STAT 513 fa 2018 Exam II (take-home)

Karl B. Gregory

assigned: Tuesday, Nov 13th, 2018
due: Thursday, Nov 15th, 2018

Instructions:

- Looking at course notes IS allowed; Working with others IS NOT allowed.
- You will need, at most, a simple calculator.
- Write solutions on blank sheets of paper and turn these sheets in WITH A BLANK SHEET ON TOP (to cover answers) which has only your name on it. You do not need to turn in a copy of the exam itself.
- Some values of the function $\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t$:

$$
\begin{array}{c|cccc}
z & 1.282 & 1.645 & 1.96 & 2.576 \\
\hline \Phi(z) & 0.9 & 0.95 & 0.975 & 0.995
\end{array}
$$

- Some upper quantiles of some t distributions:

ξ	0.10	0.05	0.025	0.01	0.005
$t_{8, \xi}$	1.397	1.860	2.306	2.896	3.355
$t_{9, \xi}$	1.383	1.833	2.262	2.821	3.250
$t_{10, \xi}$	1.372	1.812	2.228	2.764	3.169

- The upper 0.05 quantile of the $F_{\nu_{1}, \nu_{2}}$ distribution for come combinations of ν_{1} and ν_{2} :

	$\nu_{1}=1$	$\nu_{1}=2$	$\nu_{1}=3$	$\nu_{1}=4$	$\nu_{1}=5$
$\nu_{2}=5$	6.61	5.79	5.41	5.19	5.05
$\nu_{2}=6$	5.99	5.14	4.76	4.53	4.39
$\nu_{2}=7$	5.59	4.74	4.35	4.12	3.97
$\nu_{2}=8$	5.32	4.46	4.07	3.84	3.69

- Some upper quantiles of some chi-squared distributions:

ξ	0.10	0.05	0.025	0.01	0.005
$\chi_{1, \xi}^{2}$	2.71	3.84	5.02	6.63	7.88
$\chi_{2, \xi}^{2,}$	4.61	5.99	7.38	9.21	10.60

1. Suppose X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} are independent random samples from Poisson distributions with means λ_{1} and λ_{2}, respectively, and suppose you wish to test the hypotheses

$$
H_{0}: \lambda_{1}=\lambda_{2} \text { versus } H_{1}: \lambda_{1} \neq \lambda_{2} .
$$

(a) Write down the likelihood function $L\left(\lambda_{1}, \lambda_{2} ; X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)$.

Solution: The likelihood function is

$$
\begin{aligned}
L\left(\lambda_{1}, \lambda_{2} ; X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right) & =\left(\prod_{i=1}^{n} \frac{e^{-\lambda_{1}} \lambda_{1}^{X_{i}}}{X_{i}!}\right)\left(\prod_{j=1}^{m} \frac{e^{-\lambda_{2}} \lambda_{2}^{Y_{j}}}{Y_{j}!}\right) \\
& =e^{-n \lambda_{1}} \lambda_{1}^{n \bar{X}_{n}} e^{-m \lambda_{2}} \lambda_{2}^{m \bar{Y}_{m}}\left(\prod_{i=1}^{n} X_{i}!\prod_{j=1}^{m} Y_{j}!\right)^{-1} .
\end{aligned}
$$

(b) Write down the log-likelihood function $\ell\left(\lambda_{1}, \lambda_{2} ; X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)$.

Solution: The log-likelihood function is

$$
\begin{aligned}
\ell\left(\lambda_{1}, \lambda_{2} ; X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)=-n \lambda_{1} & -m \lambda_{2}+n \bar{X}_{n} \log \left(\lambda_{1}\right)+m \bar{Y}_{m} \log \left(\lambda_{2}\right) \\
& -\sum_{i=1}^{n} \log \left(X_{i}!\right)-\sum_{j=1}^{m} \log \left(Y_{j}!\right)
\end{aligned}
$$

(c) Find the maximum likelihood estimators of λ_{1} and λ_{2}.

Solution: We get $\hat{\lambda}_{1}=\bar{X}_{n}$ and $\hat{\lambda}_{2}=\bar{Y}_{m}$.
(d) Under H_{0} we have $\lambda_{1}=\lambda_{2}=\lambda_{0}$. Find the value of λ which maximizes $L\left(\lambda, \lambda ; X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)$.

