Agriculture,

swiss$Examination,

swiss$Education,

swiss$Catholic,

swiss$Infant.Mortality)

beta.hat <- solve( t(X) %*% X ) %*% t(X) %*% Y

We get

β̂0 = 66.9151817

β̂Agriculture = −0.1721140

β̂Examination = −0.2580082

β̂Education = −0.8709401

β̂Catholic = 0.1041153

β̂InfantMortality = 1.0770481.
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ii) The R code

e.hat <- Y - X %*% beta.hat

SSE.full <- sum(e.hat^2)

gives SSEFull = 2105.043.

iii) The R code

X.red <- cbind( rep(1,n),

swiss$Agriculture,

swiss$Catholic,

swiss$Infant.Mortality)

beta.hat.red <- solve( t(X.red) %*% X.red ) %*% t(X.red) %*% Y

gives

β̂0 = 26.74754972

β̂Agriculture = 0.14229420

β̂Catholic = 0.08778473

β̂InfantMortality = 1.63342374.

As an aside: Note that some of these coefficient estimates are totally different from their
values in the full model. For example, the effect of the Agriculture covariate appears to have
been reversed by the removal of the Examination and Education variables from the model!
This is a strong signal that we have removed something important from the model. This
effect can occur when the covariates are correlated amongst themselves and when one of the
removed covariates was a relevant one.

iv) The R code

e.hat.red <- Y - X.red %*% beta.hat.red

SSE.red <- sum(e.hat.red^2)

gives SSERed = 4408.04.

v) The R code

r <- 3 # Three variables left in reduced model

p <- 5 # Five variables in full model

F.test.stat <- ( (SSE.red - SSE.full) / ( p - r) ) / ( SSE.full / (n - p - 1))

gives the test statistic value 22.42778.
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vi) The upper 0.05 quantile of the F2,41 distribution is 3.225684, obtained from the following R
code:

critical.val.05 <- qf(.95,p-r,n-p-1)

Since 22.42778 > 3.225684 we reject the null hypothesis at the α = 0.05 significant level,
concluding that we should not remove both the variables Examination and Education from
the model; one or the other or both of them should remain in the model.

vii) The R code

pval <- 1 - pf(F.test.stat,p-r,n-p-1)

gives the p-value 2.629152 × 10−07. Therefore, we could reject the null hypothesis that
Examination and Education are both irrelevant at very small significance levels. There is
very strong evidence that one or the other or both should remain in the model.

Analysis of variance for linear regression:

• Analysis of variance (ANOVA) refers to decomposing the variation in a response variable into its
different parts—the part accounted for by the model (in our case the linear regression model) and
the part attributable to random error.

• The quantity representing the total amount of variation in a set of responses Y1, . . . , Yn is SY Y =∑n
i=1(Yi − Ȳn)2, for which we define the new notation SST, so that

SST =
n∑
i=1

(Yi − Ȳn)2.

We will call this the total sum of squares.

• The quantity representing the amount of variation in Y1, . . . , Yn accounted for by the model will
be denoted by SSM. If a model produces the fitted values Ŷ1, . . . , Ŷn for the responses Y1, . . . , Yn,
we define SSM as

SSM =
n∑
i=1

(Ŷi − Ȳn)2.

We will call this the model sum of squares or the sum of squares for the model.

• The quantity representing the amount variation in Y1, . . . , Yn attributable to random error is

SSE =
n∑
i=1

(Yi − Ŷi)2,

We will call this the error sum of squares or the sum of squared errors.
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• Result: In the linear regression model of (2), when the fitted values are defined by

Ŷi = β̂0 + β̂1xi1 + . . . β̂pxip, i = 1, . . . , n,

where β̂0, β̂1, . . . , β̂p are the least-squares estimators of β0, β1, . . . , βp, we have

SST = SSM + SSE .

• The decomposition of SST into the quantities SSM and SSE comes into play in a special case of
the full-reduced model F -test in which we wish to test whether any of the covariates are relevant
to the response. We sometimes call this test the overall F -test or the overall test of significance
for the linear regression model.

• Overall test of significance for the linear regression model: Suppose we wish to test

H0: β1 = · · · = βp = 0 versus H1: βj 6= 0 for at least one j ∈ {1, . . . , p}.

