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Bayesian Inference

Karl B. Gregory

Parameters as random variables

• Until now we have focused on estimating and making inferences concerning the unknown value of
a parameter θ lying in some parameter space Θ. We assumed that θ had a fixed, unknown value.

• In the Bayesian paradigm we regard the parameter θ as a random variable taking values in Θ.

• In the fixed-θ paradigm, within which we have so far been working, only the data were random,
and we made careful studies about the random behavior of various sample statistics and about
the performance of tests of hypotheses. Our inquiries were of the following sort:

– With what probability will our estimator fall within some distance of θ?

– With what probability will the data lead us to reject the null if θ takes a certain value?

If we understand probability as how often an outcome of a statistical experiment will occur if the
experiment is repeated a number of times approaching infinity, then we can rephrase the above
questions as

– With what frequency will our estimator fall within some distance of θ?

– With what frequency will the data lead us to reject the null if θ takes a certain value?

In light of the questions which arise when assuming that θ is fixed and only the data are random,
the fixed-θ setting has come to be called the frequentist paradigm.

• If we regard θ as a random variable, as we do the Bayesian paradigm, we can make probability
statements about θ, whereas in the frequentist paradigm we could only make probability state-
ments about the data. For example, the Bayesian approach allows us to make a statement such
as, “given the observed data, θ lies in the interval (2, 3) with probability 0.95.” This statement is
nonsense to the frequentist, who sees θ as a fixed constant.

Data distribution, prior, and posterior

• The Bayesian approach begins with a hierarchical model in which the data distribution is a
distribution conditional on the the value of some parameters, which in turn have their own marginal
distribution. In general, we have the following:
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Let X1, . . . , Xn be a collection of random variables which are to be observed as data and let θ be
a random variable taking values in Θ ⊂ R. Then we assume the hierarchical model

X1, . . . , Xn|θ ∼ f(x1, . . . , xn|θ)
θ ∼ π(θ),

where f(·|θ) is the joint pmf or pdf of the random variables X1, . . . , Xn, conditional on the value
of θ, and π(·) is the marginal pmf or pdf of the parameter θ.

• We will call the distribution with pmf/pdf f(x1, . . . , xn|θ) the data distribution.

• We will call the distribution with pmf/pdf π(θ) the prior distribution of θ.

• The prior distribution may be chosen to reflect beliefs about which values θ is likely to take—
beliefs which are held before any data are observed. The idea behind Bayesian inference is to use
the observed data to update previously held (“prior”) beliefs about the parameter θ. We do this
by finding what is called the posterior distribution of θ.

• The posterior distribution of θ is the distribution of θ conditional on the data X1, . . . , Xn. We
have

θ|X1, . . . , Xn ∼ π(θ|X1, . . . , Xn) =


f(X1, . . . , Xn|θ)π(θ)∫

Θ
f(X1, . . . , Xn|θ̃)π(θ̃)dθ̃

if θ is continuous

f(X1, . . . , Xn|θ)π(θ)∑
θ̃∈Θ f(X1, . . . , Xn|θ̃)π(θ̃)

if θ is discrete,

so that π(θ|X1, . . . , Xn) is the conditional pmf/pdf of θ given X1, . . . , Xn.

• To see how we obtained the above expressions for π(θ|X1, . . . , Xn), recall that for any two contin-
uous random variables U and V such that

U |V ∼ f(u|v)

V ∼ f(v),

we have

V |U ∼ f(v|u) =
f(u, v)

f(u)
=

f(u, v)∫
R f(u, ṽ)dṽ

=
f(u|v)f(v)∫

R f(u|ṽ)f(ṽ)dṽ
,

where the integrals change to sums over the support of V if V is discrete.

• The Bayesian approach is to use the posterior distribution of θ to estimate and make inferences
about θ.

• Bayesian estimation with the posterior mean: A usual way to estimate the value of θ in the
Bayesian paradigm is with the mean of its posterior distribution. That is, we use the estimator

θ̂Bayes = E[θ|X1, . . . , Xn] =

{ ∫
Θ
θπ(θ|X1, . . . , Xn)dθ if θ is continuous∑
θ∈Θ θπ(θ|X1, . . . , Xn) if θ is discrete.
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• Result: The above estimator is given by the minimization

θ̂Bayes = argmin
a

E[(θ − a)2|X1, . . . , Xn].

Proof: We find the value of a which satisfies

∂

∂a
E[(θ − a)2|X1, . . . , Xn] = 0.

