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Censored data and survival analysis

Karl B. Gregory

Censored time-to-event data

• There is an entire field of statistics devoted to analyzing time-to-event data, for example, the
time to failure of electronic components, the time to death of terminally ill patients, or the time
to alleviation of symptoms after a treatment. An unavoidable feature of time-to-event data is
censoring—when the event time is not observed for every component/patient/subject. This could
happen, for example, if a subject left a study before the event took place or if the study terminated
before all subjects experienced the event.

• Form of censored data: Let T1, . . . , Tn be independent random variables which represent times
to an event and let C1, . . . , Cn be censoring times. Suppose we observe the data pairs

(Y1, δ1), . . . , (Yn, δn),

where δ1, . . . , δn are indicator variables such that

Yi =

{
Ti if δi = 1
Ci if δi = 0

for i = 1, . . . , n.

So for censored observations δi = 0 and for uncensored observations δi = 1.

• Right-censoring: If the censoring is such that the event of interest occurs after the time of
censoring, we refer to it as right-censoring. In this case, we have

δi =

{
1 if Ti ≤ Ci
0 if Ti > Ci

for i = 1, . . . , n,

so that
Yi = min{Ti, Ci} for i = 1, . . . , n.

• Left-censoring: This is another type of censoring whereby the event of interest occurs before
the censoring time; but to understand left-censoring it may be useful to drop the time-to-event
language of “before” and “after”. Consider the following example: Suppose a measurement device
can only give reliable measurements when the true measurement is greater than some value C.
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Then if the device returns a measurement less than C, we might choose to discard the measurement
and simply conclude that the true measurement is some value less than C and to mark this
observation as censored. In this setting we would have

δi =

{
1 if Ti ≥ C
0 if Ti < C,

for i = 1, . . . , n,

so that
Yi = max{Ti, C} for i = 1, . . . , n.

Note that censoring can be a feature of any kind of data, not just of time-to-event data.

• Right-censoring example: The following data is taken from [1], and shows times in remission
in weeks for two groups of leukemia patients; the event of interest is coming out of remission.

Group 1 (Treatment) Group 2 (Placebo)
6, 6, 6, 7, 10, 1, 1, 2, 2, 3,
13, 16, 22, 23, 4, 4, 5, 5,
6+, 9+, 10+, 11+, 8, 8, 8, 8,
17+, 19+, 20+, 11, 11, 12, 12,
25+, 32+, 32+, 15, 17, 22, 23
34+, 35+

The numbers marked with a “+” are censored values. The “+” indicates that these patients either
were still in remission at the end of the study, were lost to follow-up (could not be contacted), or
withdrew from the study. We would set δi = 0 for those observations marked with a “+” and set
δi = 1 for the remaining observations.

Maximum likelihood estimation with censored data

• Given data like the leukemia data in the previous section, if we were to ignore the censoring,
our analyses would be biased. Suppose we wished to estimate the mean time in remission for
the treatment group. If we simply averaged all of the observed values, it is likely that we would
underestimate the mean, since the true remission times of the censored patients were greater than
the numbers we have in the table. How can we proceed? We find that we can incorporate the
censoring into the likelihood function in order construct reliable estimators via the maximum
likelihood approach.

• In this section we assume that T1, . . . , Tn are independent random variables with cdf F (·; θ) and
pdf f(·; θ). Moreover, we define the survival function as S(·; θ) = 1− F (·; θ).

• Right-censoring with random censoring times: Suppose C1, . . . , Cn are independent random
variables with cdf G and pdf g; in addition, suppose C1, . . . , Cn are independent of T1, . . . , Tn and
that G does not depend on the parameter θ. Then we find that the likelihood function of the
observed data can be written

L(θ; (Y1, δ1), . . . , (Yn, δn)) =
∏
i∈U

f(Yi; θ)
∏
i∈C

S(Yi; θ)×K((Y1, δ1), . . . , (Yn, δn)), (1)
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where K is some function of the data which does not involve the parameter θ, and U = {i : δi = 1}
are the indices of the uncensored observations and C = {i : δi = 0} are the indices of the uncen-
sored observations.

Derivation of the likelihood: In a few steps, we may derive the conditional densities of Yi|δi = 1
and Yi|δi = 0 as

Yi|δi = 1 ∼ f(y; θ)[1−G(y)]/P (Ti ≤ Ci)

Yi|δi = 0 ∼ g(y)[1− F (y; θ)]/P (Ti > Ci).

