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Contingency tables

Karl B. Gregory

An asymptotic test for equal proportions

• Exercise: Suppose Y1 and Y2 are independent random variables such that

Y1 ∼ Binomial(n1, p1)

Y2 ∼ Binomial(n2, p2).

Derive the asymptotic likelihood ratio test for testing the hypotheses

H0: p1 = p2 versus H1: p1 6= p2. (1)

Answer: The likelihood function for the parameters p1 and p2 based on the data Y1 and Y2 is
given by

L(p1, p2;Y1, Y2) =

(
n1

Y1

)
pY11 (1− p1)n1−Y1

(
n2

Y2

)
pY22 (1− p2)n2−Y2 .

The maximum likelihood estimators of p1 and p2 are given by

p̂1 = Y1/n1 and p̂2 = Y2/n2,

respectively. Under the null hypothesis we have p1 = p2 = p0 for some p0, and our estimator of p0
is given by

p̂0 = argmax
p∈[0,1]

L(p, p;Y1, Y2) =
Y1 + Y2
n1 + n2

,

which we obtain by setting the derivative of `(p, p;Y1, Y2) with respect to p equal to zero and
solving for p. The likelihood ratio is thus

LR(Y1, Y2) =
 L(p̂0, p̂0;Y1, Y2)

L(p̂1, p̂2;Y1, Y2)

=

(
n1

Y1

)
p̂Y10 (1− p̂0)n1−Y1

(
n2

Y2

)
p̂Y20 (1− p̂0)n2−Y2(

n1

Y1

)
p̂Y11 (1− p̂1)n1−Y1

(
n2

Y2

)
p̂Y22 (1− p̂2)n2−Y2

=
p̂Y1+Y20 (1− p̂0)n1+n2−Y1−Y2

p̂Y11 (1− p̂1)n1−Y1 p̂Y22 (1− p̂2)n2−Y2
.
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The asymptotic likelihood ratio test is based on the test statistic

−2 log LR(Y1, Y2) = −2[(Y1 + Y2) log p̂0

+ (n1 + n2 − Y1 − Y2) log(1− p̂0)
− Y1 log p̂1 − (n1 − Y1) log(1− p̂1)
− Y2 log p̂2 − (n2 − Y2) log(1− p̂2)]

= 2[Y1 log(p̂1/p̂0)

+ Y2 log(p̂2/p̂0)

+ (n1 − Y1) log((1− p̂1)/(1− p̂0))
+ (n2 − Y2) log((1− p̂2)/(1− p̂0))].

Under the null hypotheses, there is one parameter to estimate, and under the alternate hypothesis,
there are two parameters to estimate, so under the null hypothesis, −2 log LR(Y1, Y2) converges
in distribution to a random variable with the chi-squared distribution with 2 − 1 = 1 degree of
freedom. The size-α asymptotic likelihood ratio test is thus

Reject H0 iff −2 log LR(Y1, Y2) > χ2
1,α.

• Two-by-two contingency table notation: Continuing the previous exercise, suppose we put
the observed data in a table as follows:

Successes Failures Total
Sample 1 Y1 n1 − Y1 n1

Sample 2 Y2 n2 − Y2 n2

Total Y1 + Y2 n1 + n2 − Y1 − Y2 n1 + n2

In addition, suppose we make another table like the above, but we replace the observed counts
in the center of the table with the expected counts under the null hypothesis, computing the
expectations based on our estimator p̂0 of p0. The table of expected values would be

Successes Failures Total
Sample 1 n1p̂0 n1(1− p̂0) n1

Sample 2 n2p̂0 n2(1− p̂0) n2

Total Y1 + Y2 n1 + n2 − Y1 − Y2 n1 + n2

If we denote by O11, O12, O21, O22 the observed counts in the first table and by E11, E12, E21, E22

the expected counts in the second table, then we may write

−2 log LR(Y1, Y2) = 2
2∑
i=1

2∑
j=1

Oij log

(
Oij

Eij

)
.