We have

∂

∂a
E[(θ − a)2|X1, . . . , Xn] = E[−2(θ − a)|X1, . . . , Xn] = −2E[θ|X1, . . . , Xn] + 2a.

Setting this equal to zero gives the result.

• The posterior mean θ̂Bayes is the value from which θ is expected, conditional on the data, to have
the smallest squared distance. This makes it a natural choice of estimator for θ, although there
are other ways to define estimators in the Bayesian world (one can use the median or the mode
of the posterior distribution, for example).

• Exercise: Suppose we have

Y |p ∼ Binomial(n, p)

p ∼ Beta(α, β),

so that the pmf f(y|p) of Y |p is given by

f(y|p) =

(
n

y

)
py(1− p)n−y, for Y ∈ {0, 1, . . . , n}

and the prior pdf π(p) of p is given by

π(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1, for p ∈ (0, 1).

i) Find the posterior distribution of p|Y .

ii) Find an expression for p̂Bayes = E[p|X1, . . . , Xn].

iii) Suppose n = 10 and Y = 3 is observed. Find the posterior mean of p under following choices
of the prior parameters:

(a) α = 1, β = 1

(b) α = 4, β = 4

(c) α = 4, β = 10

Answers:
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i) The posterior density of p is given by

π(p|Y ) =

(
n
Y

)
pY (1− p)n−Y Γ(α+β)

Γ(α)Γ(β)
pα−1(1− p)β−1∫ 1

0

(
n
Y

)
p̃Y (1− p̃)n−Y Γ(α+β)

Γ(α)Γ(β)
p̃α−1(1− p̃)β−1dp̃

for p ∈ (0, 1). The denominator is given by∫ 1

0

(
n

Y

)
p̃Y (1− p̃)n−Y Γ(α + β)

Γ(α)Γ(β)
p̃α−1(1− p̃)β−1dp̃

=

(
n

y

)
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

p̃Y+α−1(1− p̃)n−Y+β−1dp̃

=

(
n

Y

)
Γ(α + β)

Γ(α)Γ(β)

Γ(Y + α)Γ(n− Y + β)

Γ(n+ α + β)

∫ 1

0

Γ(n+ α + β)

Γ(Y + α)Γ(n− Y + β)
p̃Y+α−1(1− p̃)n−Y+β−1dp̃

=

(
n

y

)
Γ(α + β)

Γ(α)Γ(β)

Γ(Y + α)Γ(n− Y + β)

Γ(n+ α + β)
,

for Y ∈ {0, 1, . . . , n}. Plugging this into the expression for π(p|Y ), we have

π(p|Y ) =
Γ(n+ α + β)

Γ(Y + α)Γ(n− Y + β)
pY+α−1(1− p)n−Y+β−1,

for p ∈ (0, 1), which we recognize as the pdf of the Beta(Y + α, n− Y + β) distribution.

ii) The Bayes estimator of p is therefore

p̂Bayes =
Y + α

n+ α + β
,

which is obtained by using a formula for the mean of the Beta distribution. It is interesting
to note that the Bayes estimator p̂Bayes can be written as

p̂Bayes =
Y

n

(
n

n+ α + β

)
+

α

α + β

(
α + β

n+ α + β

)
,

which is a weighted average of the data-based estimator Y/n of p and the mean α/(α + β)
of the prior distribution of p. What happens if the sample size is very large?

iii) We get the following with n = 10 and Y = 3:

(a) Under α = 1, β = 1 the posterior mean is 1/3.

(b) Under α = 4, β = 4 the posterior mean is 7/18.

(c) Under α = 4, β = 10 the posterior mean is 7/24.

The following plots depict under each setting the prior and posterior distributions as well as
the data mean Y/n and the prior and posterior means:
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Note that the posterior mean always lies between the data mean and the prior mean. This
is the effect of the data on our beliefs about the parameter; we do not abandon our prior
beliefs (the prior mean), but we allow the observed data to update our beliefs.

• Strategy for finding the posterior pdf/pmf: Suppose we have

X1, . . . , Xn|θ ∼ f(x1, . . . , xn|θ)
θ ∼ π(θ),

and suppose that θ is continuous so that

π(θ|X1, . . . , Xn) =
f(X1, . . . , Xn|θ)π(θ)∫

Θ
f(X1, . . . , Xn|θ̃)π(θ̃)dθ̃

.