To construct the likelihood, we consider the “probability” of each pair (Yi, δi), which is a little
awkward because Yi is continuous and δi is discrete. Ignoring this awkwardness and simply
denoting by p(Yi, δi) the joint “density” (which is not really a density or a probability mass
function) of (Yi, δi) and by p(δi) the marginal probability mass function of δi, we may write

p(Yi, δi) = p(Yi|δi)p(δi) =

{
f(y; θ)[1−G(y)] when δi = 1
g(y)[1− F (y; θ)] when δi = 0.

The quantity p(Yi, δi) is the contribution to the likelihood of the data pair (Yi, δi). So we see that
the likelihood function can be written as

L(θ; (Y1, δ1), . . . , (Yn, δn)) =
n∏
i=1

{f(Yi; θ)[1−G(Yi)]}δi{g(Yi)[1− F (Yi; θ)]}1−δi

=
n∏
i=1

f(Yi; θ)
δi [1− F (Yi; θ)]

1−δi
n∏
i=1

g(Yi)
1−δi [1−G(Yi)]

δi

︸ ︷︷ ︸
=:K((Y1,δ1),...,(Yn,δn))

=
∏
i∈U

f(Yi; θ)
∏
i∈C

S(Yi; θ)×K((Y1, δ1), . . . , (Yn, δn)),

where we see that the function K does not involve the parameter θ.

• Right-censoring with a fixed censoring time: Suppose C1 = · · · = Cn = C for some constant
C > 0. Following similar steps we will get that the likelihood function of the observed data is

L(θ; (Y1, δ1), . . . , (Yn, δn)) =
∏
i∈U

f(Yi; θ)
∏
i∈C

S(C; θ)×K((Y1, δ1), . . . , (Yn, δn)),

where K is some function of the data which does not involve the parameter θ. Note that all the
censored data take the same value C.

• Left-censoring with a fixed censoring time: Suppose C1 = · · · = Cn = C for some constant
C > 0. Following similar steps we will get that the likelihood function of the observed data is

L(θ; (Y1, δ1), . . . , (Yn, δn)) =
∏
i∈U

f(Yi; θ)
∏
i∈C

F (C; θ)×K((Y1, δ1), . . . , (Yn, δn)),

where K is some function of the data which does not involve the parameter θ. Note that all the
censored data take the same value C.
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• Exercise: Suppose you observe some censored data (Y1, δ1), . . . , (Yn, δn) such that Yi = min{Ti, Ci},
where Ci is a random censoring time and Ti ∼ Exponential(λ), with Ci and Ti independent. The
variable δi is defined such that δi = 1 if Ti ≤ Ci and δi = 0 otherwise.

(i) Find an expression for the maximum likelihood estimator of λ based on the censored data.

(ii) Assume for a moment that the times in remission of the treatment group in the leukemia
data set follow an exponential distribution and compute the maximum likelihood estimator
of the mean time in remission.

Answers:

(i) We have

f(Yi;λ) =
1

λ
exp

[
−Yi
λ

]
S(Yi;λ) = 1− F (Yi;λ) = 1−

(
1− exp

[
−Yi
λ

])
= exp

[
−Yi
λ

]
.

Plugging these into the likelihood expression (1), we have

L(λ; (Y1, δ1), . . . , (Yn, δn)) ∝
∏
i∈U

1

λ
exp

[
−Yi
λ

]∏
i∈C

exp

[
−Yi
λ

]
=

(
1

λ

)nU

exp

[
−
∑

i∈U Yi

λ

]
exp

[
−
∑

i∈C Yi

λ

]
,

where we use the ∝ symbol in order to omit from the right-hand side the function K of
the observed data which does not involve the parameter λ, and where nU is the number of
uncensored observations. Continuing to ignore K, the log-likelihood can be written

`(λ; (Y1, δ1), . . . , (Yn, δn)) = −nU log λ−
∑

i∈U Yi

λ
−
∑

i∈C Yi

λ
.

