STAT 513 fa 2018 Exam I (take-home)

Karl B. Gregory

assigned: Tuesday, Oct 2nd, 2018 due: Thursday, Oct 4th, 2018

Instructions:

- Looking at course notes IS allowed.
- Working with others IS NOT allowed. Asking a friend to help you puts the friend in the uncomfortable position of wanting to be nice but not wanting to break a rule. I recommend not doing that to your friends, because friendships are more important than exam grades.
- Write solutions on blank sheets of paper and turn these sheets in WITH A BLANK SHEET ON TOP (to cover answers) which has only your name on it. You do not need to turn in a copy of the exam itself.
- I expect answers to by very neatly written, since you have the time. Partial credit will be given only for legible work.

The table below gives some values of the function $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$:

Let X_1, \ldots, X_n be a random sample with likelihood function $L(\theta; X_1, \ldots, X_n)$. Then for hypotheses of the form $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ the likelihood ratio takes the form

$$LR(X_1,\ldots,X_n) = \frac{L(\theta_0; X_1,\ldots,X_n)}{L(\hat{\theta}; X_1,\ldots,X_n)},$$

where $\hat{\theta}$ is the maximum likelihood estimator of θ .

1. Let X_1, \ldots, X_n be a random sample from the Normal $(\mu, 1)$ distribution, where μ is unknown. A researcher plans to test H_0 : $\mu \ge 5$ versus H_1 : $\mu < 5$ with the test

Reject
$$H_0$$
 iff $\sqrt{n}(\bar{X}_n - 5) < -1.96$.

- (a) Give the size of the test.
- (b) Make a sketch which gives the shape of the power curve, indicating its height at $\mu = 5$.
- (c) Give an expression for the power $\gamma(\mu)$ at any value of μ .
- (d) Which of the following numbers, when rounded up, is equal to the smallest sample size under which the test will reject H_0 with probability at least 0.90 for all $\mu \leq 4$? *Hint: You must do some calculations involving the power function.* No points will be awarded if you do not show your work, even if you select the right answer.
 - A. $(1.96 + 2.575)^2$ B. $(1.96 + 2.575)^2/(5)^2$ C. $(1.96 + 1.282)^2$ D. $(2.575 + 2.575)^2/4$ E. $(1.96 + 2.575)^2/(\sqrt{4})^2$ F. $(1.96 + 1.96)^2/(\sqrt{5})^2$ G. $2^2(1.96 + 1.282)^2$ H. $(1.96 - 1.282)^2/5$ I. $2^2(1.96)^2/5^2$
 - J. $2^2(1.282)^2$
- (e) Assuming that the correct sample size from the previous part is used, sketch the power curve of the test; include vertical lines positioned at $\mu = 4$ and $\mu = 5$ and horizontal lines positioned at the heights 0.90 and 0.025.
- (f) Suppose that a random sample of size *n* results in $\sqrt{n}(\bar{X}_n 5) = -2.65$. In which of the following intervals does the *p*-value lie? *Hint: Consult the table of values of the standard Normal cdf* $\Phi(z)$. No points will be awarded if you do not show your reasoning, even if you select the right answer.
 - A. (0,.005) B. [.005,.01)
 - C. [.01, .05)
 - D. [.05, .5)
 - E. [.5, 1)
- (g) Suppose that a random sample of size *n* results in $\sqrt{n}(\bar{X}_n 5) = 2.65$. In which of the following intervals does the *p*-value lie? No points will be awarded if you do not show your reasoning, even if you select the right answer.
 - A. (0,.005)
 B. [.005,.01)
 C. [.01,.05)
 D. [.05,.5)
 E. [.5,1)

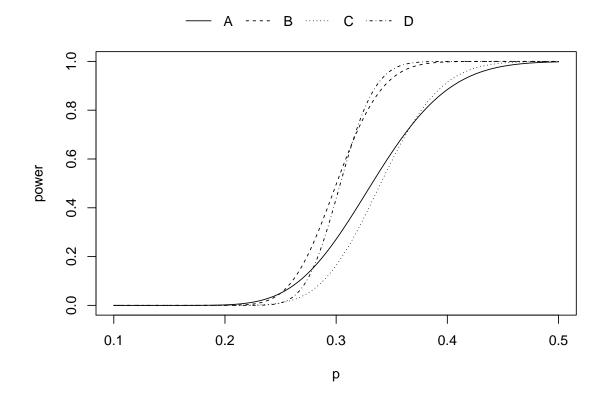
- 2. Let n^* be the smallest sample size required to detect a deviation as small as δ^* from the null with probability at least γ^* using a test with size α . Fill in the blanks:
 - (a) For _____ (larger/smaller) δ^* a _____ (larger/smaller) n^* is required.
 - (b) For _____ (larger/smaller) γ^* a _____ (larger/smaller) n^* is required.
 - (c) For _____ (larger/smaller) α a _____ (larger/smaller) n^* is required.
- 3. Let X_1, \ldots, X_n be a random sample from the Bernoulli(p) distribution, where p is unknown, and suppose it is of interest to test

*H*₀:
$$p \le 1/4$$
 versus $p > 1/4$

Power curves of the test

Reject
$$H_0$$
 iff $\sqrt{n}(\hat{p}_n - 1/4)/\sqrt{1/4(1 - 1/4)} > z_\alpha$

are shown under four settings, A, B, C, and D, which correspond to different values of α and n.



Answer the following by looking carefully at the power curves. Explain answers to recieve credit!

- (a) Which settings have $\alpha = 0.05$?
- (b) Between settings C and D, which has the smaller sample size n?
- (c) Which of the four settings has the largest sample size n?
- (d) Under which setting is the probability of a Type II error the smallest when p = 0.28?

4. Let X_1, \ldots, X_n be a random sample from the distribution with pdf given by

$$f(x) = \beta^{-1} \exp(-x\beta^{-1}) \mathbb{1}(x > 0),$$

where $\beta \geq 0$ is unknown, and suppose it is of interest to test the hypotheses

$$H_0: \beta = \beta_0$$
 versus $H_1: \beta \neq \beta_0$

- (a) Give the likelihood function $L(\beta; X_1, \ldots, X_n)$ for X_1, \ldots, X_n .
- (b) Give the log-likelihood function $\ell(\beta; X_1, \ldots, X_n)$ for X_1, \ldots, X_n .
- (c) Find the maximum likelihood estimator $\hat{\beta}$ of β based on X_1, \ldots, X_n .
- (d) Give the likelihood ratio $LR(X_1, \ldots, X_n)$ for testing the hypotheses H_0 : $\beta = \beta_0$ versus H_1 : $\beta \neq \beta_0$.
- (e) Show that the rejection criterion $LR(X_1, \ldots, X_n) < c$ of the likelihood ratio test is equivalent to

$$\frac{\bar{X}_n}{\beta_0} \exp\left(-\frac{\bar{X}_n}{\beta_0}\right) < c^{1/n} e^{-1}$$

for any $c \in [0, 1]$.

(f) Since the function ze^{-z} is strictly increasing for z < 1 and strictly decreasing for z > 1, we have that rejecting H_0 when $LR(X_1, \ldots, X_n) < c$ is equivalent to rejecting H_0 when

$$\bar{X}_n < c_1 \text{ or } \bar{X}_n > c_2$$

for some c_1 and c_2 . Explain in words how we can use the fact that

$$X_1, \ldots, X_n \stackrel{iid}{\sim} \operatorname{Exponential}(\beta) \implies \bar{X}_n \sim \operatorname{Gamma}(n, \beta/n)$$

to choose c_1 and c_2 such that the test has size α for any $\alpha \in (0, 1)$.