A very helpful strategy for simplifying π(θ|X1, . . . , Xn) is to separate the part of it which is a
function of θ from the part of it which is constant with respect to θ:

The quantity in the denominator does not involve θ (θ has been integrated out), so we may write

π(θ|X1, . . . , Xn) = C1f(X1, . . . , Xn|θ)π(θ),

where C1 = [
∫

Θ
f(X1, . . . , Xn|θ̃)π(θ̃)dθ̃]−1 is a constant. We can furthermore separate the part of

f(X1, . . . , Xn|θ)π(θ) which is a function of θ from the part of it which is constant with respect to
θ; let g(θ) be a function of θ such that we may write

f(X1, . . . , Xn|θ)π(θ) = C2g(θ),

where C2 is some quantity which does not involve θ. Then we can write

π(θ|X1, . . . , Xn) = C1f(X1, . . . , Xn|θ)π(θ) = C1C2g(θ) = Cg(θ),

where C = C1C2. To avoid writing explicit expressions for these constants, Bayesians often make
use of the “proportional to” symbol “∝”: We write a ∝ b if there exists a constant C such that
a = Cb. Using this symbol allows us to write

π(θ|X1, . . . , Xn) ∝ f(X1, . . . , Xn|θ)π(θ) ∝ g(θ),
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for some g(θ), where the proportionality symbol absorbs the constants.

Our time-saving strategy for finding the posterior pdf π(θ|X1, . . . , Xn) is thus the following:

1. Find a function g(θ) such that f(X1, . . . , Xn|θ)π(θ) ∝ g(θ).

2. Then π(θ|X1, . . . , Xn) = Cg(θ), where C is the normalizing constant C = [
∫

Θ
g(θ)dθ]−1.

Sometimes we can recognize that g(θ) is proportional to a familiar pdf, in which case the constant
C can be pulled from the full expression for the pdf.

Note: If θ is discrete, the above is the same, but with integrals replaced by sums.

• Beta-Binomial exercise redone with time-saving strategy: We have

π(p|Y ) ∝ f(Y |p)π(p) ∝ pY (1− p)n−Y pα−1(1− p)β−1 = pY+α−1(1− p)n−Y+β−1.

We recognize that this is proportional to the Beta(Y +α, n−Y + β) distribution. Multiplying by
the appropriate normalizing constant gives

π(p|Y ) =
Γ(n+ α + β)

Γ(n+ α)Γ(n− Y + β)
pY+α−1(1− p)n−Y+β−1.

• Exercise: Suppose

X1, . . . , Xn|λ
ind∼ Poisson(λ)

λ ∼ Gamma(α, β).

i) Find the posterior distribution of λ|X1, . . . , Xn.

ii) Find an expression for λ̂Bayes = E[λ|X1, . . . , Xn].

iii) Under α = 4 and β = 5 and a sample size of n = 3, compute the posterior mean of
λ|X1, . . . , Xn when X̄n = 10, 15, 30.

Answers:

i) The joint pmf of the data X1, . . . , Xn|λ is given by

f(X1, . . . , Xn|λ) =
n∏
i=1

e−λλXi

Xi!
=
e−nλλnX̄∏n
i=1Xi!

,

and the prior pdf of λ is given by

π(λ) =
1

Γ(α)βα
λα−1 exp

[
−λ
β

]
,
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so the posterior pdf of λ|X1, . . . , Xn is given by

π(λ|X1, . . . , Xn) =
f(X1, . . . , Xn|λ)π(λ)∫∞

0
f(X1, . . . , Xn|λ̃)π(λ̃)dλ̃

∝ f(X1, . . . , Xn|λ)π(λ)

=
e−nλλnX̄∏n
i=1 Xi!

1

Γ(α)βα
λα−1 exp

[
−λ
β

]
∝ λnX̄n+α−1 exp

[
−λ
(

1

β
+ n

)]
= λnX̄n+α−1 exp

[
−λ
(

β

1 + nβ

)−1
]
,

which is proportional to the pdf of the Gamma(nX̄n + α, β/(1 + nβ)) distribution. So we
have

λ|X1, . . . , Xn ∼ Gamma

(
nX̄n + α,

β

1 + nβ

)
.

ii) The posterior mean of λ|X1, . . . , Xn is

λ̂Bayes = (nX̄n + α)

(
β

1 + nβ

)
= X̄n

(
nβ

1 + nβ

)
+ αβ

(
1

1 + nβ

)
,

which is a weighted average of the data mean X̄n and the mean of the prior distribution αβ.

iii) Under α = 4 and β = 5 and n = 3, the posterior means of λ|X1, . . . , Xn when X̄n = 10, 15, 30
are 10.625, 15.3125, and 29.375, respectively. Note that the prior mean is αβ = 4(5) = 20.
The plots below show the prior density of λ as well as the posterior density of λ|X1, . . . , Xn

at each of these values of X̄n.