Solution: We get

$$
\hat{\lambda}_{0}=\frac{n \bar{X}_{n}+m \bar{Y}_{m}}{n+m}
$$

(e) Show that the likelihood ratio can be written

$$
\operatorname{LR}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)=\frac{\left(\frac{n \bar{X}_{n}+m \bar{Y}_{m}}{n+m}\right)^{n \bar{X}_{n}+m \bar{Y}_{m}}}{\left(\bar{X}_{n}\right)^{n \bar{X}_{n}}\left(\bar{Y}_{m}\right)^{m \bar{Y}_{m}}}
$$

Solution: The likelihood ratio is given by

$$
\begin{aligned}
\operatorname{LR}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right) & =\frac{L\left(\hat{\lambda}_{0}, \hat{\lambda}_{0} ; X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)}{L\left(\hat{\lambda}_{1}, \hat{\lambda}_{2} ; X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)} \\
& =\frac{e^{-n \hat{\lambda}_{0}} \hat{\lambda}_{0}^{n \bar{X}_{n}} e^{-m \hat{\lambda}_{0}} \hat{\lambda}_{0}^{m \bar{Y}_{m}}\left(\prod_{i=1}^{n} X_{i}!\prod_{j=1}^{m} Y_{j}\right)^{-1}}{e^{-n \hat{\lambda}_{1}} \hat{\lambda}_{1}^{n \bar{X}_{n}} e^{-m \hat{\lambda}_{2}} \hat{\lambda}_{2}^{m \bar{Y}_{m}}\left(\prod_{i=1}^{n} X_{i}!\prod_{j=1}^{m} Y_{j}\right)^{-1}} \\
& =\frac{e^{-(n+m) \hat{\lambda}_{0}} \hat{\lambda}_{0}^{n \bar{X}_{n}+m \bar{Y}_{m}}}{e^{-n \hat{\lambda}_{1}} \hat{\lambda}_{1}^{n \bar{X}_{n}} e^{-m \hat{\lambda}_{2}} \hat{\lambda}_{2}^{m \bar{Y}_{m}}} \\
& =\frac{\hat{\lambda}_{0}^{n \bar{X}_{n}+m \bar{Y}_{m}}}{\hat{\lambda}_{1}^{n \bar{X}_{n}} \hat{\lambda}_{2}^{m \bar{Y}_{m}}} .
\end{aligned}
$$

Substituting the expressions for $\hat{\lambda}_{1}, \hat{\lambda}_{2}$, and $\hat{\lambda}_{0}$ from parts (c) and (d) gives the result.
(f) Suppose for the sample sizes $n=20$ and $m=25$ we observe $\bar{X}_{n}=3.4$, and $\bar{Y}_{m}=4.56$. Compute the test statistic for the asymptotic likelihood ratio test given by $-2 \log \operatorname{LR}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)$.

Solution: We have

$$
\begin{aligned}
& -2 \log \operatorname{LR}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right) \\
& \quad=-2\left[\left(n \bar{X}_{n}+m \bar{Y}_{m}\right) \log \left(\frac{n \bar{X}_{m}+m \bar{Y}_{m}}{n+m}\right)-n \bar{X}_{n} \log \left(\bar{X}_{n}\right)-m \bar{Y}_{m} \log \left(\bar{Y}_{m}\right)\right]
\end{aligned}
$$

which for $n=20, m=25, \bar{X}_{n}=3.4$, and $\bar{Y}_{m}=4.56$ is equal to 3.749729 .
(g) Give the critical value for the asymptotic likelihood ratio test at the 0.05 significance level.

Solution: Under the null hypotheses

$$
-2 \log \operatorname{LR}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right) \rightarrow \chi_{1}^{2} \quad \text { in distribution }
$$

as $n \rightarrow \infty$, where the degrees of freedom of the limiting chi-squared distribution is equal to 1 because the null hypothesis restricts the parameter space such that it is one-dimensional (only one parameter is undetermined-the common λ_{0}). The 0.05 critical value for the asymptotic likelihood ratio test is the upper 0.05 quantile of this distribution, which is $\chi_{1,0.05}^{2}=3.84$.
(h) Give your conclusion concerning the hypotheses at the $\alpha=0.05$ significance level based on the data from part (f$)$.

Solution: Since the test statistic does not exceed the 0.05 critical value, we fail to reject the null hypothesis at the 0.05 significance level.
2. Let Y_{1}, \ldots, Y_{10} be random variables such that

$$
Y_{i}=1+(1 / 2) x_{i}+\varepsilon_{i}, \text { for } i=1, \ldots, 10,
$$

where $x_{1}=1, x_{2}=2, x_{3}=3, \ldots$, and $x_{10}=10$ and $\varepsilon_{1}, \ldots, \varepsilon_{10}$ are independent $\operatorname{Normal}\left(0, \sigma^{2}=4\right)$ random variables. In addition, let

$$
\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\underset{\beta_{0}, \beta_{1}}{\operatorname{argmin}} \sum_{i=1}^{n}\left[Y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2} .
$$

(a) Compute $\bar{x}=(1 / 10) \sum_{i=1}^{10} x_{i}$ and quantity $S_{x x}=\sum_{i=1}^{10}\left(x_{i}-\bar{x}\right)^{2}$.