The size-α asymptotic likelihood ratio test of H0: p1 = p2 versus H1: p1 6= p2 can thus be
formulated as

Reject H0 iff 2
2∑
i=1

2∑
j=1

Oij log

(
Oij

Eij

)
> χ2

1,α.
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• Exercise: In a study of the efficacy of a surgery for treating migraine headaches, 75 subjects
were randomly assigned to either a control or a treatment group. Those in the treatment group
underwent a surgery, and those in the control group had only an incision made. For each subject
it was recorded whether he or she experienced a reduction in migraine pain (a “success”). The
results are tabulated here:

Successes Failures Total
Treatment 41 8 49

Control 15 11 26
Total 56 19 75

Use the data to test the hypotheses

H0: the treatment has no effect versus H1: the treatment has an effect

at the α = 0.05 significance level.
Answer: The table of expected values under the null hypothesis is

Successes Failures Total
Treatment 36.59 12.41 49

Control 19.41 6.59 26
Total 56 19 75

The likelihood ratio test statistic is

2

[
41 log

(
41

36.59

)
+ 15 log

(
15

19.41

)
+ 8 log

(
8

12.41

)
+ 11 log

(
11

6.59

)]
= 5.845761.

Comparing this to the critical value χ2
1,0.05 = 3.841459 leads us to reject the null hypothesis. The

p-value, moreover, is 0.01561462, which is the area under the χ2
1 pdf to the right of the test statistic

value 5.845761.

• Warning: The test introduced in this section is only asymptotically size-α, so for small sample
sizes it may lead to higher rates of Type I error than the desired α. A rule of thumb is to use this
test only if all of the expected counts are greater than or equal to 5. The test presented in the
following section is an alternative which can be used when the sample sizes are small.

Fisher’s exact test

• Another test called Fisher’s exact test takes a different approach. In the setup of the previous
section, the row totals n1 and n2 were fixed and the column totals Y1 + Y2 and n1 + n2 − Y1 − Y2
were random, as were the four entries, Y1, n1 − Y1, Y2, and n2 − Y2, in the middle of the table.

• The approach of Fisher’s exact test is to condition upon the row and column totals and regard
only the values in the middle of the table as random variables. Let R1 and R2 be the row totals
and C1 and C2 be the column totals and let N be the sum of all entries in the table. Then the
observed 2× 2 table has the form
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Total
Xobs R1

R2

Total C1 C2 N ,

where the value of Xobs determines all four entries in the table (since we have fixed row and column
sums). Fisher’s exact test is based on the idea that if there is no association between the row and
column variable, then the value Xobs can be viewed as a realization of a Hypergeometric random
variable: If we draw C1 marbles without replacement from a bag of N marbles, R1 of which are
red, and let X equal the number of red marbles drawn, then we have

X ∼ Hypergeometric(N,R1, C1).

The p-value of Fisher’s exact test is computed as the sum of the probabilities of all 2 × 2 tables
of which the probability under H0 is less than or equal to that of the observed table. That is, we
consider all tables which carry as much or more evidence against the null as the observed table
and then sum together the probabilities of all these tables. Precisely, the p-value is computed as

pFisher =

min{C1,R1}∑
x=max{0,C1+R1−N)}

P (X = x) · 1 (P (X = x) ≤ P (X = Xobs)) ,

where, according to the pmf of the Hypergeometric(N,R1, C1) distribution, we have

P (X = x) =

(
R1

x

)(
N−R1

C1−x

)(
N
C1

) .

We reject the null hypothesis of no association if the p-value falls below the chosen significance
level.

• Note that it does not matter how the table is oriented in terms of which are the rows and which
are the columns. If we transpose the table, the p-value of Fisher’s exact test does not change.
This is because

P (X = x) =

(
R1

x

)(
N−R1

C1−x

)(
N
C1

) =

(
C1

x

)(
N−C1

R1−x

)(
N
R1

)
for all x = max{0, C1 +R1 −N)}, . . . ,min{C1, R1}.

• Exercise: Compute the p-value of Fisher’s exact test for the data

Successes Failures Total
Treatment 41 8 49

Control 15 11 26
Total 56 19 75
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Answer: The following R code computes the p-value:

data <- matrix(c(41,8,15,11),2,2,byrow=TRUE)

Xobs <- data[1,1]

R1 <- data[1,1] + data[1,2]

C1 <- data[1,1] + data[2,1]

N <- sum(data)

obs.hyper.prob <- dhyper(Xobs, n = N - R1, m = R1, k = C1)

all.hyper.probs <- dhyper(max(0,C1-(N-R1)):min(C1,R1),n = N - R1, m = R1, k = C1)

pval <- sum(all.hyper.probs[all.hyper.probs<=obs.hyper.prob])

The p-value is pFisher = 0.02409327, which is close to the p-value of asymptotic likelihood ratio test.
Note that R uses a different parameterization for the hypergeometric distribution; type ?dhyper

to learn more.

