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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Regression

Regression model

For data pairs (Y1, x1), . . . , (Yn, xn), where xi = (xi1, . . . , xip)T , suppose

Yi = f (xi1, . . . , xip) + εi

for i = 1, . . . , n, where
x1, . . . , xn are fixed vectors in Rp

Y1, . . . ,Yn are independent random variables
f : Rp → R is an unknown function
ε1, . . . , εn are iid errors with

I Eεi = 0
I Var εi = σ2

for i = 1, . . . , n.

Goal: Estimate the unknown function f and the error variance σ2.
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Regression

Multiple linear regression model

For data pairs (Y1, x1), . . . , (Yn, xn), where xi = (xi1, . . . , xip)T , suppose

Yi = β0 + xi1β1 + · · ·+ xipβp + εi

for i = 1, . . . , n, where
x1, . . . , xn are fixed vectors in Rp

Y1, . . . ,Yn are independent random variables
β0, β1, . . . , βp are unknown constants
ε1, . . . , εn are iid errors with

I Eεi = 0
I Var εi = σ2

for i = 1, . . . , n.

Goal: Estimate the unknown constants β0, β1, . . . , βp and the error variance σ2.
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Least-squares estimation in multiple linear regression

Least-squares estimators of multiple linear regression coefficients
We define the least-squares estimators of β0, β1, . . . , βp as

(β̂0, β̂1, . . . , β̂p) = argmin
(β0,β1,...,βp)∈Rp+1

n∑
i=1

[Yi − (β0 + β1xi1 + · · ·+ βpxip)]2.

Expressions for β̂0, β̂1, . . . , β̂p are very complicated when p > 1. So use matrices!

Exercise: Define Y, X, β, and ε so that the n equations

Yi = β0 + xi1β1 + · · ·+ xipβp + εi , i = 1, . . . , n

can be written as
Y = Xβ + ε.
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Least-squares estimation in multiple linear regression

Least-squares estimators of multiple linear regression coefficients

Provided XTX is invertible, the function

Qn(β) = ‖Y − Xβ‖22

is (uniquely) minimized at
β̂ = (XTX)−1XTY.

In the above, ‖x‖22 = x2
1 + · · ·+ x2

d for x ∈ Rd (squared Euclidean norm).

Exercise: Derive the above result using

∂aTu
∂u

= a and
∂uTAu
∂u

= (A + AT )u.
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Least-squares estimation in multiple linear regression

The fitted values are the entries of the vector

Ŷ = Xβ̂.

The residuals are the entries of the vector

ε̂ = Y − Ŷ.
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Least-squares estimation in multiple linear regression

Exercise:
1 Give the matrix XTX and the vector XTY in the p = 1 case.
2 Verify on a toy dataset that when p = 1, β̂ = (XTX)−1XTY gives

β̂0 = Ȳn − β̂1x̄n and β̂1 = rxY (sY /sx).
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Mean and covariance matrix of least-squares estimators

Mean and covariance matrix of a random vector
Let U = (U1, . . . ,Ud)T be a rvec and µ = (µ1, . . . , µd)T and Σ = (Σij)1≤i,j≤d be
the vector and matrix having entries such that

EUi = µi for i = 1, . . . , d
Cov(Ui ,Uj) = Σij for 1 ≤ i , j ≤ d .

Then µ and Σ are the mean vector and the covariance matrix of U.

Use notation Cov(U) = Σ.
We have

Cov(U) = E[(U− EU)(U− EU)T ].
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Mean and covariance matrix of least-squares estimators

Moments of linearly transformed random vector
Let U = (U1, . . . ,Ud)T be a rvec and a = (a1, . . . , ad)T a vector of reals. Then

Var(aTU) = aT Cov(U)a.

Moreover, if A = (Aij)1≤i,j≤d is a matrix of real numbers, then

E(a + AU) = a + AEU

Cov(a + AU) = A Cov(U)AT .

