STAT 513 fa 2018 Exam II (take-home)

Karl B. Gregory

assigned: Tuesday, Nov 13th, 2018 due: Thursday, Nov 15th, 2018

Instructions:

- Looking at course notes IS allowed; Working with others IS NOT allowed.
- You will need, at most, a simple calculator.
- Write solutions on blank sheets of paper and turn these sheets in WITH A BLANK SHEET ON TOP (to cover answers) which has only your name on it. You do not need to turn in a copy of the exam itself.
- Some values of the function $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$:

z	1.282	1.645	1.96	2.576
$\Phi(z)$	0.9	0.95	0.975	0.995

• Some upper quantiles of some t distributions:

ξ	0.10	0.05	0.025	0.01	0.005
$t_{8,\xi}$	1.397	1.860	2.306	2.896	3.355
$t_{9,\xi}$	1.383	1.833	2.262	2.821	3.250
$t_{10,\xi}$	1.397 1.383 1.372	1.812	2.228	2.764	3.169

• The upper 0.05 quantile of the F_{ν_1,ν_2} distribution for come combinations of ν_1 and ν_2 :

	$\nu_1 = 1$	$\nu_1 = 2$	$\nu_1 = 3$	$\nu_1 = 4$	$\nu_1 = 5$
$\nu_2 = 5$	6.61	5.79	5.41	5.19	5.05
$\nu_2 = 6$	5.99	5.14	4.76	4.53	4.39
$\nu_2 = 7$	5.59	4.74	4.35	4.12	3.97
$\nu_2 = 8$	5.32	4.46	4.07	3.84	3.69

• Some upper quantiles of some chi-squared distributions:

ξ	0.10	0.05	0.025 5.02 7.38	0.01	0.005
$\chi^2_{1,\xi}$	2.71	3.84	5.02	6.63	7.88
$\chi^2_{2,\xi}$	4.61	5.99	7.38	9.21	10.60

1. Suppose X_1, \ldots, X_n and Y_1, \ldots, Y_m are independent random samples from Poisson distributions with means λ_1 and λ_2 , respectively, and suppose you wish to test the hypotheses

 $H_0: \lambda_1 = \lambda_2$ versus $H_1: \lambda_1 \neq \lambda_2$.

(a) Write down the likelihood function $L(\lambda_1, \lambda_2; X_1, \dots, X_n, Y_1, \dots, Y_m)$.

Solution: The likelihood function is

$$L(\lambda_1, \lambda_2; X_1, \dots, X_n, Y_1, \dots, Y_m) = \left(\prod_{i=1}^n \frac{e^{-\lambda_1} \lambda_1^{X_i}}{X_i!}\right) \left(\prod_{j=1}^m \frac{e^{-\lambda_2} \lambda_2^{Y_j}}{Y_j!}\right)$$
$$= e^{-n\lambda_1} \lambda_1^{n\bar{X}_n} e^{-m\lambda_2} \lambda_2^{m\bar{Y}_m} \left(\prod_{i=1}^n X_i! \prod_{j=1}^m Y_j!\right)^{-1}.$$

(b) Write down the log-likelihood function $\ell(\lambda_1, \lambda_2; X_1, \ldots, X_n, Y_1, \ldots, Y_m)$.

Solution: The log-likelihood function is

$$\ell(\lambda_1, \lambda_2; X_1, \dots, X_n, Y_1, \dots, Y_m) = -n\lambda_1 - m\lambda_2 + n\bar{X}_n \log(\lambda_1) + m\bar{Y}_m \log(\lambda_2)$$
$$-\sum_{i=1}^n \log(X_i!) - \sum_{j=1}^m \log(Y_j!)$$

(c) Find the maximum likelihood estimators of λ_1 and λ_2 .

Solution: We get $\hat{\lambda}_1 = \bar{X}_n$ and $\hat{\lambda}_2 = \bar{Y}_m$.

(d) Under H_0 we have $\lambda_1 = \lambda_2 = \lambda_0$. Find the value of λ which maximizes $L(\lambda, \lambda; X_1, \dots, X_n, Y_1, \dots, Y_m)$.