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

lambda

pr
io

r/
po

st
 d

en
si

ty

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

lambda

pr
io

r/
po

st
 d

en
si

ty

0 10 20 30 40

0.
00

0.
04

0.
08

0.
12

lambda

pr
io

r/
po

st
 d

en
si

ty

prior density posterior density    data mean prior mean posterior mean

• Exercise: Let σ2 be a known constant and suppose

Y1, . . . , Yn|µ
ind∼ Normal(µ, σ2)

µ ∼ Normal(µ0, τ
2),
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where Y1, . . . , Yn are conditionally independent given µ.

i) Find the posterior distribution of µ|Y1, . . . , Yn.

ii) Find an expression for µ̂Bayes = E[µ|Y1, . . . , Yn].

iii) Let σ = 10, τ = 20, and µ0 = 100. Suppose that under sample sizes of n = 1, 5, 15, the
sample mean Ȳn = 120 is observed. Compute the posterior mean of µ|Y1, . . . , Yn in each case.

Answer:

i) The pdf of Y1, . . . , Yn conditional on µ is

f(Y1, . . . , Yn|µ) =
n∏
i=1

(2π)−1/2(σ2)−1/2 exp

[
− 1

2σ2
(Yi − µ)2

]

= (2π)−n/2(σ2)−n/2 exp

[
− 1

2σ2

n∑
i=1

(Yi − µ)2

]

and the pdf of the prior distribution of µ is

π(µ) = (2π)−1/2(τ 2)−1/2 exp

[
− 1

2τ 2
(µ− µ0)2

]
The pdf of the posterior distribution of µ is thus

π(µ|Y1, . . . , Yn) =
f(Y1, . . . , Yn|µ)π(µ)∫∞

−∞ f(Y1, . . . , Yn|µ̃)π(µ̃)dµ̃

∝ f(Y1, . . . , Yn|µ)π(µ)

∝ exp

[
− 1

2σ2

n∑
i=1

(Yi − µ)2

]
exp

[
− 1

2τ 2
(µ− µ0)2

]

= exp

[
− 1

2σ2

n∑
i=1

(Yi − µ)2 − 1

2τ 2
(µ− µ0)2

]

(expand sums) = exp

[
− 1

2σ2

(
n∑
i=1

Y 2
i − 2

n∑
i=1

Yiµ+ nµ2

)
+

1

2τ 2
(µ2 − 2µµ0 + µ2

0)

]

(take out const) = exp

[
− 1

2σ2

n∑
i=1

Y 2
i +

1

τ 2
µ2

0

]
exp

[
− 1

2σ2

(
−2nȲnµ+ nµ2

)
+

1

2τ 2
(µ2 − 2µµ0)

]
∝ exp

[
−1

2

(
−2µ

[
Ȳn
σ2/n

+
µ0

τ 2

]
+ µ2

[
1

σ2/n
+

1

τ 2

])]

(isolate µ2) = exp

−1

2

−2µ

[
Ȳn
σ2/n

+
µ0

τ 2

] [
1

σ2/n
+

1

τ 2

]−1

︸ ︷︷ ︸
=µ∗

+µ2

 /

[
1

σ2/n
+

1

τ 2

]−1

︸ ︷︷ ︸
=σ2

∗

 .
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Defining

σ2
∗ =

[
1

σ2/n
+

1

τ 2

]−1

=
(σ2/n)τ 2

σ2/n+ τ 2

and

µ∗ =

[
Ȳn
σ2/n

+
µ0

τ 2

] [
1

σ2/n
+

1

τ 2

]−1

=

[
Ȳn
σ2/n

+
µ0

τ 2

]
(σ2/n)τ 2

σ2/n+ τ 2
=
τ 2Ȳn + (σ2/n)µ0

σ2/n+ τ 2
,

we have

π(µ|Y1, . . . , Yn) ∝ exp

[
− 1

2σ2
∗

(
−2µµ∗ + µ2

)]
(complete the square) = exp

[
− 1

2σ2
∗

(
µ2
∗ − 2µµ∗ + µ2

)]
exp

[
− 1

2σ2
∗
(−µ2

∗)