Exercises:
Derive the above.
Find Eβ̂ and Cov(β̂).
Find Ex̃Tnewβ̂ and Var(x̃Tnewβ̂), where x̃new = (1, xTnew)T .
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Inference in multiple linear regression

Multivariate Normal distribution
The pdf of a rvec U having the multivariate Normal distribution with mean vector
µ and (invertible) covariance matrix Σ is given by

f (u;µ,Σ) = (2π)−d/2|Σ|−1/2 exp

[
−1
2

(u− µ)TΣ−1(u− µ)

]
for all u ∈ Rd , where |Σ| is the determinant of Σ.

The mgf of U is given by

MU(t) = exp

(
tTµ+

1
2
tTΣt

)

We write U ∼ Normal(µ,Σ).

Exercise: Show that ε ∼ Normal(0, σ2In).
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Inference in multiple linear regression

Distribution of linearly transformed multivariate Normal rvec
Let U ∼ Normal(µ,Σ) be a d × 1 random vector and let

V = a + AU

for some r × 1 vector a and r × d matrix A. Then

V ∼ Normal(a + Aµ,AΣAT ).

Exercise: Derive the above using multivariate mgfs.
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Inference in multiple linear regression

Sampling distribution results under Normal errors

If ε1, . . . , εn
ind∼ Normal(0, σ2), then

β̂ ∼ Normal(β, (XTX)−1σ2)

aT β̂ ∼ Normal(aTβ, aT (XTX)−1a · σ2)

for any vector a ∈ Rp+1, and

(n − p − 1)σ̂2/σ2 ∼ χ2
n−p−1.

Moreover
aT β̂ − aTβ

σ̂
√

aT (XTX)−1a
∼ tn−p−1.

An unbiased estimator of the variance is

σ̂2 =
1

n − p − 1
‖Y − Xβ̂‖22.
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Inference in multiple linear regression

Confidence intervals
For any a ∈ Rp+1, a (1− α)100% confidence interval for aTβ is given by

aT β̂ ± tn−p−1,α/2σ̂
√

aT (XTX)−1a.

We can choose a to build CIs of interest.

Exercise: Show that a (1− α)× 100% CI for βj is given by

β̂j ± tn−p−1,α/2
σ̂√
n

Ω̂
1/2
jj , j = 1, . . . , p,

where Ω̂jj is the (j , j) element of (n−1XTX)−1.
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Inference in multiple linear regression

Tests of hypotheses
For some a ∈ Rp+1, consider tests comparing aTβ to a null value a∗ and define

Tn =
aT β̂ − a∗

σ̂
√

aT (XTX)−1a
.

We have the following:

H0 H1 Reject H0 at α iff p-value

aTβ ≤ a∗ aTβ > a∗ Tn > tn−p−1,α 1− Ftn−p−1(Tn)

aTβ ≥ a∗ aTβ < a∗ Tn < −tn−p−1,α Ftn−p−1(Tn)

aTβ = a∗ aTβ 6= a∗ |Tn| > tn−p−1,α/2 2[1− Ftn−p−1(|Tn|)]
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Inference in multiple linear regression

Prediction interval for a new observation
A (1−α)×100% prediction interval for Ynew of a new obs. (Ynew, xnew) is given by

x̃Tnewβ̂ ± tn−p−1,α/2σ̂
√

1 + x̃Tnew(XTX)−1x̃new,

where x̃new = (1, xTnew)T .

Exercise: Derive the above using the distribution of ε̂new = Ynew − x̃Tnewβ̂.
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Inference in multiple linear regression

Exercise: Run data(trees) in R and fit the model

Volumei = β0 + β1 · Girthi + β2 · Heighti + εi , i = 1, . . . , n.