Taking the derivative of this function with respect to λ and setting it equal to zero gives the
maximum likelihood estimator of λ. We have

∂

∂λ
`(λ; (Y1, δ1), . . . , (Yn, δn)) = −nU

λ
+

∑
i∈U Yi

λ2
+

∑
i∈C Yi

λ2
,

so that the maximum likelihood estimator of λ is given by

λ̂ =

∑
i∈U Yi +

∑
i∈C Yi

nU
=

1

nU

n∑
i=1

Yi.

(ii) The following R code computes the maximum likelihood estimator:

Y <- c(6,6,6,7,10,13,16,22,23,6,9,10,11,17,19,20,25,32,32,34,35)

d <- c(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)

nU <- sum(d)

lambda.hat <- sum(Y)/nU

We get λ̂ = 39.88889.
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Parametric estimation of the survival function

• If T1, . . . , Tn come from a distribution with a cdf F (·; θ) that is known up to a parameter θ, then
the survival function is S(·; θ) = 1 − F (·; θ). In order to estimate the survival function, we only
need to estimate the parameter θ, with, for example, the maximum likelihood estimator θ̂. Then
our estimator of the survival function is simply S(·; θ̂).

• Exercise: Make a plot of the estimated survival functions for the treatment and placebo group
of the leukemia data under the assumption that the times in remission follow Exponential(λ)
distributions with λ = λT for the treatment group and λ = λP for the placebo group.

Answer: From previous work, the maximum likelihood estimator of λT is λ̂T = 39.88889. So the
estimated survival function for the treatment group is given by

ST(t; λ̂T) = exp

[
− t

39.88889

]
.

There are no censored observations in the placebo group, so the maximum likelihood estimator of
λP is λ̂P = 8.55, which is the mean of the observed times in remission. So the estimated survival
function for the placebo group is given by

SP(t; λ̂P) = exp

[
− t

8.55

]
.

The following R code makes a plot of the two survival functions:

Y <- c(6,6,6,7,10,13,16,22,23,6,9,10,11,17,19,20,25,32,32,34,35)

delta <- c(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)

nU <- sum(delta)

lambda.hat <- sum(Y)/nU

Y.P <- c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,12,12,15,17,22,23)

lambda.P.hat <- mean(Y.P)

t.seq <- seq(0,100,length=200)

S.T <- exp( - t.seq / lambda.hat)

S.P <- exp( - t.seq / lambda.P.hat)

plot(S.T ~ t.seq,type="l",lty=1,ylim=c(0,1),xlab="Time (in weeks)",

ylab="P(still in remission)")

lines(S.P ~ t.seq,lty=2)

x.pos <- grconvertX(.5,from="nfc",to="user")

y.pos <- grconvertY(.95,from="nfc",to="user")

legend(x = x.pos, y = y.pos, legend=c("Treatment","Placebo"),

lty=c(1,2),xpd=NA,bty="n",horiz=TRUE,xjust=.5)
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Nonparametric estimation of the survival function

• We may not be comfortable assuming any specific distribution for the event times T1, . . . , Tn. In
this case, we cannot simply estimate a parameter in order to get an estimator of the survival
function. In this section we introduce some non-parametric estimators of the survival function;
by “non-parametric” we mean that we do not try to estimate a parameter, but rather the values
of the function itself.

• Life-table estimator for leukemia data: One non-parametric way to estimate the survival
function is to break the observation period into intervals of equal length, and then to record for
each interval the number of events that occurred in the interval, the number of subjects that were
censored during the interval, and the number of subjects under observation at the beginning of the
interval. The table can then be used to estimate the probability of occurrence of the event in each
interval, and these probabilities can be used to construct an estimate of height of the survival
function over each interval. For the treatment group of the Leukemia data, if the observation
period is broken into 5-week intervals, we have the following life table:

Interval # out of remission # cens. # uncens. at beginning of int. ĥ Ŝ
[0, 5) 0 0 21 0/21 1.000
[5, 10) 4 2 21 4/21 0.810
[10, 15) 2 2 15 2/15 0.702
[15, 20) 1 2 11 1/11 0.638
[20, 25) 2 1 8 2/8 0.478
[25, 30) 0 1 5 0/5 0.478
[30, 35) 0 3 4 0/4 0.478
[35, 40) 0 1 1 0/1 0.478
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The ĥ column contains for each interval the estimated probability that a subject experiences the
event in that interval. Each entry is given by the number of events occurring in the interval divided
by the number of subjects under observation at the beginning of the interval. The “h” stands for
“hazard”, which can be regarded as the rate of occurrence of the event at a given time (in a given
interval).