Solution: We get

$$
\begin{aligned}
\bar{x} & =(1 / 10) 10(11) / 2=5.5 \\
S_{x x} & =\sum_{i=1}^{10}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{10} x_{i}^{2}-10^{2}=10(11)(21) / 6-10(5.5)^{2}=82.5
\end{aligned}
$$

(b) Give the following (each answer is a number):
i. $\mathbb{E} \hat{\beta}_{0}$
ii. $\mathbb{E} \hat{\beta}_{1}$
iii. $\operatorname{Var} \hat{\beta}_{0}$
iv. $\operatorname{Var} \hat{\beta}_{1}$
v. $\operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$
vi. $\mathbb{E}(1 / 8) \sum_{i=1}^{10}\left[Y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)\right]^{2}$

Solution:

i. $\mathbb{E} \hat{\beta}_{0}=1$
ii. $\mathbb{E} \hat{\beta}_{1}=1 / 2$
iii. $\operatorname{Var} \hat{\beta}_{0}=\left(1 / 10+(5.5)^{2} / 82.5\right) 4=1.866667$
iv. $\operatorname{Var} \hat{\beta}_{1}=4 / 82.5=0.04848485$
v. $\operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=-(5.5) / 82.5(4)=-0.2666667$
vi. $\mathbb{E}(1 / 8) \sum_{i=1}^{10}\left[Y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)\right]^{2}=4$
(c) Give the matrix \mathbf{X} such that

$$
\left[\begin{array}{l}
\hat{\beta}_{0} \\
\hat{\beta}_{1}
\end{array}\right]=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

where $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{10}\right)^{T}$.

Solution: Use

$$
\mathbf{X}=\left[\begin{array}{cc}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4 \\
1 & 5 \\
1 & 6 \\
1 & 7 \\
1 & 8 \\
1 & 9 \\
1 & 10
\end{array}\right]
$$

(d) Which of the following is true? Hint: Begin by writing down the distribution of $\hat{\beta}_{1}$.
A. $0<P\left(\hat{\beta}_{1}<0\right)<0.01$
B. $0.01<P\left(\hat{\beta}_{1}<0\right)<0.025$
C. $0.025<P\left(\hat{\beta}_{1}<0\right)<0.05$
D. $0.05<P\left(\hat{\beta}_{1}<0\right)<0.10$
E. $0.10<P\left(\hat{\beta}_{1}<0\right)<1$

Solution: We have $\hat{\beta}_{1} \sim \operatorname{Normal}(1 / 2,4 / 82.5)$, so

$$
\begin{aligned}
P\left(\hat{\beta}_{1}<0\right) & =P\left(\left(\hat{\beta}_{1}-1 / 2\right) / \sqrt{4 / 82.5}<-(1 / 2) / \sqrt{4 / 82.5}\right) \\
& =\Phi(-(1 / 2) / \sqrt{4 / 82.5}) \\
& =\Phi(-2.270738) .
\end{aligned}
$$

Since $-2.576<-2.270738<-1.96$, we have $0.01<P\left(\hat{\beta}_{1}<0\right)<0.025$.
(e) Using the true regression function, give an interval within which the random variable Y_{3} will fall with probability 0.95 .

Solution: The random variable Y_{3} has the $\operatorname{Normal}\left(1+(1 / 2) 3, \sigma^{2}=4\right)$ distribution, so Y_{3} will fall in the interval $2.5 \pm 1.96(2)=(-1.42,6.42)$ with probability 0.95 .
(f) Suppose you don't know the true relationship between Y_{1}, \ldots, Y_{10} and x_{1}, \ldots, x_{10}, but you believe that

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}, \text { for } i=1, \ldots, 10
$$

for some β_{0} and β_{1} and you wish to test $H_{0}: \beta_{1}=0$ versus $H_{1}: \beta_{1} \neq 0$ at the $\alpha=0.01$ significance level.
i. Suppose you obtain $\hat{\beta}_{1}=0.4$ and $(1 / 8) \sum_{i=1}^{10}\left[Y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)\right]^{2}=3$. What is your conclusion?
ii. Sketch a power curve for this test, where the power is a function of β_{1}. Draw a horizontal line at α and a vertical line at the null value of β_{1}.