]
∝ exp

[
− 1

2σ2
∗
(µ− µ∗)2

]
,

which is proportional to the pdf of the Normal(µ∗, σ
2
∗) distribution. So we have

µ|Y1, . . . , Yn ∼ Normal

(
τ 2Ȳn + (σ2/n)µ0

σ2/n+ τ 2
,

(σ2/n)τ 2

σ2/n+ τ 2

)
.

ii) The posterior mean of µ|X1, . . . , Xn is given by

µ̂Bayes =
τ 2Ȳn + (σ2/n)µ0

σ2/n+ τ 2
= Ȳn

(
τ 2

σ2/n+ τ 2

)
+ µ0

(
σ2/n

σ2/n+ τ 2

)
,

which is a weighted average of the data-based estimator Ȳn and the prior mean µ0. What
happens as n→∞?

iii) For Ȳn = 120 under n = 1, 5, 15, we get µ̂Bayes = 116, 119.0476, 119.6721, respectively. The
plots below show the prior density of µ as well as the posterior density of µ|X1, . . . , Xn for
n = 1, 5, 15.
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• Conjugacy: In the three examples so far, the posterior distribution of the parameter belonged
to the same family of distributions as the prior distribution. For the Beta-Binomial model, the
posterior distribution was a Beta distribution; for the Gamma-Poisson model, the posterior distri-
bution was a Gammma distribution; for the Normal-Normal model, the posterior distribution was
a Normal distribution. In each case, the parameters of the prior distributions were updated by
the data to give the parameters of the posterior distribution. In the Bayesian paradigm, a prior
distribution is called a conjugate prior if the posterior distribution resulting from it belongs to the
same family of distributions.

We do not need to use conjugate priors! They just happen to be convenient, because they result
in very simple posterior distributions which allow us to compute quantities like the posterior mean
with simple formulas. The choice of a non-conjugate prior may result in a posterior distribution
with a form we do not recognize, which may make it difficult to compute the posterior quantities
in which we are interested. For example, we may not be able to compute the posterior mean
Eθ|X1, . . . , Xn directly using any formula; in such a case we would have to search for it algo-
rithmically. Much effort has gone into devising these kinds of algorithms, one class of which are
Markov Chain Monte Carlo methods, which we will not cover in this class.

Bayesian credible intervals

• The Bayesian paradigm provides a very simple way to construct something like a confidence
interval for a parameter.

• Recall that a frequentist (1 − α)100% confidence interval for a parameter θ based on the data
X1, . . . , Xn takes the form (Ln, Un), where Ln = Ln(X1, . . . , Xn) and Un = Un(X1, . . . , Xn) are
functions of the data such that

P (Ln < θ < Un) = 1− α.

Here θ is a fixed constant and the endpoints of the interval are random; if you sampled data 1000
times and computed the endpoints of the interval 1000 times, you would expect the interval to
capture the true (fixed) value of θ about (1− α)1000 times.

• Bayesian credible interval: In the Bayesian framework, any interval (Ln, Un), where Ln =
Ln(X1, . . . , Xn) and Un = Un(X1, . . . , Xn) are functions of the data, such that

P (Ln < θ < Un|X1, . . . , Xn) = 1− α

is called a (1 − α)100% Bayesian credible interval. Inside the probability statement Ln and Un
are fixed due to conditioning on X1, . . . , Xn and θ is random (note that this probability statement
would make no sense in the frequentist setup). The following are two standard ways of choosing
Ln and Un:

– Equal tails interval: Choose Ln and Un such that

P (θ < Ln|X1, . . . , Xn) = P (θ > Un|X1, . . . , Xn) = α/2.
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– Highest posterior density interval: Choose Ln and Un such that (Ln, Un) is the smallest
interval such that P (Ln < θ < Un|X1, . . . , Xn) = 1− α.

If the posterior distribution of θ is symmetric, the two strategies above will produce the same
interval.

• Exercise: As a continuation of the previous exercise, compute 95% Bayesian credible intervals
for µ in the model

Y1, . . . , Yn|µ
ind∼ Normal(µ, 102)

µ ∼ Normal(100, 202),

when Ȳn = 120 under the sample sizes n = 1, 5, 15.

Answer: We get the following:

– For n = 1, µ|Y1 ∼ Normal(116, 80). The upper and lower 0.025 quantiles of the posterior dis-
tribution are Un = 116+qnorm(.975)*sqrt(80) = 133.5305 and Ln = 116-qnorm(.975)*sqrt(80) =
98.46955, so the 95% credible interval is (98.46955, 133.5305).