The Ŝ column contains the values of the estimated survival function over the intervals. The
following gives a general form of the life table and explains how it is used to construct an estimator
of the survival function.

• General form of life table: Suppose the observation period is broken into K intervals

[t0, t1), . . . , [tK−1, tK), with 0 = t0 < t1 < · · · < tK .

For k = 1, . . . , K, let

dk = # observed “deaths” in the interval [tk−1, tk),

ck = # subjects censored during the interval [tk−1, tk), and

nk = # subjects “alive” and not yet censored at the beginning of the interval [tk−1, tk).

The subjects which are “alive” and not yet censored at a given time are referred to as “subjects
at risk”, as they are still in the study and have not yet experienced the “death” event. With this
notation the life table has the form

Interval # deaths # censored # at risk ĥ Ŝ
[t0, t1) d1 c1 n1 d1/n1 1− d1/n1

[t1, t2) d2 c2 n2 d2/n2 (1− d2/n2)(1− d1/n1)

[t2, t3) d3 c3 n3 d3/n3

∏3
j=1(1− dj/nj)

...

[tK−1, tK) dK cK nK dK/nK
∏K

j=0(1− dj/nj)

To understand where the entries in the ĥ and Ŝ columns come from, we note that for any k =
1, . . . , K we may write

S(tk) = P (T > tk)

= P (T > tk|T > tk−1)P (T > tk−1)

= P (T > tk|T > tk−1)P (T > tk−1|T > tk−2)P (T > tk−2)

=
∏k

j=1 P (T > tj|T > tj−1)× P (T > t0)

=
∏k

j=1[1− P (T ≤ tj|T > tj−1)]

=
∏k

j=1[1− P (tj−1 < T ≤ tj|T > tj−1)]

=
∏k

j=1[1− P (tj−1 ≤ T < tj|T ≥ tj−1)] (since T is continuous)

=
∏k

j=1(1− hj),
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where we define

hj = P (tj−1 ≤ T < tj|T ≥ tj−1), for j = 1, . . . , K.

One way to estimate h1, . . . , hK is with

ĥj =
dj
nj
, for j = 1, . . . , K.

Then the life table estimator of S is defined as

Ŝ(t) =
∏k

j=1(1− ĥj) for t ∈ [tk−1, tk).

This life table estimator assumes that if a subject is censored in an interval, then the subject
“survived” until the end of the interval.

The following R code computes the columns of the life table and plots the life table estimator of
the survival function for the treatment group of the leukemia data:
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Y <- c(6,6,6,7,10,13,16,22,23,6,9,10,11,17,19,20,25,32,32,34,35)

delta <- c(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)

# define intervals:

t <- seq(0,40,by=5)

K <- length(t) - 1

h <- numeric(K)

S <- numeric(K+1)

n <- numeric(K)

cens <- numeric(K)

S[1] <- 1

d <- numeric(K)

for( k in 1:K)

{

# number of uncensored events in interval:

d[k] <- sum((Y[which(delta==1)] >= t[k]) & ( Y[which(delta==1)] < t[k+1]))

# number subjects censored in interval:

cens[k] <- sum((Y[which(delta==0)] >= t[k]) & ( Y[which(delta==0)] < t[k+1]))

# number uncensored subjects at beginning of interval:

n[k] <- sum(Y >= t[k])

# hazard estimate over interval:

h[k] <- d[k]/n[k]

# survival function estimate:

S[k+1] <- S[k] * ( 1 - h[k] )

}

life.table <- cbind(t[1:K],t[-1],d,cens,n,h,S[-1])

plot(NA,xlim=range(t),ylim=c(0,1), xlab = "Time (weeks)",

ylab = "Probability still in remission")

y.vals <- as.vector(t(cbind(S[-1],S[-1])))

x.vals <- as.vector(t(cbind(t,t)))[-c(1,2*(K+1))]

lines(x = x.vals, y = y.vals)
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• Kaplan-Meier estimator: The Kaplan-Meier estimator is the life table estimator under a cer-
tain choice of the intervals [t0, t1), . . . , [tK−1, tK). Specifically, if the data (Y1, δ1), . . . , (Yn, δn) are
observed and U(1) < · · · < U(K−1) denote the unique uncensored event times, then the Kaplan-
Meier estimator is the life table estimator based on the intervals defined by

t0 = 0

t1 = U(1) < · · · < tK−1 = U(K−1)

tK =∞.