Solution:

i. The test statistic is

$$
\frac{\hat{\beta}_{1}}{\hat{\sigma} / \sqrt{S_{x x}}}=(0.4) / \sqrt{3 / 82.5}=2.097618
$$

The upper $0.01 / 2=0.005$ quantile of the t_{8} distribution is 3.355 , so we fail to reject the null hypothesis.
ii. Sketch should have an inverted bell shape with a minimum value of 0.01 occurring at $\beta_{1}=0$.
3. Let Y_{1}, \ldots, Y_{10} be random variables such that

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} \mathbf{1}\left(x_{i} \geq 5\right)+\beta_{3}\left(x_{i} \cdot \mathbf{1}\left(x_{i} \geq 5\right)\right)+\varepsilon_{i}, \text { for } i=1, \ldots, 10
$$

for some $\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}$, where $x_{1}=1, x_{2}=2, x_{3}=3, \ldots$, and $x_{10}=10$ and $\varepsilon_{1}, \ldots, \varepsilon_{10}$ are independent $\operatorname{Normal}\left(0, \sigma^{2}=4\right)$ random variables. The function $\mathbf{1}\left(x_{i} \geq 5\right)$ is equal to 1 if $x_{i} \geq 5$ and equal to 0 otherwise. In addition, let $\hat{\boldsymbol{\beta}}=\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}\right)^{T}$, where

$$
\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}\right)=\underset{\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}}{\operatorname{argmin}} \sum_{i=1}^{n}\left[Y_{i}-\left(\beta_{0}+\beta_{1} x_{i}+\beta_{2} \mathbf{1}\left(x_{i} \geq 5\right)+\beta_{3}\left(x_{i} \cdot \mathbf{1}\left(x_{i} \geq 5\right)\right)\right)\right]^{2} .
$$

(a) Give the design matrix \mathbf{X} such that

$$
\left[\begin{array}{c}
\hat{\beta}_{0} \\
\hat{\beta}_{1} \\
\hat{\beta}_{2} \\
\hat{\beta}_{3}
\end{array}\right]=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y},
$$

where $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{10}\right)^{T}$.
Solution: Use

$$
\mathbf{X}=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 \\
1 & 3 & 0 & 0 \\
1 & 4 & 0 & 0 \\
1 & 5 & 1 & 5 \\
1 & 6 & 1 & 6 \\
1 & 7 & 1 & 7 \\
1 & 8 & 1 & 8 \\
1 & 9 & 1 & 9 \\
1 & 10 & 1 & 10
\end{array}\right]
$$

(b) Give the vector a such that $\mathbb{E} \mathbf{a}^{T} \hat{\boldsymbol{\beta}}=\beta_{3}$.

Solution: Use the vector $\mathbf{a}=[0,0,0,1]^{T}$.
(c) Four different models were fit to the data $\left(x_{1}, Y_{1}\right), \ldots,\left(x_{10}, Y_{10}\right)$, resulting in four different sums of squared residuals equal to $29.35,52.23,29.13$, and 34.86 .

Model fit to the data	Sum of squared residuals
$Y_{i}=\beta_{0}+\varepsilon_{i}$	
$Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$	
$Y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} \mathbf{1}\left(x_{i} \geq 5\right)+\varepsilon_{i}$	
$Y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} \mathbf{1}\left(x_{i} \geq 5\right)+\beta_{3}\left(x_{i} \cdot \mathbf{1}\left(x_{i} \geq 5\right)\right)+\varepsilon_{i}$	

Place each of the numbers $29.35,52.23,29.13$, and 34.86 in the correct row of the table above.
Solution: Numbers should be placed in decreasing order.
(d) Compute the test statistic for the full-reduced model F-test for testing

$$
H_{0}: \beta_{2}=\beta_{3}=0 \text { versus } H_{1}: \beta_{j} \neq 0 \text { for some } j \in\{2,3\}
$$

Solution: The test statistic is

$$
\frac{(34.86-29.13) /(3-1)}{29.13 /(10-3-1)}=0.59
$$

(e) State your conclusion about the hypotheses in part (d) at the $\alpha=0.05$ significance level.

Solution: We compare 0.59 to the critical value $F_{2,6,0.05}=5.14$. Since $0.59<5.14$ we fail to reject the null hypothesis.
(f) Compute the test statistic for the overall F-test of significance for testing

$$
H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0 \text { versus } H_{1}: \beta_{j} \neq 0 \text { for some } j \in\{1,2,3\}
$$

Solution: The test statistic is

$$
\frac{(52.23-29.13) / 3}{29.13 /(10-3-1)}=1.585994
$$

(g) State your conclusion about the hypotheses in part (f) at the $\alpha=0.05$ significance level.

Solution: We compare 1.585994 to the critical value $F_{3,6,0.05}=4.76$. Since $1.585994<4.76$ we fail to reject the null hypothesis.