The null hypothesis specifies that all of the covariates are irrelevant. In this case the full-reduced
model F -test with size α, using the notation introduced in this section, has the form

Reject H0 iff
SSM /p

SSE /(n− p− 1)
> Fp,n−p−1,α. (28)

We can see this by noting firstly that SSE is the same as SSEFull and secondly, that the reduced
model, which includes none of the covariates (we have r = 0), consists only of the intercept term
β0, for which the least-squares estimator is simply

Ȳn = argmin
β0

n∑
i=1

(Yi − β0)2.

This means that the fitted values of the reduced model are all equal to Ȳn, which gives

SSERed =
n∑
i=1

(Yi − Ȳn)2 = SST .

Thus we may write SSERed− SSEFull = SST− SSE = SSM.

• Result: Under the null hypothesis

H0: β1 = · · · = βp = 0,

the results stated in (24), (25), and (26) give, respectively,

SST /σ2 ∼ χ2
n−1

SSE /σ2 ∼ χ2
n−p−1

SSM /σ2 ∼ χ2
p.
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• We define two more quantities, which are sums of squares divided by the degrees of freedom of
their corresponding chi-squared distributions: Let

MSM = SSM /p and MSE = SSE /(n− p− 1).

This leads to an even simpler formulation of the overall F -test. The rejection criterion in (28) can
now be written as

Reject H0 iff
MSM

MSE
> Fp,n−p−1,α.

The ratio MSM /MSE is sometimes called the F -statistic, being the test statistic for the overall
F -test.

• With these various quantities defined, it is now time to introduce the so-called ANOVA table,
which is a standard part of output produced by statistical software when linear models are fitted.
The ANOVA table has the following form (though it may vary some depending on software),
where Fn = MSM /MSE:

df SS MS Fn p-value
Model p SSM MSM Fn 1− FFp,n−p−1(Fn)
Error n− p− 1 SSE MSE
Total n− 1 SST

The function FFp,n−p−1 is the cdf of the Fp,n−p−1 distribution, so the p-value given in the ANOVA
table is the p-value for the overall test of significance of the linear model.

• Exercise: For the dataset swiss in R that was discussed previously, compute all the values in
the ANOVA table.
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Answer: The following R code computes the values:

n <- nrow(swiss)

Y <- swiss$Fertility

X <- cbind( rep(1,n),

swiss$Agriculture,

swiss$Examination,

swiss$Education,

swiss$Catholic,

swiss$Infant.Mortality)

beta.hat <- solve(t(X) %*% X) %*%t(X) %*% Y

Y.hat <- X %*% beta.hat

SSE <- sum((Y - Y.hat)^2)

SSM <- sum((Y.hat - mean(Y))^2)

SST <- sum((Y - mean(Y))^2)

p <- 5

MSM <- SSM / p

MSE <- SSE / ( n - p - 1 )

Fn <- MSM / MSE

pval <- 1 - pf( Fn, p, n - p - 1 )

We get the following values:

df SS MS Fn p-value
Model 5 5072.912 1014.582 19.76106 5.593799× 10−10

Error 41 2105.043 51.34251
Total 46 7177.955

• The coefficient of determination: Another value associated with linear regression that is
included as standard output by most statistical software is called the coefficient of determination.
It is denoted by R2 and is defined as

R2 =
SSM

SST
.

Recall that SST = SSM + SSE, so R2 is the proportion of the total variation in the responses
Y1, . . . , Yn accounted for by the model. We see that R2 takes values in the interval [0, 1]. If R2

is close to 1, the model explains a lot of the variation in the responses; if R2 is close to zero, the
model does not explain much of the variation in the response.
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We do not use R2 directly for inference; a large value of R2 does not necessarily mean that we
should reject the null hypothesis that all the regression coefficients are zero. However, we do find
that we can express the test statistic Fn for the overall F -test in terms of R2. We have

Fn =
SSM /p

SSE /(n− p− 1)

=

(
SSM

SST− SSM

)
n− p− 1

p

=

(
SSM / SST

1− SSM / SST

)
n− p− 1

p

=

(
R2

1−R2

)
n− p− 1

p
,

which tells us that Fn is an increasing function of R2.

We also have that R2 is given by the square of Pearson’s correlation coefficient between the values
Y1, . . . , Yn and the fitted values Ŷ1, . . . , Ŷn.

References

[1] John F Monahan. A primer on linear models. CRC Press, 2008.

29