• The advantage of Fisher’s exact test is that it is not based on any asymptotic result, so it can be
used when the sample size is small; there is no requirement that the expected counts exceed some
minimum value. This is where the “exact” part of its name comes from.

• It may not always be desirable to condition on the row and column totals; some unconditional
tests have been developed in order to avoid this, but Fisher’s test has become a default choice for
many practitioners.

More than two proportions and/or samples

• Example: A study of the eye and hair color of 6800 people resulted in the following data:

Brown Black Fair Red Total
Brown 438 288 115 16 857

Grey or Green 1387 746 946 53 3132
Blue 807 189 1768 47 2811
Total 2632 1223 2829 116 6800

Suppose we are interested in testing whether there is an association between eye color and hair
color.

• Multinoulli trial: A statistical experiment with M ≥ 1 possible outcomes which occur with
the probabilities p1, . . . , pM , where

∑M
j=1 pj = 1, is sometimes called a multinoulli trial. This idea

extends the Bernoulli trial, in which there are two outcomes which have the probabilities p and
1− p.
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• Multinoulli random vector: Consider a Multinoulli trial with M possible outcomes with as-
sociated probabilities p1, . . . , pM , and let the outcome be encoded in an M × 1 random vector
X = (X1, . . . , XM)T such that

Xj =

{
1 if outcome j occurs
0 otherwise

for j = 1, . . . ,M.

That is, if outcome j occurs, the jth entry of X is equal to 1 and the remaining entries are equal
to 0 for all j = 1, . . . ,M . Then the pmf of the random vector X is given by

P ((X1, . . . , XM)T = (x1, . . . , xM)T ) = px11 · · · · · p
xM
M

for (x1, . . . , xM)T ∈ {0, 1}M such that
∑M

j=1 xj = 1, and we write X ∼ Multinoulli(p1, . . . , pM).

• Note that the Bernoulli(p) distribution is the same as the Multinoulli(p, 1 − p) distribution, for
which M = 2.

• Multinomial distribution: Let X1, . . . , Xn be independent Multinoulli(p1, . . . , pM) random vec-
tors and define Y =

∑n
i=1Xi. Then Y = (Y1, . . . , YM)T is called a Multinomial random vector and

has the pmf

P ((Y1, . . . , YM)T = (y1, . . . , yM)T ) =

(
n!

y1! · · · yM !

)
py11 · · · p

yM
M

for (y1, . . . , yM) ∈ {0, 1, . . . , n}M such that
∑M

j=1 yj = n, and we write Y ∼ Multinomial(p1, . . . , pM , n).

• Note that the Binomial(n, p) distribution is the same as the Multinomial(p, 1− p, n) distribution,
for which M = 2.

• Exercise: Find expressions for the maximum likelihood estimators of p1, . . . , pM based on Y ∼
Multinomial(p1, . . . , pM , n).

Answer: The likelihood function is

L(p1, . . . , pM ;Y1, . . . , YM) =

(
n!

Y1! · · ·YM !

)
pY11 · · · p

YM
M ,

and the log-likelihood is

`(p1, . . . , pM ;Y1, . . . , YM) = log

(
n!

Y1! · · ·YM !

)
+ Y1 log p1 + · · ·+ YM log pM .

If we take the partial derivative of the log-likelihood with respect to any of p1, . . . , pK and set it
equal to zero, we will find that we cannot solve for the maximum likelihood estimator. This is
because we must take into account the constraint that p1 + · · · + pM = 1. That is, we need to
solve the constrained optimization problem

maximize log

(
n!

Y1! · · ·YM !

)
+ Y1 log p1 + · · ·+ YM log pM

subject to p1 + · · ·+ pM = 1.

6



We can solve this constrained optimization problem by writing down the Lagrangian

L(p1, . . . , pM , λ) = log

(
n!

Y1! · · ·YM !

)
+ Y1 log p1 + · · ·+ YM log pM + λ(1− p1 − · · · − pM)

and solving the system of M + 1 equations

∂

∂p1
L(p1, . . . , pM , λ) =

Y1
p1
− λ = 0

...