This results in a life table like this one:

Interval # deaths # censored # at risk ĥ Ŝ
[0, U(1)) d1 c1 n1 d1/n1 1− d1/n1

[U(1), U(2)) d2 c2 n2 d2/n2 (1− d2/n2)(1− d1/n1)

[U(2), U(3)) d3 c3 n3 d3/n3

∏3
j=1(1− dj/nj)

...

[U(K−1),∞) dK cK nK dK/nK
∏K

j=0(1− dj/nj)

From the values in this table the Kaplan-Meier estimator can be expressed as

ŜKM(t) =

{
1 for t < U(1)∏

j:U(j)≤t

(
1− dj

nj

)
for t ≥ U(1).

The reason for the piecewise definition of the estimator is that ŜKM(t) must take a value of 1 for
t ∈ [0, U(1)), which we can see by noting that we must have d1 = 0, since no events may occur
before the first one occurs! So we have 1− d1/n1 = 1.
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• Example: The leukemia data contain tied event times. The Kaplan-Meier choices of t0 < t1 <
· · · < tK for the treatment group of the leukemia data are

t0 = 0, t1 = 6, t2 = 7, t3 = 10, t4 = 13, t5 = 16, t6 = 22, t7 = 23, t8 =∞.

• Exercise: Compute the Kaplan-Meier estimator of the survival function for the two groups in the
leukemia data set. Make a plot showing the two functions. In addition, overlay the parametric
estimates of the survival functions obtained under the assumption that the times in remission
follow exponential distributions.

Answer: The following R code defines a function to compute the Kaplan-Meier life table. The
function is applied to the data from the two groups of the leukemia study:

KM <- function(Y,delta)

{

# define KM intervals:

t <- c(0,sort(unique(Y[which(delta==1)])),2*max(Y))

K <- length(t) - 1

h <- numeric(K)

S <- numeric(K+1)

n <- numeric(K)

cens <- numeric(K)

S[1] <- 1

d <- numeric(K)

for( k in 1:K)

{

# number of uncensored events at beginning of interval:

d[k] <- sum( (Y[which(delta==1)] >= t[k]) & ( Y[which(delta==1)] < t[k+1]) )

# number subjects censored in interval:

cens[k] <- sum( (Y[which(delta==0)] >= t[k]) & ( Y[which(delta==0)] < t[k+1]) )

# number uncensored subjects at beginning of interval:

n[k] <- sum(Y >= t[k])

# hazard estimate over interval:

h[k] <- d[k]/n[k]

# survival function estimate:

S[k+1] <- S[k] * ( 1 - h[k] )

}

life.table <- as.data.frame(cbind(t[1:K],d,cens,n,h,S[-1]))

colnames(life.table) <- c("time","n.events","n.cens","n.risk","h","S")
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# output for making plots:

y.vals <- as.vector(t(cbind(S[-1],S[-1])))

x.vals <- as.vector(t(cbind(t,t)))[-c(1,2*(K+1))]

output <- list( life.table = life.table,

x.vals = x.vals,

y.vals = y.vals )

return(output)

}

Y <- c(6,6,6,7,10,13,16,22,23,6,9,10,11,17,19,20,25,32,32,34,35)

delta <- c(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)

Y.P <- c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,12,12,15,17,22,23)

delta.P <- rep(1,length(Y.P))

KM.out <- KM(Y,delta)

KM.out.P <- KM(Y.P,delta.P)

plot(NA,xlim=range(t),ylim=c(0,1), xlab = "Time (weeks)",

ylab = "Probability still in remission")

lines(x = KM.out$x.vals, y = KM.out$y.vals)

lines(x = KM.out.P$x.vals, y = KM.out.P$y.vals , lty=2)

x.pos <- grconvertX(.5,from="nfc",to="user")

y.pos <- grconvertY(.95,from="nfc",to="user")

legend(x = x.pos, y = y.pos, legend=c("Treatment","Placebo"),

lty=c(1,2),xpd=NA,bty="n",horiz=TRUE,xjust=.5)

lines( exp( - t.seq / lambda.hat) ~t.seq,lty=3)

lines( exp( - t.seq / lambda.P.hat) ~t.seq,lty=3)
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