– For n = 5 we get (110.4936, 127.6016).

– For n = 15 we get (114.6532, 124.6911).

The plots below depict the 95% credible intervals.
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Bayesian hypothesis testing

• As before: For a parameter θ which takes values in some space Θ, we consider

H0: θ ∈ Θ0 versus H1: θ ∈ Θ1,

where Θ0 ∪Θ1 = Θ and Θ0 ∩Θ1 = ∅.
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• Frequentist tests of H0 versus H1 based on some data X1, . . . , Xn depending on θ are of the form

Reject H0 iff T (X1, . . . , Xn) ∈ R,

where T (X1, . . . , Xn) is a function of the data called the test statistic and R is a set called the
rejection region. The frequentist chooses the rejection region R which makes the Type II error
probability as small as possible for θ ∈ Θ1 while ensuring that the Type I error probability is less
than or equal to some value α ∈ (0, 1).

• Bayesian tests of hypotheses are constructed in a fundamentally different way because they treat
the parameter as a random variable. Bayesian tests are based on the probability of the event
θ ∈ Θ0 according to the prior distribution of θ and according to the posterior distribution of θ
conditional on the observed data X1, . . . , Xn. Let

π0 = P (θ ∈ Θ0) and π1 = P (θ ∈ Θ1)

denote the prior probabilities of H0 and H1, respectively, and let

p0 = P (θ ∈ Θ0|X1, . . . , Xn) and p1 = P (θ ∈ Θ1|X1, . . . , Xn)

denote the posterior probabilities of H0 and H1, respectively, conditional on X1, . . . , Xn.

• Definitions: The prior odds in favor of H0 over H1 are π0/π1 and the posterior odds in favor of
H0 over H1 are p0/p1. The Bayes factor in favor of H0 over H1 is the ratio

B =
p0/p1

π0/π1

.

• The Bayes factor reflects how much the data have changed our beliefs in favor of H0 over H1.

• A (large/small) Bayes factor indicates that the data carry (much/little)
evidence in favor of H0 over H1.

• If the Bayes factor is (less than/greater than) 1, the data have changed our prior
beliefs in favor of (H0/H1).

• Exercise: Suppose we have

Y |p ∼ Binomial(n, p)

p ∼ Beta(α, β)

and that we are interested in testing the hypotheses

H0: p ≤ 1/2 versus H1: p > 1/2.

Let n = 100 and let Y = 55 be observed, and set α = 10 and β = 10.

i) Find the posterior probability p0 of H0, that is of the event p ≤ 1/2.
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ii) Find P (Y ≥ 55|p = 1/2) and interpret this quantity from the frequentist perspective.

iii) Find the prior odds in favor of H0 over H1.

iv) Find the posterior odds in favor of H0 over H1.

v) Compute the Bayes factor of the data in favor of H0 over H1.

Answers:

i) Using our work from the first example of these notes for getting the posterior distribution of
p|Y , the posterior probability of H0 is

p0 = P (p ≤ p0|Y = 55) = pbeta(1/2,55+10,100-55+10) = 0.1796791.

ii) We have
P (Y ≥ 55|p = 1/2) = 1-pbinom(54,100,.5) = 0.1841008.

This is the frequentist p-value. Interestingly, the frequentist p-value is close to the posterior
probability p0 of H0. If the p-value is small, we consider the evidence against H0 to be strong;
likewise, if the posterior probability of H0 in the Bayesian setup is small, we consider the
evidence against H0 to be strong. For these data, the evidence against H0 is not very strong
from either the frequentist or the Bayesian perspective.

iii) The prior probability of H0 is

π0 = P (p ≤ p0) = pbeta(1/2,10,10) = 0.5,

and π1 = 1− 0.5 = 0.5. So the prior odds in favor of H0 are

π0/π1 = 0.5/0.5 = 1.

The prior distribution gives equal probabilities to θ ∈ Θ0 and θ ∈ Θ1. In the plot further
below, we see that the prior density is symmetric around 1/2.

iv) The posterior odds in favor of H0 over H1 are

p0/p1 = 0.1796791/(1− 0.1796791) = 0.2190351.

v) The Bayes factor in favor of H0 over H1 is B = 0.2190351/1 = 0.2190351.

Below is a plot showing the prior and posterior densities with shaded areas corresponding to the
prior and posterior probabilities of H0.
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