∂

∂pM
L(p1, . . . , pM , λ) =

YM
pM
− λ = 0

∂

∂λ
L(p1, . . . , pM , λ) = 1− p1 − · · · − pM = 0.

From the first M equations, pj satisfies pj = Yj/λ, for each j = 1, . . . ,M . Plugging this into the
last equation gives

1− Y1/λ− · · · − YM/λ = 0 ⇐⇒ λ =
M∑
j=1

Yj = n.

Plugging this value of λ back into each of the first M equations gives pj = Yj/n for j = 1, . . . ,M ,
so the maximum likelihood estimators of p1, . . . , pM are given by

p̂j = Yj/n, for j = 1, . . . ,M. (2)

• Dimension of multinomial parameter space: Even though the Multinomial(p1, . . . , pM , n)
distribution involves M parameters, p1, . . . , pM , the dimension of the parameter space is not equal
to M because of the requirement that the probabilities sum to 1. The parameter space is the set

{p1, . . . , pM : pj ≥ 0 for all j = 1, . . . ,M and p1 + · · ·+ pM = 1},

which actually has dimension equal to M − 1. To see this, note that if p1, . . . , pM−1 are given,
then one can compute pM by

pM = 1− p1 − · · · − pM−1,
so that the set of parameters p1, . . . , pM is determined by M − 1 values.

• Equal-probabilities hypotheses: Consider observing a collection of Multinomial random vari-
ables Y1, . . . , YK , where

Yk = (Yk1, . . . , YkM)T ∼ Multinomial(pk1, . . . , pkM , nk), for k = 1, . . . , K,

and suppose we are interested in testing whether the outcome probabilities of the K Multinomial
distributions are all the same. That is, suppose we wish to test

H0: (p11, . . . , p1M) = · · · = (pK1, . . . , pKM)

versus H1: (pj1, . . . , pjM) 6= (pi1, . . . , piM) for some i 6= j. (3)

Note that for K = 2 and M = 2, this problem reduces to that in (1).
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• Exercise: Derive the likelihood ratio test for the equal-probabilities hypotheses in (3).

Answer: The likelihood function is

L(p11, . . . , p1M , . . . , pK1, . . . , pKM ;Y11, . . . , Y1M , . . . , YK1, . . . , YKM)

=
K∏
k=1

(
nk!

Yk1! · · ·YkM !

)
pYk1k1 · · · p

YkM
kM ,

and the log-likelihood is

`(p11, . . . , p1M , . . . , pK1, . . . , pKM ;Y11, . . . , Y1M , . . . , YK1, . . . , YKM)

=
K∑
k=1

log

(
nk!

Yk1! · · ·YkM !

)
+

K∑
k=1

Yk1 log pk1 + · · ·+
K∑
k=1

YkM log pkM .

The maximum likelihood estimator of pkj is given by p̂kj = Ykj/nk, for k = 1, . . . , K, j = 1, . . . ,M .

Under H0, each of the K multinomial distributions has the same probabilities, which we may
denote by p01, . . . , p0M . Our estimators of p01, . . . , p0M are given by

(p̂01, . . . , p̂0M) = argmax
p01,...,p0M

`(p01, . . . , p0M , . . . , p01, . . . , p0M ;Y11, . . . , Y1M , . . . , YK1, . . . , YKM)

= argmax
p01,...,p0M

K∑
k=1

log

(
nk!

Yk1! · · ·YkM !

)
+

K∑
k=1

Yk1 log p01 + · · ·+
K∑
k=1

YkM log p0M

=

(
K∑
k=1

Yk1/n, . . . ,
K∑
k=1

YkM/n

)
,

where n = n1 + · · ·+nK , which we can get by using the Lagrangian as we did to get the maximum
likelihood estimators in (2).

The likelihood ratio is

LR(Y11, . . . , Y1M , . . . , YK1, . . . , YKM) =

∏K
k=1

(
nk!

Yk1!···YkM !

)
p̂Yk101 · · · p̂

YkM
0M∏K

k=1

(
nk!

Yk1!···YkM !