1 Build a 99% CI for β1, the coefficient for girth.
2 Build a 99% CI for β2, the coefficient for height.
3 Get the p-value for testing H0: β1 = 0 versus H1: β1 6= 0 and interpret it.
4 Get the p-value for testing H0: β2 = 0 versus H1: β2 6= 0 and interpret it.
5 Build a 95% CI for the average volume of trees with girth 15 and height 70.
6 Build a 95% PI for the volume of a tree with girth 15 and height 70.
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Inference in multiple linear regression

Some power curves of the test for H0: β1 = 0 versus H1: β1 6= 0.
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Likelihood ratio test for “significance” of a subset of covariates

Likelihood of multiple linear regression under Normal errors

Let ε1, . . . , εn
ind∼ Normal(0, σ2). Then

The likelihood function of β and σ2 is

L(β, σ2) = (2π)−n/2(σ2)−n/2 exp

[
− 1
2σ2 ‖Y − Xβ‖22

]
.

The log-likelihood is

`(β, σ2) = −n

2
log(2π)− n

2
log σ2 − 1

2σ2 ‖Y − Xβ‖22.
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Likelihood ratio test for “significance” of a subset of covariates

Exercise: For any r ∈ {1, . . . , p}, show that the likelihood ratio test of

H0: βr+1 = · · · = βp = 0 vs H1: βj 6= 0 for some j ∈ {r + 1, . . . , p}

is of the form

Reject H0 iff

[
‖Y − XRβ̂R‖22
‖Y − Xβ̂‖22

]−n/2
< c ,

where
XR is the matrix formed by the first r + 1 columns of X.
β̂R = (XT

RXR)−1XT
RY.
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Likelihood ratio test for “significance” of a subset of covariates

Full-reduced model F -test
The full-reduced model F -test of

H0: βr+1 = · · · = βp = 0 vs H1: βj 6= 0 for some j ∈ {r + 1, . . . , p}

for any r ∈ {1, . . . , p} is

Reject H0 iff
(SSERed−SSEFull)/(p − r)

SSEFull /(n − p − 1)
> Fp−r ,n−p−1,α,

where SSERed = ‖Y − XRβ̂R‖22 and SSEFull = ‖Y − Xβ̂‖22.

Exercise: Use the result that under H0

SSEFull /σ
2 ∼ χ2

n−p−1

(SSERed−SSEFull)/σ
2 ∼ χ2

p−r

and the independence of these quantities to show that this is the size-α LRT.
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Likelihood ratio test for “significance” of a subset of covariates

Exercise: Run data(swiss) in R and consider the model

Ferti = β0 + βAg Agi +βEx Exi +βEd Edi +βCath Cathi +βInfM InfMi +εi

for i = 1, . . . , 47.

Do the following:

1 Get LS estimators in the full model.
2 Compute SSEFull.
3 Fit reduced model after omitting Examination and Education.
4 Compute SSERed.
5 Compute full-reduced model F statistic H0: βExamination = βEducation = 0.
6 Compute the p-value for the full-reduced model F -test.

Karl B. Gregory (U. of South Carolina) STAT 513 fa 2020 Lec 08 slides 21 / 23



Analysis of variance for linear regression:

Overall test of significance for the linear regression model
The size-α overall F -test of significance is the test of the hypotheses

H0: β1 = · · · = βp = 0 versus H1: βj 6= 0 for some j ∈ {1, . . . , p}.

which has rejection rule

Reject H0 iff
SSM /p

SSE /(n − p − 1)
> Fp,n−p−1,α,

where SSE =
∑n

i=1(Yi − Ŷi )
2 and SSM =

∑n
i=1(Ŷi − Ȳn)2.

Exercise: Show that this is just the full-reduced model F -test with r = 0.

Can be reformulated as

Reject H0 iff
MSM

MSE
> Fp,n−p−1,α.
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Analysis of variance for linear regression:

Analysis of Variance (ANOVA) table
df SS MS Fn p-value

Model p SSM MSM Fn 1− FFp,n−p−1(Fn)
Error n − p − 1 SSE MSE
Total n − 1 SST

An oft-used tabulation of the quantities involved in the overall F -test.

Exercise: Fill out the ANOVA table for our model for the swiss data.

The coefficient of determination is defined as the quantity

R2 =
SSM

SST
.
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