Solution: We get

$$\hat{\lambda}_0 = \frac{n\bar{X}_n + m\bar{Y}_m}{n+m}.$$

(e) Show that the likelihood ratio can be written

$$\operatorname{LR}(X_1,\ldots,X_n,Y_1,\ldots,Y_m) = \frac{\left(\frac{n\bar{X}_n + m\bar{Y}_m}{n+m}\right)^{n\bar{X}_n + m\bar{Y}_m}}{(\bar{X}_n)^{n\bar{X}_n}(\bar{Y}_m)^{m\bar{Y}_m}}$$

Solution: The likelihood ratio is given by

$$\begin{aligned} \mathrm{LR}(X_{1},\dots,X_{n},Y_{1},\dots,Y_{m}) &= \frac{L(\hat{\lambda}_{0},\hat{\lambda}_{0};X_{1},\dots,X_{n},Y_{1},\dots,Y_{m})}{L(\hat{\lambda}_{1},\hat{\lambda}_{2};X_{1},\dots,X_{n},Y_{1},\dots,Y_{m})} \\ &= \frac{e^{-n\hat{\lambda}_{0}}\hat{\lambda}_{0}^{n\bar{X}_{n}}e^{-m\hat{\lambda}_{0}}\hat{\lambda}_{0}^{m\bar{Y}_{m}}\left(\prod_{i=1}^{n}X_{i}!\prod_{j=1}^{m}Y_{j}\right)^{-1}}{e^{-n\hat{\lambda}_{1}}\hat{\lambda}_{1}^{n\bar{X}_{n}}e^{-m\hat{\lambda}_{2}}\hat{\lambda}_{2}^{m\bar{Y}_{m}}\left(\prod_{i=1}^{n}X_{i}!\prod_{j=1}^{m}Y_{j}\right)^{-1}} \\ &= \frac{e^{-(n+m)\hat{\lambda}_{0}}\hat{\lambda}_{0}^{n\bar{X}_{n}+m\bar{Y}_{m}}}{e^{-n\hat{\lambda}_{1}}\hat{\lambda}_{1}^{n\bar{X}_{n}}e^{-m\hat{\lambda}_{2}}\hat{\lambda}_{2}^{m\bar{Y}_{m}}} \\ &= \frac{\hat{\lambda}_{0}^{n\bar{X}_{n}+m\bar{Y}_{m}}}{\hat{\lambda}_{1}^{n\bar{X}_{n}}\hat{\lambda}_{2}^{m\bar{Y}_{m}}}.\end{aligned}$$

Substituting the expressions for $\hat{\lambda}_1$, $\hat{\lambda}_2$, and $\hat{\lambda}_0$ from parts (c) and (d) gives the result.

(f) Suppose for the sample sizes n = 20 and m = 25 we observe $\bar{X}_n = 3.4$, and $\bar{Y}_m = 4.56$. Compute the test statistic for the asymptotic likelihood ratio test given by $-2 \log LR(X_1, \ldots, X_n, Y_1, \ldots, Y_m)$.

Solution: We have

$$-2 \log \operatorname{LR}(X_1, \dots, X_n, Y_1, \dots, Y_m)$$

$$= -2 \left[(n\bar{X}_n + m\bar{Y}_m) \log \left(\frac{n\bar{X}_m + m\bar{Y}_m}{n+m} \right) - n\bar{X}_n \log(\bar{X}_n) - m\bar{Y}_m \log(\bar{Y}_m) \right],$$
which for $n = 20, m = 25, \bar{X}_n = 3.4$, and $\bar{Y}_m = 4.56$ is equal to 3.749729.

- (g) Give the critical value for the asymptotic likelihood ratio test at the 0.05 significance level.

Solution: Under the null hypotheses

$$-2\log \operatorname{LR}(X_1,\ldots,X_n,Y_1,\ldots,Y_m) \to \chi_1^2$$
 in distribution

as $n \to \infty$, where the degrees of freedom of the limiting chi-squared distribution is equal to 1 because the null hypothesis restricts the parameter space such that it is one-dimensional (only one parameter is undetermined—the common λ_0). The 0.05 critical value for the asymptotic likelihood ratio test is the upper 0.05 quantile of this distribution, which is $\chi^2_{1,0.05} = 3.84$.

(h) Give your conclusion concerning the hypotheses at the $\alpha = 0.05$ significance level based on the data from part (f).

Solution: Since the test statistic does not exceed the 0.05 critical value, we fail to reject the null hypothesis at the 0.05 significance level.