)
p̂Yk1k1 · · · p̂

YkM
kM

=
p̂
∑K

k=1 Yk1
01 · · · p̂

∑K
k=1 YkM

0M∏K
k=1 p̂

Yk1
k1 · · · p̂

YkM
kM

.
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The asymptotic likelihood ratio test is thus based on the test statistic

−2 log LR(Y11, . . . , Y1M , . . . , YK1, . . . , YKM)

= −2

[
K∑
k=1

Yk1 log p̂01 + · · ·+
K∑
k=1

YkM log p̂0M −
K∑
k=1

Yk1 log p̂k1 − · · · −
K∑
k=1

YkM log p̂kM

]

= −2

[
K∑
k=1

Yk1 log

(
p̂01
p̂k1

)
+ · · ·+

K∑
k=1

YkM log

(
p̂0M
p̂kM

)]

= 2

[
K∑
k=1

Yk1 log

(
p̂k1
p̂01

)
+ · · ·+

K∑
k=1

YkM log

(
p̂kM
p̂0M

)]

= 2
M∑
j=1

K∑
k=1

Ykj log
p̂kj
p̂0j

= 2
M∑
j=1

K∑
k=1

Ykj log

(
Ykj
nkp̂0j

)
.

The null space

{p01, . . . , p0M : p0j ≥ 0 for all j = 1, . . . ,M and p01 + · · ·+ p0M = 1},

has dimension M − 1 and the entire parameter space{
p11, . . . , p1M , . . . , pK1, . . . , pKM :

pkj ≥ 0 for all j = 1, . . . ,M, k = 1, . . . , K, and
pk1 + · · ·+ pkM = 1, for all k = 1, . . . , K

}
,

has dimension K(M − 1). This tells us that under the null hypothesis, the asymptotic likelihood
ratio test statistic converges in distribution to a chi-squared distribution with degrees of freedom
equal to K(M − 1)− (M − 1) = (K − 1)(M − 1). So the size-α asymptotic likelihood ratio test is

Reject H0 iff 2
M∑
j=1

K∑
k=1

Ykj log

(
Ykj
nkp̂0j

)
> χ2

(K−1)(M−1),α.

• Contingency table notation: Continuing the previous exercise, suppose we put the observed
data in a table as follows:

Outcome 1 Outcome 2 . . . Outcome M Total
Sample 1 Y11 Y12 . . . Y1M n1

Sample 2 Y21 Y22 . . . Y2M n2
...

...
...

. . .
...

...
Sample K YK1 YK2 . . . YKM nK

Total Y.1 Y.2 . . . Y.M n
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In the above Y.j =
∑K

k=1 Ykj, for j = 1, . . . ,M .

Now suppose we make a second table like the one above but with the observed counts replaced
by the corresponding expected counts under the null hypothesis, basing the expectations on the
estimated probabilities p̂01, . . . , p̂0M . This would look like

Outcome 1 Outcome 2 . . . Outcome M Total
Sample 1 n1p̂01 n1p̂02 . . . n1p̂0M n1

Sample 2 n2p̂01 n2p̂02 . . . n2p̂0M n2
...

...
...

. . .
...

...
Sample K nK p̂01 nK p̂02 . . . nK p̂0M nK

Total Y.1 Y.2 . . . Y.M n

If we denote the observed counts in the first table by Okj and the corresponding expected counts
in the second table by Ekj, for k = 1, . . . , K and j = 1, . . . ,M , then we can express the asymptotic
likelihood ratio test statistic for testing the hypotheses in (3) as

−2 log LR(Y11, . . . , Y1M , . . . , YK1, . . . , YKM) = 2
M∑
j=1

K∑
k=1

Okj log

(
Okj

Ekj

)
.

The size-α asymptotic likelihood ratio test for testing the hypotheses in (3) is thus

Reject H0 iff 2
M∑
j=1

K∑
k=1

Okj log

(
Okj

Ekj

)
> χ2

(K−1)(M−1),α. (4)

• Exercise: Use the asymptotic likelihood ratio test to test whether there is an association between
hair and eye color at the α = 0.01 significance level based on the data in the following table:

Brown Black Fair Red Total
Brown 438 288 115 16 857

Grey or Green 1387 746 946 53 3132
Blue 807 189 1768 47 2811
Total 2632 1223 2829 116 6800

Answer: The table of expected counts under the null hypothesis of no association is

Brown Black Fair Red Total
Brown 331.7094 154.1340 356.5372 14.61941 857

Grey or Green 1212.2682 563.2994 1303.0041 53.42824 3132
Blue 1088.0224 505.5666 1169.4587 47.95235 2811
Total 2632 1223 2829 116 6800

And the value of the test statistic for the asymptotic likelihood ratio test can be computed in R
as follows:
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O <- matrix(c(438,288,115,16,1387,746,946,53,807,189,1768,47),3,4,byrow=TRUE)

E <- apply(O,1,sum) %*% t(apply(O,2,sum))/sum(O)

T.stat <- 2*sum(O*log(O/E))

The value is 1137.606. The degrees of freedom of the limiting chi-squared distribution of the test
statistic under the null hypothesis is (3−1)(4−1) = 6, so that the critical value is χ2

6,0.01 = 16.81189.
We therefore reject the null hypothesis.

• There exist modifications to Fisher’s exact test for tables with dimensions greater than 2× 2, but
we will not discuss them in this course.

Connection to Pearson’s chi-squared test

• Pearson’s chi-squared test: A classical test of the hypotheses in (3) is Pearson’s chi-squared
test, which is given by

Reject H0 iff
M∑
j=1

K∑
k=1

(Okj − Ekj)2

Ekj
> χ2

(K−1)(M−1),α.

The invention of this test predates the development of the likelihood ratio approach to building
tests of hypotheses, so we don’t really have a principled way to derive it. One can show, however,
that Pearson’s test statistic is very close to that of the asymptotic likelihood ratio test (note
moreover that the rejection region is the same).

• Closeness of test statistics of LRT and Pearson’s test: We can show that the test statistic
of Pearson’s test is close to that of the likelihood ratio test by using a Taylor expansion of the
natural logarithm:

log(1 + x) ≈ x− 1

2
x2.

Additionally noting that

Okj = Ekj

(
1 +

Okj − Ekj
Ekj

)
and

Okj

Ekj
= 1 +

Okj − Ekj
Ekj

,
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we write

2
M∑
j=1

K∑
k=1

Okj log

(
Okj

Ekj

)
= 2

M∑
j=1

K∑
k=1

Ekj

(
1 +

Okj − Ekj
Ekj

)
log

(
1 +

Okj − Ekj
Ekj

)

≈ 2
M∑
j=1

K∑
k=1

Ekj

(
1 +

Okj − Ekj
Ekj

)[
Okj − Ekj

Ekj
− 1

2

(
Okj − Ekj

Ekj

)2
]

= 2
M∑
j=1

K∑
k=1

Ekj

Okj − Ekj
Ekj

+
1

2

(
Okj − Ekj

Ekj

)2

−1

2

(
Okj − Ekj

Ekj

)3

︸ ︷︷ ︸
discard


≈ 2

M∑
j=1

K∑
k=1

Ekj

(
Okj − Ekj

Ekj

)
︸ ︷︷ ︸

=0

+
M∑
j=1

K∑
k=1

Ekj

(
Okj − Ekj

Ekj

)2

=
M∑
j=1

K∑
k=1

(Okj − Ekj)2

Ekj
,

where to obtain the last equality we have used the fact that

M∑
j=1

K∑
k=1

(Okj − Ekj) =
M∑
j=1

K∑
k=1

(Ykj − nkp̂0j) =
M∑
j=1

K∑
k=1

(Ykj − nk(Y.j/n)) = n− n = 0.

• Exercise: Compute the test statistic for Pearson’s test on the migraine surgery data:

Successes Failures Total
Treatment 41 8 49

Control 15 11 26
Total 56 19 75

Answer: Pearson’s test statistic is

(41− 36.59)2

36.59
+

(15− 19.41)2

19.41
+

(8− 12.41)2

12.41
+

(11− 6.59)2

6.59
= 6.051762.

This is fairly close to the value of the likelihood ratio test statistic, which was 5.845761. For larger
sample sizes Pearson’s test statistic and the likelihood ratio test statistic will be closer.
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• Equivalence of Pearson’s test to other classical test in 2-by-2 case: In the two-sample
setup with

Y1 ∼ Binomial(n1, p1)

Y2 ∼ Binomial(n2, p2),

an asymptotic size-α test of H0: p1 = p2 versus H1: p1 6= p2 is

Reject H0 iff
p̂1 − p̂2√

p̂0(1− p̂0)(1/n1 + 1/n2)
> zα/2,

where p̂1 = Y1/n1, p̂2 = Y2/n2 and p̂0 = (Y1 + Y2)/(n1 + n2). It turns out that the square of the
test statistic in the above test is equal to the test statistic of Pearson’s test; therefore the p-values
associated with the tests will be equal.

13