2. Let Y_1, \ldots, Y_{10} be random variables such that

$$Y_i = 1 + (1/2)x_i + \varepsilon_i$$
, for $i = 1, \dots, 10$,

where $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, ..., and $x_{10} = 10$ and $\varepsilon_1, \ldots, \varepsilon_{10}$ are independent Normal $(0, \sigma^2 = 4)$ random variables. In addition, let

$$(\hat{\beta}_0, \hat{\beta}_1) = \operatorname*{argmin}_{\beta_0, \beta_1} \sum_{i=1}^n [Y_i - (\beta_0 + \beta_1 x_i)]^2.$$

(a) Compute $\bar{x} = (1/10) \sum_{i=1}^{10} x_i$ and quantity $S_{xx} = \sum_{i=1}^{10} (x_i - \bar{x})^2$.

Solution: We get

$$\bar{x} = (1/10)10(11)/2 = 5.5$$

 $S_{xx} = \sum_{i=1}^{10} (x_i - \bar{x})^2 = \sum_{i=1}^{10} x_i^2 - 10^2 = 10(11)(21)/6 - 10(5.5)^2 = 82.5$

(b) Give the following (each answer is a number):

- i. $\mathbb{E}\hat{\beta}_0$
- ii. $\mathbb{E}\hat{\beta}_1$
- iii. Var $\hat{\beta}_0$
- iv. Var $\hat{\beta}_1$
- v. $\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1)$ vi. $\mathbb{E}(1/8) \sum_{i=1}^{10} [Y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2$

Solution:

i.
$$\mathbb{E}\hat{\beta}_0 = 1$$

ii. $\mathbb{E}\hat{\beta}_1 = 1/2$
iii. $\operatorname{Var}\hat{\beta}_0 = (1/10 + (5.5)^2/82.5)4 = 1.866667$
iv. $\operatorname{Var}\hat{\beta}_1 = 4/82.5 = 0.04848485$
v. $\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) = -(5.5)/82.5(4) = -0.26666667$
vi. $\mathbb{E}(1/8) \sum_{i=1}^{10} [Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2 = 4$

(c) Give the matrix **X** such that

$$\begin{bmatrix} \hat{\beta}_0\\ \hat{\beta}_1 \end{bmatrix} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y},$$

where $\mathbf{Y} = (Y_1, \dots, Y_{10})^T$.

$\mathbf{X} = \begin{vmatrix} 1 & 3 \\ 1 & 4 \\ 1 & 5 \\ 1 & 6 \\ 1 & 7 \\ 1 & 8 \\ 1 & 9 \end{vmatrix}$	Solution: Use	$\mathbf{X} = \begin{vmatrix} 1 & 4 \\ 1 & 5 \\ 1 & 6 \\ 1 & 7 \\ 1 & 8 \end{vmatrix}$	
--	---------------	--	--

(d) Which of the following is true? *Hint: Begin by writing down the distribution of* $\hat{\beta}_1$.

A. $0 < P(\hat{\beta}_1 < 0) < 0.01$ **B.** $0.01 < P(\hat{\beta}_1 < 0) < 0.025$ C. $0.025 < P(\hat{\beta}_1 < 0) < 0.05$ D. $0.05 < P(\hat{\beta}_1 < 0) < 0.10$ E. $0.10 < P(\hat{\beta}_1 < 0) < 1$

Solution: We have $\hat{\beta}_1 \sim \text{Normal}(1/2, 4/82.5)$, so $P(\hat{\beta}_1 < 0) = P((\hat{\beta}_1 - 1/2)/\sqrt{4/82.5} < -(1/2)/\sqrt{4/82.5})$ $= \Phi(-(1/2)/\sqrt{4/82.5})$ $= \Phi(-2.270738).$ Since -2.576 < -2.270738 < -1.96, we have $0.01 < P(\hat{\beta}_1 < 0) < 0.025$.

(e) Using the true regression function, give an interval within which the random variable Y_3 will fall with probability 0.95.

Solution: The random variable Y_3 has the Normal $(1 + (1/2)3, \sigma^2 = 4)$ distribution, so Y_3 will fall in the interval $2.5 \pm 1.96(2) = (-1.42, 6.42)$ with probability 0.95.

(f) Suppose you don't know the true relationship between Y_1, \ldots, Y_{10} and x_1, \ldots, x_{10} , but you believe that

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \text{ for } i = 1, \dots, 10,$$

for some β_0 and β_1 and you wish to test H_0 : $\beta_1 = 0$ versus H_1 : $\beta_1 \neq 0$ at the $\alpha = 0.01$ significance level.

- i. Suppose you obtain $\hat{\beta}_1 = 0.4$ and $(1/8) \sum_{i=1}^{10} [Y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2 = 3$. What is your conclusion?
- ii. Sketch a power curve for this test, where the power is a function of β_1 . Draw a horizontal line at α and a vertical line at the null value of β_1 .

Solution:

i. The test statistic is

$$\frac{\beta_1}{\hat{\sigma}/\sqrt{S_{xx}}} = (0.4)/\sqrt{3/82.5} = 2.097618.$$

The upper 0.01/2 = 0.005 quantile of the t_8 distribution is 3.355, so we fail to reject the null hypothesis.

ii. Sketch should have an inverted bell shape with a minimum value of 0.01 occurring at $\beta_1 = 0$.

3. Let Y_1, \ldots, Y_{10} be random variables such that

$$Y_i = \beta_0 + \beta_1 x_i + \beta_2 \mathbf{1}(x_i \ge 5) + \beta_3 (x_i \cdot \mathbf{1}(x_i \ge 5)) + \varepsilon_i, \text{ for } i = 1, \dots, 10,$$

for some $\beta_0, \beta_1, \beta_2, \beta_3$, where $x_1 = 1, x_2 = 2, x_3 = 3, \ldots$, and $x_{10} = 10$ and $\varepsilon_1, \ldots, \varepsilon_{10}$ are independent Normal $(0, \sigma^2 = 4)$ random variables. The function $\mathbf{1}(x_i \ge 5)$ is equal to 1 if $x_i \ge 5$ and equal to 0 otherwise. In addition, let $\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)^T$, where

$$(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3) = \operatorname*{argmin}_{\beta_0, \beta_1, \beta_2, \beta_3} \sum_{i=1}^n [Y_i - (\beta_0 + \beta_1 x_i + \beta_2 \mathbf{1}(x_i \ge 5) + \beta_3 (x_i \cdot \mathbf{1}(x_i \ge 5)))]^2.$$

(a) Give the design matrix **X** such that

$$\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{\beta}_3 \end{bmatrix} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

where $\mathbf{Y} = (Y_1, \dots, Y_{10})^T$.

Solution: Use

	1	1	0	0
	1	2	0	0
	1	3	0	0
	1	4	0	0
$\mathbf{X} =$	1	5	1	5
	1	6	1	6
	1	7	1	7
	1	8	1	8
	1	9	1	9
	_ 1	10	1	10

(b) Give the vector **a** such that $\mathbb{E}\mathbf{a}^T\hat{\boldsymbol{\beta}} = \beta_3$.

Solution: Use the vector $\mathbf{a} = [0, 0, 0, 1]^T$.

(c) Four different models were fit to the data $(x_1, Y_1), \ldots, (x_{10}, Y_{10})$, resulting in four different sums of squared residuals equal to 29.35, 52.23, 29.13, and 34.86.

Model fit to the dataSum of squared residuals $Y_i = \beta_0 + \varepsilon_i$ $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ $Y_i = \beta_0 + \beta_1 x_i + \beta_2 \mathbf{1}(x_i \ge 5) + \varepsilon_i$ $Y_i = \beta_0 + \beta_1 x_i + \beta_2 \mathbf{1}(x_i \ge 5) + \beta_3 (x_i \cdot \mathbf{1}(x_i \ge 5)) + \varepsilon_i$

Place each of the numbers 29.35, 52.23, 29.13, and 34.86 in the correct row of the table above.

Solution: Numbers should be placed in decreasing order.

(d) Compute the test statistic for the full-reduced model F-test for testing

$$H_0: \beta_2 = \beta_3 = 0$$
 versus $H_1: \beta_j \neq 0$ for some $j \in \{2, 3\}$.

Solution: The test statistic is

$$\frac{(34.86 - 29.13)/(3 - 1)}{29.13/(10 - 3 - 1)} = 0.59.$$

(e) State your conclusion about the hypotheses in part (d) at the $\alpha = 0.05$ significance level.

Solution: We compare 0.59 to the critical value $F_{2,6,0.05} = 5.14$. Since 0.59 < 5.14 we fail to reject the null hypothesis.

(f) Compute the test statistic for the overall *F*-test of significance for testing

$$H_0: \beta_1 = \beta_2 = \beta_3 = 0$$
 versus $H_1: \beta_j \neq 0$ for some $j \in \{1, 2, 3\}$.

Solution: The test statistic is

$$\frac{(52.23 - 29.13)/3}{29.13/(10 - 3 - 1)} = 1.585994.$$

(g) State your conclusion about the hypotheses in part (f) at the $\alpha = 0.05$ significance level.

Solution: We compare 1.585994 to the critical value $F_{3,6,0.05} = 4.76$. Since 1.585994 < 4.76 we fail to reject the null hypothesis.